
Workgroup: DETNET

Internet-Draft: draft-eckert-detnet-tcqf-01

Published: 6 November 2022

Intended Status: Standards Track

Expires: 10 May 2023

Authors: T. Eckert

Futurewei Technologies USA

S. Bryant

University of Surrey ICS

A. G. Malis

Malis Consulting

G. Li

Huawei Network Technology Laboratory

Deterministic Networking (DetNet) Data Plane - Tagged Cyclic Queuing

and Forwarding (TCQF) for bounded latency with low jitter in large

scale DetNets

Abstract

This memo specifies a forwarding method for bounded latency for

Deterministic Networks. It uses cycle tagging of packets for cyclic

queuing and forwarding with multiple buffers (TCQF). This memo

standardizes tagging via the MPLS packet Traffic Class (TC) field

for MPLS links and the IP/IPv6 DSCPfield for IP/IPv6 links. The

short-hand for this mechanism is Tagged Cyclic Queuing and

Forwarding (TCQF).

Target benefits of TCQF include low end-to-end jitter, ease of high-

speed hardware implementation, optional ability to support large

number of flow in large networks via DiffServ style aggregation by

applying TCQF to the DetNet aggregate instead of each DetNet flow

individually, and support of wide-area DetNet networks with

arbitrary link latencies and latency variations.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 May 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction (informative)

2. Using TCQF in the DetNet Architecture and MPLS forwarding plane

(informative)

3. TCQF per-flow stateless forwarding (normative)

3.1. Configuration Data model and tag processing for MPLS TC tags

3.2. Packet processing

3.3. TCQF with MPLS label stack operations

3.4. TCQF with IP operations

3.5. TCQF Pseudocode (normative)

4. TCQF Per-flow Ingress forwarding (normative)

4.1. Ingress Flows Configuration Data Model

4.2. Ingress Flows Pseudocode

5. Implementation, Deployment, Operations and Validation

considerations (informative)

5.1. High-Speed Implementation

5.2. Controller plane computation of cycle mappings

5.3. Link speed and bandwidth sharing

5.4. Validation

6. Security Considerations

7. IANA Considerations

8. Changelog

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction (informative)

Cyclic Queuing and Forwarding (CQF), [IEEE802.1Qch], is an IEEE

standardized queuing mechanism in support of deterministic bounded

latency. See also [I-D.ietf-detnet-bounded-latency], Section 6.6.

¶

¶

¶

https://trustee.ietf.org/license-info

CQF benefits for Deterministic QoS include the tightly bounded

jitter it provides as well as the per-flow stateless operation,

minimizing the complexity of high-speed hardware implementations and

allowing to support on transit hops arbitrary number of DetNet flow

in the forwarding plane because of the absence of per-hop, per-flow

QoS processing. In the terms of the IETF QoS architecture, CQF can

be called DiffServ QoS technology, operating only on a traffic

aggregate.

CQFs is limited to only limited-scale wide-area network deployments

because it cannot take the propagation latency of links into

account, nor potential variations thereof. It also requires very

high precision clock synchronization, which is uncommon in wide-area

network equipment beyond mobile network fronthaul. See

[I-D.eckert-detnet-bounded-latency-problems] for more details.

This specification introduces and utilizes an enhanced form of CQF

where packets are tagged with cycle identifiers for a limited number

of cycles (such as 3...7) and hop-by-hop forwarded through the use

of per-cycle buffers. This multiple buffer forwarding overcome the

distance and clock synchronization limitations of CQF.

[I-D.qiang-DetNet-large-scale-DetNet] and

[I-D.dang-queuing-with-multiple-cyclic-buffers] provide additional

details about the background of TCQF. TCQF does not depend on other

elements of [RFC8655], so it can also be used in otherwise non-

deterministic IP or MPLS networks to achieve bounded latency and low

jitter.

TCQF is likely especially beneficial when networks are architected

to avoid per-hop, per-flow state even for traffic steering, which is

the case for networks using SR-MPLS [RFC8402] for traffic steering

of MPLS unicast traffic, SRv6 [RFC8986] for traffic steeering of

IPv6 unicast traffic and/or BIER-TE [I-D.ietf-bier-te-arch] for tree

engineering of MPLS multicast traffic (using the TC and/or DSCP

header fields of BIER packets according to [RFC8296]).

In these networks, it is specifically undesirable to require per-

flow signaling to non-edge forwarders (such as P-LSR in MPLS

networks) solely for DetNet QoS because such per-flow state is

unnecessary for traffic steering and would only be required for the

bounded latency QoS mechanism and require likely even more complex

hardware and manageability support than what was previously required

for per-hop steering state (such as in RSVP-TE, [RFC4875]). Note

that the DetNet architecture [RFC8655] does not include full support

for this DiffServ model, which is why this memo describes how to use

TCQF with the DetNet architecture per-hop, per-flow processing as

well as without it.

