
Workgroup: PIM

Internet-Draft: draft-eckert-msr6-rbs-00

Published: 11 July 2022

Intended Status: Standards Track

Expires: 12 January 2023

Authors: T. Eckert

Futurewei Technologies USA

X. Geng

Huawei 2012 NT Lab

X. Zheng

Huawei 2012 NT Lab

R. Meng

Huawei 2012 NT Lab

F. Li

Huawei 2012 NT Lab

Recursive Bitstring Structure (RBS) for Multicast Source Routing over

IPv6 (MSR6)

Abstract

This document defines an encoding and corresponding packet

processing procedures for native IPv6 multicast source routing

(MSR6) using a so-called "Recursive Bitstring" (RBS) address

structure.

The RBS address structure encodes the source-routed multicast tree

as a tree of bitstrings. Each router on the tree only needs to

examine and perform replication for the one bitstring destined for

it.

The MSR6/RBS IPv6 extension header encoding and processing is

modeled after that of unicast source routing headers, RFC6554 and

RFC8754, and shares all elements that can be shared. To support the

RBS structure, it is replacing the "Segments Left" pointer to the

next segment with two fields to point to the next sub-tree to parse.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Overview

1.1. Introduction

1.2. Forwarding overview

2. Specification

2.1. RBS-Address

2.2. RBS-BIFT

2.3. Multicast Source Routing (MSR6) Header with RBS Sub-type

2.3.1. MRH extension header (refresher)

2.4. MRH Sub-Type specific data for RBS

2.5. MRS6/RBS processing

2.5.1. MSIR header creation

2.5.2. Common processing

2.5.3. MSER header processing

2.6. MSR processing of RBS-Address

2.6.1. MSR processing of receive adjacency

2.6.2. MSR per-hop processing

3. MSR/RBS forwarding Pseudocode

4. IANA requests

5. Security considerations

5.1. Changelog

6. Acknowledgments

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Background / Explanations

A.1. Evolution from draft-xu-msr6-rbs

A.1.1. RBS-Offset/RBS-Length

A.1.2. Type-specific data encoding

A.1.3. IP Multicast compatibility

A.1.4. Terminology

A.1.5. Text changes

A.2. Comparison with RBS for BIER

¶

¶

https://trustee.ietf.org/license-info

Authors' Addresses

1. Overview

1.1. Introduction

Eliminating hop-by-hop per-multicast-tree state in the forwarding

plane as well as the per-hop, per-tree control plane complexity that

goes along with it has long since been a concern against the

deployment of multicast services. Short of MSR6, there are no IETF

standardized mechanisms to enable this with native hop-by-hop IPv6

forwarding according to [RFC8200] and per-hop stateless replication.

"Multicast Source Routing over IPv6" (MSR6), is such a stateless,

native IPv6 forwarding based multicast source routing (MSR6)

solution, defined in [I-D.cheng-spring-ipv6-msr-design-

consideration].

MSR6 intends to be compatible with and reuse all the IPv6 mechanisms

introduced by prior stateless hop-by-hop native IPv6 unicast

forwarding, including [RFC6554] (IPv6 Source Routing Header for

networks using RPL routing), and [RFC8754] (IPv6 Segment Routing

Header for SRv6). The MSR6 extension header and semantic shares as

much as possible with these unicast approaches. It especially

attempts to allow introducing MSR6 as the multicast extension to for

the IPv6 Segment Routing architecture called SRv6 ([RFC8402] and

[RFC8986]).

MSR6 considers two basic modes of forwarding: one is based on

Shortest Path First(SPF). In this mode, the tree only encodes tree

leaves in the extension header, but no traffic steering. This is

called MSR6 BE mode. The other mode is based on path steering with

replication, which is called MSR6 TE mode. [I-D.geng-msr6-traffic-

engineering], [I-D.chen-pim-srv6-p2mp-path] and [I-D.geng-msr6-rlb-

segment] have introduced structured segment lists in support of MSR6

TE mode.

This document proposes a variant of an MSR6 extension header that

uses the "Recursive Bitstrings" (RBS) address structure to encode

the source-routed multicast tree as a tree of bitstrings, in support

of MSR6 TE mode. Each router on the tree only needs to examine and

perform replication for the one bitstring encoded in the RBS-Address

for that MSR.

The logic of MSR6/RBS replication and tree representation is derived

(and simplified) from the BIER-TE [I-D.ietf-bier-te-arch]

architecture. The RBS address structure replaces a single, end-to-

end "flat" bitstring used in BIER-TE. This eliminates the

scalability and controller-plane complexity of BIER-TE.

¶

¶

¶

¶

¶

¶

Likewise, MSR6/RBS forwarding is based on the architecture specified

in [I-D.eckert-bier-cgm2-rbs]. Because this document intends to only

specify the forwarding specification, it does not cover the system

architecture details. Please refer to [I-D.ietf-bier-te-arch] and

[I-D.eckert-bier-cgm2-rbs] for system level details, such as

scalability and complexity comparisons.

A comparison between this document and [I-D.xu-msr6-rbs] and [I-

D.eckert-bier-cgm2-rbs] is given below in Appendix A.

1.2. Forwarding overview

In MSR6/RBS, routers are IPv6 MSR6 Segment Routers (MSR). An ingress

MSR (MSIR) forms an IPv6 packet and includes a Multicast Source

Routing Header (MRH) that uses the RBS format. The MRH controls the

steering and replication of the packet across one or more MSR6

Segment Routers (MSR), terminating the packet in one or more egress

MSR (MSER).

Note that the terms MSR, MSIR and MSER are chosen to be replicating

the terms BFR, BFIR and BFER used for equivalent router roles in

BIER [RFC8279] and BIER-TE [I-D.ietf-bier-te-arch]. BIER and BIER-TE

are based on a separate L2.5 forwarding mechanism and encapsulation,

optimized for MPLS networks (see [RFC8296]).

Figure 1 shows an example network topology and an example multicast

tree. R1 has connections to connections to R2, R3, R4, R5 (not

shown) and R6. For the purpose of explaining RBS, it is irrelevant

whether those connections are separate L2 point-to-point links,

links or adjacencies on a shared LAN. Likewise, R3 has connections

to R1, R7, R8, R9 and R10, R4 has connections to R1, R7, R8, R8 and

R10, and and R9 has connections to R3, R4, and some additional

unnamed MSR.

¶

¶

¶

¶

¶

Figure 1: Example Topology/RBS tree

R1 wants to send a packet that is to be received by R2, R4, R6, R7,

R10 and some MSER behind R9. Given how R7, R8, R8, R10 and the MSR

behind R9 can be reached via both either R3 and R4, there is a

packet steering and replication (traffic engineering) choice to be

made: R3 should forward and replicate to R8 and R8, and R4 should

replicate to to R9 (to reach the msr behind it, and R10.

Every MSR has an RBS "Bit Index Forwarding Table" (RBS-BIFT) that

defines which BitPosition (BP) (1..N) indicates which adjacency.

Figure 2, shows the example RBS-BIFT for R1.

 +---+

 |R1 | (MSIR)

 +-+-+

 .

 | | | |

+-v-+ +-v-+ +-v-+ +-v-+

| R2| (MSER) |R3 | (MSR) |R4 | (MSR/ |R6 | (MSER)

+-+-+ +---+ +---+ MSER) +---+

 | | | |

+-v-+ +-v-+ +-v-+ +-v-+

|R7 | (MSER) |R8 | |R9 | (MSR) |R10| (MSER)

+-+-+ +---+ +---+ +---+

 .

 more MSR...

¶

¶

Figure 2: BIFT on R1

The receive adjacency is the bit position indicating that the packet

is destined for the router itself. The R)ecursive flag indicates

whether the adjacency is an intermediate MSR that acts as a

replication point to further MSR. If an MSR is never a transit but

can always only be a leaf in a multicast distribution tree, then

R=0. This allows for more compact encoding of the RBS address

structure. In the example, R2, R5 and R6 are connected to R1 and

also leaf router in the topology, hence they have R=0 in the R1 RBS-

BIFT.

When a router receives and processes an IPv6 packet with an MRH that

uses the RBS address structure, the router needs to only act upon

the "RecursiveUnit" (RU) within that address structure destined to

it.

Figure 3: Structure of Recursive Unit

As shown in Figure 3, a Recursive Unit (RU) starts with the

Bitstring for the MSR to which this RU is intended. In the example,

+--+-------+----------+

|BP|R Flag | Adjacency|

+--+-------+----------+

| 1| 0| receive|

+--+-------+----------+

| 2| 0| R2 |

+--+-------+----------+

| 3| 1| R3 |

+--+-------+----------+

| 4| 1| R4 |

+--+-------+----------+

| 5| 0| R5 |

+--+-------+----------+

| 6| 0| R6 |

+--+-------+----------+

¶

¶

 +---------------------+

 | RecursiveUnit (RU) |

 +---------------------+

 . .