¶

¶

¶

¶

¶

2. Using TCQF in the DetNet Architecture and MPLS forwarding plane

(informative)

This section gives an overview of how the operations of TCQF relates

to the DetNet architecture. We first revisit QoS with DetNet in the

absence of TCQF using an MPLS network as an example.

Figure 1: A DetNet MPLS Network

The above Figure 1, is copied from [RFC8964], Figure 2, and only

enhanced by numbering the nodes to be able to better refer to them

in the following text.

Assume a DetNet flow is sent from T-PE1 to T-PE2 across S-PE1, LSR,

S-PE2. In general, bounded latency QoS processing is then required

on the outgoing interface of T-PE1 towards S-PE1, and any further

outgoing interface along the path. When T-PE1 and S-PE2 know that

their next-hop is a service LSR, their DetNet flow label stack may

simply have the DetNet flows Service Label (S-Label) as its Top of

Stack (ToS) LSE, explicitly indicating one DetNet flow.

On S-PE1, the next-hop LSR is not DetNet aware, which is why S-PE1

would need to send a label stack where the S-Label is followed by a

Forwarding Label (F-Label), and LSR-P would need to perform bounded

latency based QoS on that F-Label.

For bounded latency QoS mechanisms relying on per-flow regulator

state (aka: per-flow packet scheduling), such as in [TSN-ATS], this

requires the use of a per-detnet flow F-Labels across the network

from S-PE1 to S-PE2. These could for for example be assigned/managed

through RSVP-TE [RFC3209] enhanced as necessary with QoS parameters

¶

 DetNet MPLS Relay Transit Relay DetNet MPLS

 End System Node Node Node End System

 T-PE1 S-PE1 LSR-P S-PE2 T-PE2

 +----------+ +----------+

 | Appl. |<------------ End-to-End Service ----------->| Appl. |

 +----------+ +---------+ +---------+ +----------+

 | Service |<--| Service |-- DetNet flow --| Service |-->| Service |

 +----------+ +---------+ +----------+ +---------+ +----------+

 |Forwarding| |Fwd| |Fwd| |Forwarding| |Fwd| |Fwd| |Forwarding|

 +-------.--+ +-.-+ +-.-+ +----.---.-+ +-.-+ +-.-+ +---.------+

 : Link : / ,-----. \ : Link : / ,-----. \

 +........+ +-[Sub-]-+ +......+ +-[Sub-]-+

 [Network] [Network]

 `-----' `-----'

 |<- LSP -->| |<-------- LSP -----------| |<--- LSP -->|

 |<----------------- DetNet MPLS --------------------->|

¶

¶

¶

matching the underlying bounded latency mechanism (such as

[TSN-ATS]).

With TCQF, a sequence of LSR and DetNet service node implements TCQF

with MPLS TC, ideally from T-PE1 (ingress) to T-PE2 (egress). The

ingress node needs to perform per-DetNet-flow per-packet

"shaping"/"regulating" to assign each packet of a flow to a

particular TCQF cycle. This is specified in Section 4.

All LSR/Service nodes after the ingress node only have to map a

received TCQF tagged DetNet packet to the configured cycle on the

output interface, not requiring any per-DetNet-flow QoS state. These

LSR/Service nodes do therefore also not require per-flow

interactions with the controller plane for the purpose of bounded

latency.

Per-flow state therefore is only required on nodes that are DetNet

service nodes, or when explicit, per-DetNet flow steering state is

desired, instead of ingress steering through e.g.: SR-MPLS.

Operating TCQF per-flow stateless across a service node, such as S-

PE1, S-PE2 in the picture is only one option. It is of course

equally feasible to Have one TCQF domain from T-PE1 to S-PE2, start

a new TCQF domain there, running for example up to S-PE2 and start

another one to T-PE2.

A service node must act as an egress/ingress edge of a TCQF domain

if it needs to perform operations that do change the timing of

packets other than the type of latency that can be considered in

configuration of TCQF (see Section 5.2).

For example, if T-PE1 is ingress for a TCQF domain, and T-PE2 is the

egress, S-PE1 could perform the DetNet Packet Replication Function

(PRF) without having to be a TQCF edge node as long as it does not

introduce latencies not included in the TCQF setup and the

controller plane reserves resources for the multitude of flows

created by the replication taking the allocation of resources in the

TCQF cycles into account.