. .

+-----------+-----+ +--------+---+ +----+

| Bitstring | AF1 | ... | AF(n-1)|RU1| ... |RU N|

+-----------+-----+ +--------+---+ +----+

the first MSR is R1, so the Bitstring in the RU is as shown in

Figure 4

Figure 4: Bitstring for R1 in the example

When an MSR processes its RU, the length of the BS is derived from

the length of the BIFT. In the case of R1 it is therefore known to

be 6 bits long.

To support replication via intermediate MSR, the RBS address

structure needs to contain for each of those MSR a separate RU. In

the example, the packet is to be further replicated by R3 and R4 and

then further on by R9.

The RU for R1 therefore needs to contain two further RU, one for R3

and one for R4. The one for R4 will also need to contain RUs for the

MSR below it.

When creating packet copies to R3 and R4, R1 needs to rewrite the

MRH such that R3 and R4 will find their respective RU. Therefore, R1

needs to be able to parse its own RU such that it can locate those

further RU for R3 and R4. This is supported by the AddressFields

(AF) following the BS. Each AF indicates the length of one RU that

follows.

When N (in the example N=2) RU follow, only N-1 (in the example 1)

AF are needed, because the length of the N'th RU can be calculated

from the length of the RU minus the sum of the length of the other

RU as indicated in the N-1 AF.

Figure 5: RU for R1

In result, the RU for R1 looks as shown in Figure 5. It has the

aforementioned 6-bit long Bitstring because the BIFT of R1 is 6 BP

long, it has one AF1 indicating the length of RU1, which is the RU

for the first set BP in the Bitstring with R=1, so it is for R3, and

the RU finishes with RU2 for the second BP in the BS with R=1, so it

is for R4.

¶

 1 2 3 4 5 6

+-+-+-+-+-+-+

|0|1|1|1|0|1|

+-+-+-+-+-+-+

¶

¶

¶

¶

¶

 1 2 3 4 5 6

+-+-+-+-+-+-+-..-+...+...+

|0|1|1|1|0|1|AF1 |RU1|RU2|

+-+-+-+-+-+-+-..-+...+...+

¶

2. Specification

2.1. RBS-Address

As shown in Figure 3 and explained in Section 1.2, an RBS address

consists of the RU for the first MSR of a tree and is composed of a

Bitstring for this MSR, the AddressFields for all but the last bits

(N-1) set in that Bitstring with R=1 flag in the BIFT, followed by N

RU for each of those bits, which are recursivly composed in the same

way.

The RU for any MSR only needs to be decoded (in high-speed hardware)

by the MSR itself, but not any other MSR (along the path/tree).

Creation of an MSR is assumed to be part of application/network

stack on hosts or router control plane software and is therefore

assumed to be able to support arbitrary formats of the AF fields, as

long as there is a standard data model (e.g.: YANG) and/or control

plane protocol specification (e.g.: OSPF or ISIS extensions) for it.

specifically, different router (MSR) implementations may choose to

support different AF formats.

Any MSR MUST support to decode RU where the AF entries are 8 bit in

size. Any MSR SHOULD support to decode a variable length AF

encoding, where 0XXXXXXX (8-bit length AF field) is used to encode a

7-bit XXXXXXX (0..127) values, and where 1XXXXXXXXXXXX is used to

encode an 12-bit value XXXXXXXXXXX.

Note that in the MSR/RBS IPv6 extension header, the RBS-Address can

be as long as 256 bytes. Therefore, non-support of any AF field not

supporting to indicate RU lengths as long as 2048 bit may not allow

to build maximum size MSR/RBS extension headers.

2.2. RBS-BIFT

RBS-BIFT are composed as explained in Section 1.2. Their size can be

any number of entries from 2 to 1024 bits (2^10), resulting in equal

length Bitstrings for the MSR in an RBS-Address.

The leftmost bit in an RBS RU Bitstrings is BIFT entry 1.

The adjacency is an IPv6 link-local, ULA or global IPv6 unicast

address of the next-hop assigned to the BitPosition. Further

requirements are explained in Section 2.6.

¶

¶

¶

¶

¶

¶

¶

2.3. Multicast Source Routing (MSR6) Header with RBS Sub-type

2.3.1. MRH extension header (refresher)

The "Multicast Routing Header" (MRH) is a new [RFC8200] IPv6 routing

header defined according to [I-D.geng-msr6-traffic-engineering] as

follows.