Likewise, S-PE2 could perform the Packet Elimination Function

without being a TCQF edge node as this most likely does not

introduce any non-TCQF acceptable latency - and the controller plane

accordingly reserves only for one flow the resources on the S-PE2-

>T-PE2 leg.

If on the other hand, S-PE2 was to perform the Packet Reordering

Function (PRF), this could create large peaks of packets when out-

of-order packets are released together. A PRF would either have to

take care of shaping out those bursts for the traffic of a flow to

again conform to the admitted CIR/PIR, or else the service node

¶

¶

¶

¶

¶

¶

¶

¶

would have to be a TCQF egress/ingress, performing that shaping

itself as an ingress function.

3. TCQF per-flow stateless forwarding (normative)

3.1. Configuration Data model and tag processing for MPLS TC tags

The following data model summarizes the configuration parameters as

required for TCQF and discussed in further sections. 'tcqf' includes

the parameters independent of the tagging on an interface. 'tcqf_*'

describes the parameters for interfaces using MPLS TC and IP DSCP

tagging.

Figure 2: TCQF Configuration Data Model

3.2. Packet processing

This section explains the TCQF packet processing and through it,

introduces the semantic of the objects in Figure 2

tcqf contains the router wide configuration of TCQF parameters,

independent of the specific tagging mechanism on any interface. Any

interface can have a different tagging method. This document uses

the term router when it is irrelevant whether forwarding is for IP

or MPLS packet, and the term Label Switched Router (LSR) to indicate

MPLS is used, or IP router to indicate IP or IPv6 are used.

The model represents a single TQCF domain, which is a set of

interfaces acting both as ingress (iif) and egress (oif) interfaces,

capable to forward TCQF packets amongst each other. A router may

¶

¶

Encapsulation agnostic data

tcqf

+-- uint16 cycles

+-- uint16 cycle_time

+-- uint32 cycle_clock_offset

+-- if_config[oif] # Outgoing InterFace

 +-- uint32 cycle_clock_offset

 +-- cycle_map[iif] # Incoming InterFace

 +--uint8 oif_cycle[iif_cycle]

MPLS TC tagging specific data

tcqf_tc[oif]

+--uint8 tc[oif_cycle]

IP/IPv6 DSCP tagging specific data

tcqf_dscp[oif]

+--uint8 dscp[oif_cycle]

¶

¶

have multiple TCQF domains each with a set of interfaces disjoint

from those of any other TCQF domain.

tcqf.cycles is the number of cycles used across all interfaces in

the TCQF domain. routers MUST support 3 and 4 cycles. To support

interfaces with MPLS TC tagging, 7 or less cycles MUST be used

across all interfaces in the CQF domain.

The unit of tcqf.cycle_time is micro-seconds. routers MUST support

configuration of cycle-times of 20,50,100,200,500,1000,2000 usec.

Cycles start at an offset of tcqf.cycle_clock_offset in units of

nsec as follows. Let clock1 be a timestamp of the local reference

clock for TCQF, at which cycle 1 starts, then:

tcqf.cycle_clock_offset = (clock1 mod (tcqf.cycle_time *

tcqf.cycles))

The local reference clock of the LSR/router is expected to be

synchronized with the neighboring LSR/router in TCQF domain.

tcqf.cycle_clock_offset can be configurable by the operator, or it

can be read-only. In either case will the operator be able to

configure working TCQF forwarding through appropriately calculated

cycle mapping.

tcqf.if_config[oif] is optional per-interface configuration of TCQF

parameters. tcqf.if_config[oif].cycle_clock_offset may be different

from tcqf.cycle_clock_offset, for example, when interfaces are on

line cards with independently synchronized clocks, or when non-

uniform ingress-to-egress propagation latency over a complex router/

LSR fabric makes it beneficial to allow per-egress interface or line

card configuration of cycle_clock_offset. It may be configurable or

read-only.

The value of -1 for tcqf.if_config[oif].cycle_clock_offset is used

to indicate that the domain wide tcqf.cycle_clock_offset is to be

used for oif. This is the only permitted negative number for this

parameter.

When a packet is received from iif with a cycle value of iif_cycle

and the packet is routed towards oif, then the cycle value (and

buffer) to use on oif is

tcqf.if_config[oif].cycle_map[iif].oif_cycle[iif_cycle]. This is

called the cycle mapping and is must be configurable. This cycle

mapping always happens when the packet is received with a cycle tag

on an interface in a TCQF domain and forwarded to another interface

in the same TCQF domain.

tcqf_tc[oif].tc[oif_cycle] defines how to map from the internal

cycle number oif_cycle to an MPLS TC value on interface oif.

¶

¶

¶

¶

¶

¶

¶

¶

¶

tcqf_tc[oif] MUST be configured, when oif uses MPLS. This oif_cycle

<=> tc mapping is not only used to map from internal cycle number to

MPLS TC tag when sending packets, but also to map from MPLS TC tag

to the internal cycle number when receiving packets. Likewise,

tcqf_dscp[oif] MUST be configured, when oif uses IP/IPv6.

This data model does not determine whether interfaces use MPLS or

IP/IPv6 encapsulation. This is determined by the setup of the DetNet

domain. A mixed use of MPLS and IP/IPv6 interfaces is possible with

this data model, but at the time of writing this document not

supported by DetNet.

3.3. TCQF with MPLS label stack operations

In the terminology of [RFC3270], TCQF QoS as defined here, is TC-

Inferred-PSC LSP (E-LSP) behavior: Packets are determined to belong

to the TCQF PSC solely based on the TC of the received packet.

The internal cycle number SHOULD be assigned from the Top of Stack

(ToS) MPLS label TC bits before any other label stack operations

happens. On the egress side, the TC value of the ToS MPLS label

SHOULD be assigned from the internal cycle number after any label

stack processing.

With this order of processing, TCQF can support forwarding of

packets with any label stack operations such as label swap in the

case of LDP or RSVP-TE created LSP, Penultimate Hop Popping (PHP),

or no label changes from SID hop-by-hop forwarding and/or SID/label

pop as in the case of SR-MPLS traffic steering.

3.4. TCQF with IP operations

As how DetNet domains are currently assumed to be single

administrative network operator domains, this document does not ask

for standardization of the DSCP to use with TCQF. Instead,

deployments wanting to use TCQF with IP/IPv6 encapsulation need to

assign within their domain DSCP from the xxxx11 "EXP/LU" Codepoint

space according to [RFC2474], Section 6. This allows up to 16 DSCP

for intradomain use.

3.5. TCQF Pseudocode (normative)

The following pseudocode restates the forwarding behavior of

Section 3 in an algorithmic fashion as pseudocode. It uses the

objects of the TCQF configuration data model defined in Section 3.1.

¶

¶

¶

¶

¶

¶

¶

void receive(pak) {

 // Receive side TCQF - retrieve cycle of received packet

 // from packet internal header

 iif = pak.context.iif

 if (tcqf.if_config[iif]) { // TCQF enabled on iif

 if (tcqf_tc[iif]) { // MPLS TCQF enabled on iif

 tc = pak.mpls_header.lse[tos].tc

 pak.context.tcqf_cycle = map_tc2cycle(tc, tcqf_tc[iif])

 } else

 if (tcqf_dscp[iif]) { // IP TCQF enabled on iif

 dscp = pak.ip_header.dscp

 pak.context.tcqf_cycle = map_dscp2cycle(dscp, tcqf_dscp[iif])

 } else // ... other encaps

 }

 forward(pak);

}

// ... Forwarding including any label stack operations

void forward(pak) {

 oif = pak.context.oif = forward_process(pak)

 if(ingres_flow_enqueue(pak))

 return // ingress packets are only enqueued here.

 if(pak.context.tcqf_cycle) // non TCQF packets cycle is 0

 if(tcqf.if_config[oif]) { // TCQF enabled on OIF

 // Map tcqf_cycle iif to oif - encap agnostic

 cycle = pak.context.tcqf_cycle

 = map_cycle(cycle,

 tcqf.if_config[oif].cycle_map[[iif])

 // MPLS TC-TCQF

 if(tcqf.tc[oif]) {

 pak.mpls_header.lse[tos].tc = map_cycle2tc(cycle, tcqf_tc[oif])

 } else

 // IP TCQF enabled on iif

 if (tcqf_dscp[oif]) {

 pak.ip_header.dscp = map_cycle2dscp(cycle, tcqf_dscp[oif])

 } // else... other future encap/tagging options for TCQF

 tcqf_enqueue(pak, oif.cycleq[cycle])

 return

 } else {

 // Forwarding of egress TCQF packets [1]

 }

 }

 // ... non TCQF OIF forwarding [2]

}

// Started when TCQF is enabled on an interface

// dequeues packets from oif.cycleq

// independent of encapsulation

void send_tcqf(oif) {

 cycle = 1

 cc = tcqf.cycle_time *

 tcqf.cycle_time

 o = tcqf.cycle_clock_offset

 nextcyclestart = floor(tnow / cc) * cc + cc + o

 while(1) {

 ingres_flow_2_tcqf(oif,cycle)

 while(tnow < nextcyclestart) { }

 while(pak = dequeue(oif.cycleq(cycle)) {

 send(pak)

 }

 cycle = (cycle + 1) mod tcqf.cycles + 1

 nextcyclestart += tcqf.cycle_time

 }

}

Figure 3: TCQF Pseudocode

Processing of ingress TCQF packets is performed via

ingres_flow_enqueue(pak) and ingres_flow_2_tcqf(oif,cycle) as

explained in Section 4.2.