Figure 6: MRH format

Next Header: Defined in [RFC8200], section 4.4 (Type of the next

header following so that it can be correctly parsed).

Hdr Ext Len: Defined in [RFC8200], section 4.4 (Length of the

extension header in octets, not counting the first 8 octets).

Routing Type: Code point to be allocated (TBD1) for the RBS Sub-type

for MRH (as part of a registry to be established for the MRH).

Segments Left: Filled with segments left according to [RFC8200],

section 4.4, see Section 2.5.2.

The "Optional TLV objects" are intended to encode applicable TLV

from SRH [RFC8754] or multicast/MRH specific TLVs. Examination of

these TLV is based on their semantic. Current TLV defined in

conjunction with [RFC8754] are examined upon reception of a packet,

but not when forwarding the packet from one segment to another. In

case of RBS, reception is triggered either by Segments Left being 0,

or when parsing the Bitstring and acting upon the BP that is

indicating the receive adjacency.

The RBS Sub-Type specific data contains the RBS address structure as

follows.

2.4. MRH Sub-Type specific data for RBS

¶

+-+

| Next Header | Hdr Ext Len | Routing Type | Segments Left |

+-+

| MRH Sub-Type | MRH Sub-Type specific data |

+-+-+-+-+-+-+-+-+ //

// ... //

+-+

// //

// Optional Type Length Value (TLV) objects (variable) //

// //

+-+

¶

¶

¶

¶

¶

¶

Figure 7: MRH Sub-type specific data for RBS (RBS-Address)

RBS-Address is the Recursive Unit as it is to be processed by the

MSIR. It contains (as explained above recursively all the RU for MSR

along the tree for this packet. Processing the complete RBS tree

encoded across multiple MSR is defined here to be as processing a

single End.RBS segment.

padding extends the RBS-Address field to 32-bit alignment. RU0L is

the number of 32-bit units occupied by (RU0L, RBS-Address, padding).

MSER-Segment is a segment to be processed by MSER after the End.RBS

segment. S is a flag that MUST be set to 1 when the MSER-Segment is

present, else it MUST be set to 0. R is a reserved bit (MUST be

ignored upon reception).

RU-Length (RecursiveUnit Length) is the length of the Recursive Unit

to be examined by the processing MSR. It is counted in bits. Given

how [RFC8200] Hdr Ext Len only allows for up to 255 bytes, RU-Length

can at most be only 11 bits long.

RU-offset (Recursive Unit Offset) is the offset in bits of the

Recursive Unit to be examined by the processing MSR, where 0 is the

first bit of RBS-Address.

RU-Length and RU-offset are mutable, all other fields are immutable.

2.5. MRS6/RBS processing

[TBD: This section may need to be re-written with more formalistic

language if the pseudocode (see below) is not a preferred formal

description.]

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 (MHR Sub-type) | RU-Length | RU-Offset .. |S|R|

+-+

| |

| MSER-Segment (128 bit IPv6 address) |

| (optional based on S=1) |

| |

+-+

| RU0L |^ Recursive Unit 0 (RU0) ... //

+-+-+-+-+-+ (RBS-Address) //

// ... //

// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

// . padding |

+-+

¶

¶

¶

¶

¶

¶

¶

2.5.1. MSIR header creation

Upon creation of the RBS header with an RBS-Address, RU-Length is

set to the length of the RBS-Address, and RU-offset is set to 0.

MSER-Segment is included when the packet is an IPv6 multicast

packet. In this case, the MSER-Segment carries the IPv6 Destination

(multicast group) Address. The MSER-Segment MAY also contain any non

IPv6 multicast group address when it has been defined/signaled

accordingly as a SID for processing by all MSER that could

potentially receive it. S is set according to the presence of MSER-

Segment.

Segments Left is set to 2 if MSER-Segment is included, otherwise it

is set to 1.

2.5.2. Common processing

When the MSR6/RBS header is received, including by the creating

MSIR, the need to process the RBS-Address (End.RBS segment) is

examined. This is the case when (Segments Left - 1) = 1. See below

for further details. When the End.RBS is not to be processed, then

the MSR it needs to act upon the header as an MSER.

2.5.3. MSER header processing

An MSER examines the presence of MSER-Segment (according to S). If

present, and if MSER-Segment carries an IPv6 multicast address then

the MSER copies the IPv6 multicast address into IPv6 Destination

Address field, discards the MSR6/RBS extension header and proceeds

with processing of the packet as an IPv6 multicast packet.

Note that non withstanding the previous paragraphs behavior, host

stacks SHOULD maintain a copy of the MSR6/RBS extension header data

so that socket / application code can retrieve for advanced

functionality, such as identifying the path taken, as desirable for

resilient transmission.

If the MSER-Segment is not an IPv6 multicast address, the packet is

NOT an IPv6 Multicast packet and MUST NOT be further processed as an

IPv6 Multicast Packet. Instead, the address MUST be accordingly

registered as a SID by the control plane and further processing of

the MSR6/RBS header is subject to the definition of the SID. If the

address does not match a registered SID, the packet MUST be

discarded and an error be raised.

If the MSER-Segment is not present, the router MUST remove the MSR6/

RBS extension header and proceed processing with "receiving" the

packet with the next header.

¶

¶

¶

¶

¶

¶

¶

¶

2.6. MSR processing of RBS-Address

When an MSR received a packet with MSR6/RBS extension header in

which it needs to process the RBS-Address (End.RBS segment), it MUST

first validate that the IPv6 Destination Address is a SID with

End.RBS function.

It MUST be a link-local, ULA or global address on the router not

used for any other functions (IPv6 unicast, Segment Routing). The

ability to send packets to such addresses with End.RBS functions

MUST be tightly controlled in the network to prohibit the ability of

unauthorized senders to cause packet replication attacks by sending

of packets with MSR6/RBS headers.

These requirements logically apply equally to the generating router

(MSIR), but can of course appropriately be optimized in

implementation.

After this ingress check, the MSR parses the RBS-Address field

starting at RU-Offset, taking the RU-Length as a known parameter

into account. This subset of the RU-Address is the RU for this MSR.

Parsing is shown in more detail in Section 3.

Upon parsing, the MSR creates a packet copy for every BP set in

Bitstring and rewrites it according to the following rules. It

finally discards the received packet.

2.6.1. MSR processing of receive adjacency

Packet copies for a receive adjacency have their Segments Left

reduced by 1 and then passed to MSER processing Section 2.5.3.

2.6.2. MSR per-hop processing

Per-hop processing of packets with MSR6/RBS extension header that

include an MSER-Segment with an IPv6 multicast address are IPv6

multicast packets. In result, they inherit all per-hop IPv6

forwarding rules of [RFC8200], processing of any additional industry

common per-hop rules for IPv6 multicast packets (as desirable by

implementations), and additional per-hop applicable IPv6 extension

headers.

For example, the IPv6 header Hopcount field is reduced on every hop,

and the packet discarded if Hopcount reaches 0.

For example, routers/operators along the path may choose to support

filtering of MSR6/RBS packets based on their IPv6 multicast

destination address in the MSER-Segment field. Or perform IPFIX

accounting against those addresses.

¶

¶

¶

¶

¶

¶

¶

¶

¶

For example (TBD): For ECMP situations, the IPv6 Flow Label is used

to choose a next-hop adjacency. This can include BIFT adjacencies

that include multiple next-hop addresses/interfaces.

If the MSER-Segment is not present, or not carrying an IPv6

Multicast address, more liberty can be taken wrt. processing rules,

especially through definition of additional SID Functions for MSER-

Segment.

2.6.2.1. MSR processing for R=0 adjacency

Packet copies for for an adjacency to an MSR neighbor with R=0 have

their Segments Left reduced by 1. RU-Length and RU-Offset SHOULD be

set to 0.

The MSR neighbor IPv6 address/SID from the BIFT entry is copied into

the IPv6 Destination Address field and the packet is forwarded (via

IPv6 unicast forwarding procedures).

The MSR MUST only permit IP6 addresses in the RBS-BIFT for R=0/R=1

entries that have the End.RBS function.

2.6.2.2. MSR processing for R=1 adjacency

The MSR calculates new values for RU-Offset and RU-Length for a copy

to an MSR neighbor with R=1. It updates the RU-Offset, RU-Length

field in the MSR type-specific field for RBS.

The MSR neighbor IPv6 address/SID from the BIFT entry is copied into

the IPv6 Destination Address field and the packet is forwarded (via

IPv6 unicast forwarding procedures).

The MSR MUST only permit IP6 addresses in the RBS-BIFT for R=1

entries that have the End.RBS function.