Processing of egres TCQF packet is out-of-scope. It can performed by

any non-TCQF packet forwarding mechanism such as some strict

priority queuing in [2], and packets could accordingly be marked

with an according packet header traffic class indicator for such a

traffic class in [1].

4. TCQF Per-flow Ingress forwarding (normative)

Ingress flows in the context of this text are packets of flows that

enter the router from a non-TCQF interface and need to be forwarded

to an interface with TCQF.

In the most simple case, these packets are sent by the source and

the router is the first-hop router. In another case, the routers

ingress interface connects to a hop where the previous router(s) did

perform a different bounded latency forwarding mechanism than TCQF.

4.1. Ingress Flows Configuration Data Model

Figure 4: TCQF Ingress Configuration Data Model

The data model shown in Figure 4 expands the tcqf data model from

Figure 2. For every DetNet flow for which this router is the TCQF

ingress, the controller plane has to specify a maximum number of

bits called csize (cycle size) that are permitted to go into each

individual cycle.

Note, that iflow[flowid].csize is not specific to the sending

interface because it is a property of the DetNet flow.

4.2. Ingress Flows Pseudocode

When a TCQF ingress is received, it first has to be enqueued into a

per-flow queue. This is necessary because the permitted burst size

for the flow may be larger than what can fit into a single cycle, or

even into the number of cycles used in the network.

¶

¶

¶

¶

Extends above defined tcqf

tcqf

...

| Ingress Flows, see below (TBD:

+-- iflow[flowid]

 +-- uint32 csize # in bits

¶

¶

¶

Figure 5: TCQF Ingress Enqueue Pseudocode

ingres_flow_enqueue(pak) as shown in Figure 5 performs this

enqueuing of the packet. Its position in the DetNet/TCQF forwarding

code is shown in Figure 3.

police(pak): If the router is not only the TCQF ingress router, but

also the first-hop router from the source, ingres_flow_enqueue(pak)

will also be the place where policing of the flows packet according

to the Traffic Specification of the flow would happen - to ensure

that packets violating the Traffic Specification will not be

forwarded, or be forwarded with lower priority (e.g.: as best

effort). This policing and resulting forwarding action is not

specific to TCQF and therefore out of scope for this text. See

[RFC9016], section 5.5.

Figure 6: TCQF Ingress Pseudocode

ingres_flow_2_tcqf(oif, cycle) as shown in Figure 6 transfers

ingress DetNet flow packets from their per-flow queue into the queue

of the cycle that will be sent next. The position of

ingres_flow_2_tcqf() in the DetNet/TCQF forwarding code is shown in

Figure 3.

bool ingres_flow_enqueue(pak) {

 if(!pak.context.tcqf_cycle &&

 flowid = match_detnetflow(pak)) {

 police(pak) // according to RFC9016 5.5

 enqueue(pak, flowq[oif][flowid])

 return true

 }

 return false

}

¶

¶

void ingres_flow_2_tcqf(oif, cycle) {

 foreach flowid in flowq[oif][*] {

 free = tcqf.iflow[flowid].csize

 q = flowq[oif][flowid]

 while(notempty(q) &&

 (l = head(q).size) <= free) {

 pak = dequeue(q)

 free -= l

 tcqf_enqueue(pak, oif.cycleq[cycle])

 }

 }

}

¶

5. Implementation, Deployment, Operations and Validation

considerations (informative)

5.1. High-Speed Implementation

High-speed implementations with programmable forwarding planes of

TCQF packet forwarding require Time-Gated Queues for the cycle

queues, such as introduced by [IEEE802.1Qbv] and also employed in

CQF [IEEE802.1Qch].

Compared to CQF, the accuracy of clock synchronization across the

nodes is reduced as explained in Section 5.2 below.

High-speed forwarding for ingress packets as specified in Section 4

above would require to pass packets first into a per-flow queue and

then re-queue them into a cycle queue. This is not ideal for high

speed implementations. The pseudocode for ingres_flow_enqueue() and

ingres_flow_2_tcqf(), like the rest of the pseudocode in this

document is only meant to serve as the most compact and hopefully

most easy to read specification of the desired externally observable

behavior of TCQF - but not as a guidance for implementation,

especially not for high-speed forwarding planes.

High-speed forward could be implemented with single-enqueueing into

cycle queues as follows:

Let B[f] be the maximum amount of data that the router would need to

buffer for ingress flow f at any point in time. This can be

calculated from the flows Traffic Specification. For example, when

using the parameters of [RFC9016], section 5.5.