3. MSR/RBS forwarding Pseudocode

The following example RBS forwarding Pseudocode assumes the

reference encoding of bit-accurate length of Bitstrings and

RecursiveUnits as well as 8-bit long TotalLen and AddressingField

Lengths. All packet field addressing and address/offset calculations

is therefore bit-accurate instead of byte accurate (which is what

most CPU memory access today is).

¶

¶

¶

¶

¶

¶

¶

¶

¶

void ProcessMSR6header(Packet)

{

 MSR6 = GetPacketMSR6Header(Packet);

 case (MSR6.MRHSubType)

 RBS) ProcessRBSSubtype(Packet); break

 // ... other MSR6 subtypes

 esac

}

void ProcessRBSSubtype(Packet)

{

 MSR6 = GetPacketMSR6Header(Packet);

 RBS = MSR6.MRHSubType

 if(MSR6.RULength == 0) return ReceiveRBSsubtype(Packet)

 RU0 = RBS + 29 + (MSR6.S ? 128 : 0)

 RU = RU0 + MSR6.RUOffset

 RUL = MSR6.RULength

 BitstringA = MSR6.RUOffset

 AddressingField = BitstringA + BIFT.entries;

 // [1] calculate number of recursive bits set in Bitstring

 CopyBitstring(*BitstringA, *RecursiveBits, BIFT.entries);

 And(*RecursiveBits,*BIFTRecursiveBits, BIFT.entries);

 N = CountBits(*RecursiveBits, BIFT.entries);

 // Start of first RecursiveUnit in RBS address

 // After AddressingField array with 8-bit length fields

 RecursiveUnit = AddressingField + (N - 1) * 8;

 RemainLength = *(RBS.RULength);

 Index = GetFirstBitPosition(*BitstringA);

 while (Index) {

 PacketCopy = Copy(Packet);

 if (BIFT.BP[Index].adjacency == receive)

 ReceiveRBSsubtype(PacketCopy)

 next;

 }

 RBSc = RBS - Packet + PacketCopy

 MSR6c = MSR6 - Packet + PacketCopy

 If (BIFT.BP[Index].recursive) {

 if(N == 1) {

 RecursiveUnitLength = RemainLength;

 } else {

 RecursiveUnitLength = *AddressingField;

 N--;

 AddressingField += 8;

 RemainLength -= RecursiveUnitLength;

 RemainLength -= 8; // 8 bit of AddressingField

 }

 *(RBSc.RUOffset) = RecursiveUnit - RU0

 *(RBSc.RULength) = RecursiveUnitLength

 RecursiveUnit += RecursiveUnitLength;

 } else {

 *(RBSc.RUOffset) = 0

 *(RBSc.RULength) = 0

 *(MSR6c.SegmentsLeft) -= 1

 }

 *(PacketCopy.IPv6hdr.DA) = *(BIFT.BP[Index].adjacency)

 // ProcessMSR6TLV(Packet) - needed ?

 IPv6Forward(PacketCopy)

 Index = GetNextBitPosition(*BitstringA, Index);

 }

}

void ReceiveRBSsubtype(Packet)

{

 MSR6 = GetPacketMSR6Header(Packet);

 RBS = MSR6.MRHSubType

 if(MSR6.S) {

 *(Packet.IPv6hdr.DA) = *(RBS.MSETSegment)

 *(MSR6c.SegmentsLeft) = 0

 }

 ProcessMSR6TLV(Packet)

 // header not needed any further except for diagnostics

 // DisposeMSR6Header(Packet)

 if(IsIPv6MulticastAddr(Packet.IPv6hdr.DA))

 ReceiveIpv6Multicast(Packet)

 else

 ProcessSRv6DASID(Packet)

}

Figure 8: RBS forwarding Pseudocode

Explanations for Figure 8.

ProcessMSR6header(Packet) is called upon receipt of an IPv6 packet

with an MSR6header. It is preceded by (not shown) standard IPv6

processing of a packet destined to an address of the node (such as

HopCount processing), and other common processing of a Routing

Header. This function only demultiplexes into the MSR6 option

specific code.

ProcessRBSSubtype(Packet) processes the RBS option header. All

address pointers shown use bit accurate addressing, because the

elements of the RU are at bit-accurate offsets.

MSR6 is the address of the MSR6 extension header in the packet, RBS

is the address of the RBS address in the packet.

BitstringA is the address of the RBS address Bitstring in memory.

Other variables use names matching those from the packet header

figures (without " -_").

The BFR local BIFT has a total number of BIFT.entries addressable BP

1...BIFTentries. The Bitstring therefore has BIFT.entries bits.

BIFT.RecursiveBits is a Bitstring pre-filled by the control plane

with all the BP with the recursive flag set. This is constructed

from the Recursive flag setting of the BP of the BIFT. The code

starting at [1] therefore counts the number of recursive BP in the

packets Bitstring.

Because the AddressingField does not have an entry for the last (or

only) RecursiveUnit, its length has to be calculated By subtracting

the length of the prior N-1 RecursiveUnits from RULength. This is

done via variable RemainLength.

For every PacketCopy that is to be forwarded, the RU-Length, RU-

Offset and IPv6 header DestinationAddress (DA) field are updated.

For non-recursive adjacencies, the SegmentsLeft field is also

updated.

For packet copies that are to be received by this node, The DA is

updated from the RBS MSER-Segment field when present, and depending

on what type of address it is, the packet continues to be processed

as a received IPv6 Multicast packet or SRv6 SID.

4. IANA requests

This specification requests a TBD1 code point within a TBD registry

of MRH extension header options.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC8200]

[RFC8279]

[RFC8296]

[RFC8402]

[RFC8986]

5. Security considerations

The specification painstakingly attempts to ensure that IPv6

addresses used to deliver MSR6/RBS extension header packets are ONLY

used for such packets such that common IPv6 "clamshell" filtering of

address ranges can ensure that no unauthenticated sender (such as

from outside the domain) can send packets to these addresses.

5.1. Changelog

[RFC-Editor: please remove this section].

This document is written in https://github.com/cabo/kramdown-rfc2629

markup language. This documents source is maintained at https://

github.com/toerless/multicast-rbs, please provide feedback to the

msr6@ietf.org mailing list and submit an Issue to the GitHub.

6. Acknowledgments

Many thanks for Bing Xu (bing.xu@huawei.com) for editorial work on

the prior variation of this work [I-D.xu-msr6-rbs].

7. References

7.1. Normative References

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,

Przygienda, T., and S. Aldrin, "Multicast Using Bit Index

Explicit Replication (BIER)", RFC 8279, DOI 10.17487/

RFC8279, November 2017, <https://www.rfc-editor.org/info/

rfc8279>.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,

Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation

for Bit Index Explicit Replication (BIER) in MPLS and

Non-MPLS Networks", RFC 8296, DOI 10.17487/RFC8296,

January 2018, <https://www.rfc-editor.org/info/rfc8296>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,

D., Matsushima, S., and Z. Li, "Segment Routing over IPv6

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc8296
https://www.rfc-editor.org/info/rfc8402

[I-D.chen-pim-srv6-p2mp-path]

[I-D.cheng-spring-ipv6-msr-design-consideration]

[I-D.eckert-bier-cgm2-rbs]

[I-D.geng-msr6-rlb-segment]

[I-D.geng-msr6-traffic-engineering]

[I-D.ietf-bier-te-arch]

(SRv6) Network Programming", RFC 8986, DOI 10.17487/

RFC8986, February 2021, <https://www.rfc-editor.org/info/

rfc8986>.

7.2. Informative References

Chen, H., McBride, M., Fan, Y., Li, Z., Geng, X., Toy,

M., Mishra, G. S., Wang, A., Liu, L., and X. Liu,

"Stateless SRv6 Point-to-Multipoint Path", Work in

Progress, Internet-Draft, draft-chen-pim-srv6-p2mp-

path-06, 30 April 2022, <https://www.ietf.org/archive/id/

draft-chen-pim-srv6-p2mp-path-06.txt>.

Cheng, W., Mishra, G., Li, Z., Wang, A., Qin, Z., and C.

Fan, "Design Consideration of IPv6 Multicast Source

Routing (MSR6)", Work in Progress, Internet-Draft, draft-

cheng-spring-ipv6-msr-design-consideration-01, 25 October

2021, <https://www.ietf.org/archive/id/draft-cheng-

spring-ipv6-msr-design-consideration-01.txt>.

Eckert, T. and B. (. Xu, "Carrier Grade

Minimalist Multicast (CGM2) using Bit Index Explicit

Replication (BIER) with Recursive BitString Structure

(RBS) Addresses", Work in Progress, Internet-Draft,

draft-eckert-bier-cgm2-rbs-01, 9 February 2022, <https://

www.ietf.org/archive/id/draft-eckert-bier-cgm2-

rbs-01.txt>.