Maxcycles is the maximum number of cycles required so that packets

from all ingress flows can be directly enqueued into maxcycles

queues. The router would then not cycle across tcqf.cycles number of

queues, but across maxcycles number of queues, but still cycling

across tcqf.cycles number of cycle tags.

Calculation of B[f] and in result maxcycles may further be refined

(lowered) by additionally known constraints such as the bitrates of

the ingress interface(s) and TCQF output interface(s).

5.2. Controller plane computation of cycle mappings

The cycle mapping is computed by the controller plane by taking at

minimum the link, interface serialization and node internal

¶

¶

¶

¶

¶

B[f] <= MaxPacketsPerInterval*MaxPayloadSize*8

maxcycles = max(ceil(B[f] / tcqf.iflow[f].csize) | f)

¶

¶

¶

forwarding latencies as well as the cycle_clock_offsets into

account.

Figure 7: Calculation reference

Consider in Figure 7 that Router R1 sends packets via C = 3 cycles

with a cycle_clock offset of O1 towards Router R2. These packets

arrive at R2 with a cycle_clock offset of O1' which includes through

D all latencies incurred between releasing a packet on R1 from the

cycle buffer until it can be put into a cycle buffer on R2:

serialization delay on R1, link delay, non_CQF delays in R1 and R2,

especially forwarding in R2, potentially across an internal fabric

to the output interface with the sending cycle buffers.

Figure 8: Calculating cycle mapping

Figure 8 shows a formula to calculate the cycle mapping between R1

and R2, using the first available cycle on R2. In the example of

Figure 7 with CT = 1, (O1' - O2) =~ 1.8, A will be 0, resulting in

map(1) to be 1, map(2) to be 2 and map(3) to be 3.

The offset "C" for the calculation of A is included so that a

negative (O1 - O2) will still lead to a positive A.

In general, D will be variable [Dmin...Dmax], for example because of

differences in serialization latency between min and max size

packets, variable link latency because of temperature based length

variations, link-layer variability (radio links) or in-router

¶

Router . O1

 R1 . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 . .

 Delay D

 . .

 . O1'

 . | cycle 1 |

Router . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 R2 . O2

CT = cycle_time

C = cycles

CC = CT * C

O1 = cycle_clock_offset router R1, interface towards R2

O2 = cycle_clock_offset router R2, output interface of interest

O1' = O1 + D

¶

A = (ceil((O1' - O2) / CT) + C + 1) mod CC

map(i) = (i - 1 + A) mod C + 1

¶

¶

processing variability. In addition, D also needs to account for the

drift between the synchronized clocks for R1 and R2. This is called

the Maximum Time Interval Error (MTIE).

Let A(d) be A where O1' is calculated with D = d. To account for the

variability of latency and clock synchronization, map(i) has to be

calculated with A(Dmax), and the controller plane needs to ensure

that that A(Dmin)...A(Dmax) does cover at most (C - 1) cycles.

If it does cover C cycles, then C and/or CT are chosen too small,

and the controller plane needs to use larger numbers for either.

This (C - 1) limitation is based on the understanding that there is

only one buffer for each cycle, so a cycle cannot receive packets

when it is sending packets. While this could be changed by using

double buffers, this would create additional implementation

complexity and not solve the limitation for all cases, because the

number of cycles to cover [Dmin...Dmax] could also be (C + 1) or

larger, in which case a tag of 1...C would not suffice.

5.3. Link speed and bandwidth sharing

TCQF hops along a path do not need to have the same bitrate, they

just need to use the same cycle time. The controller plane has to

then be able to take the TCQF capacity of each hop into account when

admitting flows based on their Traffic Specification and TCQF csize.

TCQF does not require to be allocated 100% of the link bitrate. When

TCQF has to share a link with other traffic classes, queuing just

has to be set up to ensure that all data of a TCQF cycle buffer can

be sent within the TCQF cycle time. For example by making the TCQF

cycle queues the highest priority queues and then limiting their

capacity through admission control to leave time for other queues to

be served as well.

5.4. Validation

[LDN] describes an experimental validation of TCQF with high-speed

forwarding hardware and provides further details on the mathematical

models.

6. Security Considerations

TBD.

7. IANA Considerations

This document has no IANA considerations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

8. Changelog

[RFC-editor: please remove]

Initial draft name: draft-eckert-detnet-mpls-tc-tcqf

00

Initial version

01

Added new co-author.

Changed Data Model to "Configuration Data Model",

and changed syntax from YANG tree to a non-YANG tree, removed empty

section targeted for YANG model. Reason: the configuration

parameters that we need to specify the forwarding behavior is only a

subset of what likely would be a good YANG model, and any work to

define such a YANG model not necessary to specify the algorithm

would be scope creep for this specification. Better done in a

separate YANG document. Example additional YANG aspects for such a

document are how to map parameters to configuration/operational

space, what additional operational/monitoring parameter to support

and how to map the YANG objects required into various pre-existing

YANG trees.

Improved text in forwarding section, simplified sentences, used

simplified configuration data model.

02

Refresh

03

Added ingress processing, and further implementation considerations.

New draft name: draft-eckert-detnet-tcqf

00

Added text for DSCP based tagging of IP/IPv6 packets, therefore

changing the original, MPLS-only centric scope of the document,

necessitating a change in name and title.

This was triggered by the observation of David Black at the IETF114

DetNet meeting that with DetNet domains being single administrative

domains, it is not necessary to have standardized (cross

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2474]

[RFC3270]

[RFC8655]

[RFC8964]

[I-D.dang-queuing-with-multiple-cyclic-buffers]

administrative domain) DSCP for the tagging of IP/IP6 packets for

TCQF. Instead it is sufficient to use EXP/LU DSCP code space and

assignment of these is a local matter of a domain as is that of TC

values when MPLS is used. Standardized DSCP in the other hand would

have required likely work/oversight by TSVWG.

In any case, the authors feel that with this insight, there is no

need to constrain single-domain definition of TCQF to only MPLS, but

instead both MPLS and IP/IPv6 tagging can be easily specified in

this one draft.

01

Added new co-author.

9. References

9.1. Normative References

Nichols, K., Blake, S., Baker, F., and D. Black,

"Definition of the Differentiated Services Field (DS

Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI

10.17487/RFC2474, December 1998, <https://www.rfc-

editor.org/info/rfc2474>.

Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,

P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-

Protocol Label Switching (MPLS) Support of Differentiated

Services", RFC 3270, DOI 10.17487/RFC3270, May 2002,

<https://www.rfc-editor.org/info/rfc3270>.

Finn, N., Thubert, P., Varga, B., and J. Farkas,

"Deterministic Networking Architecture", RFC 8655, DOI

10.17487/RFC8655, October 2019, <https://www.rfc-

editor.org/info/rfc8655>.

Varga, B., Ed., Farkas, J., Berger, L., Malis, A.,

Bryant, S., and J. Korhonen, "Deterministic Networking

(DetNet) Data Plane: MPLS", RFC 8964, DOI 10.17487/

RFC8964, January 2021, <https://www.rfc-editor.org/info/

rfc8964>.

9.2. Informative References

Liu, B. and J. Dang,

"A Queuing Mechanism with Multiple Cyclic Buffers", Work

in Progress, Internet-Draft, draft-dang-queuing-with-

multiple-cyclic-buffers-00, 22 February 2021, <https://

www.ietf.org/archive/id/draft-dang-queuing-with-multiple-

cyclic-buffers-00.txt>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc3270
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8964
https://www.rfc-editor.org/info/rfc8964
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt

[I-D.eckert-detnet-bounded-latency-problems]

[I-D.ietf-bier-te-arch]

[I-D.ietf-detnet-bounded-latency]

[I-D.qiang-DetNet-large-scale-DetNet]

[IEEE802.1Qbv]

[IEEE802.1Qch]

[LDN]

[RFC3209]

Eckert, T. T. and S.

Bryant, "Problems with existing DetNet bounded latency

queuing mechanisms", Work in Progress, Internet-Draft,

draft-eckert-detnet-bounded-latency-problems-00, 12 July

2021, <https://www.ietf.org/archive/id/draft-eckert-

detnet-bounded-latency-problems-00.txt>.

Eckert, T. T., Menth, M., and G. Cauchie,

"Tree Engineering for Bit Index Explicit Replication

(BIER-TE)", Work in Progress, Internet-Draft, draft-ietf-

bier-te-arch-13, 25 April 2022, <https://www.ietf.org/

archive/id/draft-ietf-bier-te-arch-13.txt>.

Finn, N., Le Boudec, J.,

Mohammadpour, E., Zhang, J., and B. Varga, "DetNet

Bounded Latency", Work in Progress, Internet-Draft,

draft-ietf-detnet-bounded-latency-10, 8 April 2022,

<https://www.ietf.org/archive/id/draft-ietf-detnet-

bounded-latency-10.txt>.

Qiang, L., Geng, X., Liu, B., Eckert, T. T., Geng, L.,

and G. Li, "Large-Scale Deterministic IP Network", Work

in Progress, Internet-Draft, draft-qiang-detnet-large-

scale-detnet-05, 2 September 2019, <https://www.ietf.org/

archive/id/draft-qiang-detnet-large-scale-detnet-05.txt>.

IEEE Time-Sensitive Networking (TSN) Task Group.,

"IEEE Standard for Local and metropolitan area networks

-- Bridges and Bridged Networks - Amendment 25:

Enhancements for Scheduled Traffic", 2015.

IEEE Time-Sensitive Networking (TSN) Task Group.,

"IEEE Std 802.1Qch-2017: IEEE Standard for Local and

Metropolitan Area Networks - Bridges and Bridged Networks

- Amendment 29: Cyclic Queuing and Forwarding", 2017.

Liu, B., Ren, S., Wang, C., Angilella, V., Medagliani,

P., Martin, S., and J. Leguay, "Towards Large-Scale

Deterministic IP Networks", IEEE 2021 IFIP Networking

Conference (IFIP Networking), doi 10.23919/

IFIPNetworking52078.2021.9472798, 2021.

Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,

and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP

https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://www.ietf.org/archive/id/draft-qiang-detnet-large-scale-detnet-05.txt
https://www.ietf.org/archive/id/draft-qiang-detnet-large-scale-detnet-05.txt

[RFC4875]

[RFC8296]

[RFC8402]

[RFC8986]

[RFC9016]

[TSN-ATS]

Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,

<https://www.rfc-editor.org/info/rfc3209>.

Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.

Yasukawa, Ed., "Extensions to Resource Reservation

Protocol - Traffic Engineering (RSVP-TE) for Point-to-

Multipoint TE Label Switched Paths (LSPs)", RFC 4875, DOI

10.17487/RFC4875, May 2007, <https://www.rfc-editor.org/

info/rfc4875>.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,

Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation

for Bit Index Explicit Replication (BIER) in MPLS and

Non-MPLS Networks", RFC 8296, DOI 10.17487/RFC8296,

January 2018, <https://www.rfc-editor.org/info/rfc8296>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,

D., Matsushima, S., and Z. Li, "Segment Routing over IPv6

(SRv6) Network Programming", RFC 8986, DOI 10.17487/

RFC8986, February 2021, <https://www.rfc-editor.org/info/

rfc8986>.

Varga, B., Farkas, J., Cummings, R., Jiang, Y., and D.

Fedyk, "Flow and Service Information Model for

Deterministic Networking (DetNet)", RFC 9016, DOI

10.17487/RFC9016, March 2021, <https://www.rfc-

editor.org/info/rfc9016>.

Specht, J., "P802.1Qcr - Bridges and Bridged Networks

Amendment: Asynchronous Traffic Shaping", IEEE , 9 July

2020, <https://1.ieee802.org/tsn/802-1qcr/>.

Authors' Addresses

Toerless Eckert

Futurewei Technologies USA

2220 Central Expressway

Santa Clara, CA 95050

United States of America

Email: tte@cs.fau.de

Stewart Bryant

University of Surrey ICS

https://www.rfc-editor.org/info/rfc3209
https://www.rfc-editor.org/info/rfc4875
https://www.rfc-editor.org/info/rfc4875
https://www.rfc-editor.org/info/rfc8296
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc9016
https://www.rfc-editor.org/info/rfc9016
https://1.ieee802.org/tsn/802-1qcr/
mailto:tte@cs.fau.de

Email: s.bryant@surrey.ac.uk

Andrew G. Malis

Malis Consulting

Email: agmalis@gmail.com

Guangpeng Li

Huawei Network Technology Laboratory

Email: liguangpeng@huawei.com

mailto:s.bryant@surrey.ac.uk
mailto:agmalis@gmail.com
mailto:liguangpeng@huawei.com

	Deterministic Networking (DetNet) Data Plane - Tagged Cyclic Queuing and Forwarding (TCQF) for bounded latency with low jitter in large scale DetNets
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction (informative)
	2. Using TCQF in the DetNet Architecture and MPLS forwarding plane (informative)
	3. TCQF per-flow stateless forwarding (normative)
	3.1. Configuration Data model and tag processing for MPLS TC tags
	3.2. Packet processing
	3.3. TCQF with MPLS label stack operations
	3.4. TCQF with IP operations
	3.5. TCQF Pseudocode (normative)

	4. TCQF Per-flow Ingress forwarding (normative)
	4.1. Ingress Flows Configuration Data Model
	4.2. Ingress Flows Pseudocode

	5. Implementation, Deployment, Operations and Validation considerations (informative)
	5.1. High-Speed Implementation
	5.2. Controller plane computation of cycle mappings
	5.3. Link speed and bandwidth sharing
	5.4. Validation

	6. Security Considerations
	7. IANA Considerations
	8. Changelog
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