Geng, X., Li, Z., and J. Xie, "RLB

(Replication through Local Bitstring) Segment for

Multicast Source Routing over IPv6", Work in Progress,

Internet-Draft, draft-geng-msr6-rlb-segment-00, 10

February 2022, <https://www.ietf.org/archive/id/draft-

geng-msr6-rlb-segment-00.txt>.

Geng, X., Li, Z., and J. Xie,

"IPv6 Multicast Source Routing Traffic Engineering", Work

in Progress, Internet-Draft, draft-geng-msr6-traffic-

engineering-01, 7 March 2022, <https://www.ietf.org/

archive/id/draft-geng-msr6-traffic-engineering-01.txt>.

Eckert, T., Menth, M., and G. Cauchie, "Tree

Engineering for Bit Index Explicit Replication (BIER-

TE)", Work in Progress, Internet-Draft, draft-ietf-bier-

https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://www.ietf.org/archive/id/draft-chen-pim-srv6-p2mp-path-06.txt
https://www.ietf.org/archive/id/draft-chen-pim-srv6-p2mp-path-06.txt
https://www.ietf.org/archive/id/draft-cheng-spring-ipv6-msr-design-consideration-01.txt
https://www.ietf.org/archive/id/draft-cheng-spring-ipv6-msr-design-consideration-01.txt
https://www.ietf.org/archive/id/draft-eckert-bier-cgm2-rbs-01.txt
https://www.ietf.org/archive/id/draft-eckert-bier-cgm2-rbs-01.txt
https://www.ietf.org/archive/id/draft-eckert-bier-cgm2-rbs-01.txt
https://www.ietf.org/archive/id/draft-geng-msr6-rlb-segment-00.txt
https://www.ietf.org/archive/id/draft-geng-msr6-rlb-segment-00.txt
https://www.ietf.org/archive/id/draft-geng-msr6-traffic-engineering-01.txt
https://www.ietf.org/archive/id/draft-geng-msr6-traffic-engineering-01.txt

[I-D.xu-msr6-rbs]

[RFC6554]

[RFC8754]

te-arch-13, 25 April 2022, <https://www.ietf.org/archive/

id/draft-ietf-bier-te-arch-13.txt>.

Xu, B., Geng, X., and T. Eckert, "RBS(Recursive

BitString Structure) for Multicast Source Routing over

IPv6", Work in Progress, Internet-Draft, draft-xu-msr6-

rbs-01, 30 March 2022, <https://www.ietf.org/archive/id/

draft-xu-msr6-rbs-01.txt>.

Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An

IPv6 Routing Header for Source Routes with the Routing

Protocol for Low-Power and Lossy Networks (RPL)", RFC

6554, DOI 10.17487/RFC6554, March 2012, <https://www.rfc-

editor.org/info/rfc6554>.

Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy,

J., Matsushima, S., and D. Voyer, "IPv6 Segment Routing

Header (SRH)", RFC 8754, DOI 10.17487/RFC8754, March

2020, <https://www.rfc-editor.org/info/rfc8754>.

Appendix A. Background / Explanations

[TBD: This section to be removed, but maybe some explanations will

make sense to move into different sections.]

A.1. Evolution from draft-xu-msr6-rbs

This document is an option for MSR6/RBS that is derived from [I-

D.xu-msr6-rbs]. The key changes over that draft are as follows.

A.1.1. RBS-Offset/RBS-Length

In [I-D.xu-msr6-rbs], the RBS-Address was rewritten on every copy to

a different adjacency by replacing the RU in the RBS-address with

the RU for the adjacency. This required a potentially significant

amount of write cycles to packet memory for each copy and changes

the size of the packet header on each hop.

This draft proposes to add RBS-Offset and RBS-Length fields and

changes the processing of the RBS-address, so that only these two

indices need to be re-calculated and re-written on every packet

copy, keeping the extension header size the same and minimizing the

amount of writes required.

A.1.2. Type-specific data encoding

This draft further reduces the size of the MSR/RBS extension header

by encoding the RBS-address not as a TLV, but as the MRH Type-

specific data field, thereby saving the TL parts of the TLV option

(32 bits). It also replaces the TotalLen field (which did change on

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-xu-msr6-rbs-01.txt
https://www.ietf.org/archive/id/draft-xu-msr6-rbs-01.txt
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc8754

every hop) for the RBS address with an (immutable) 32-bit unit

counter called RU0L which saves 2 bits.

A.1.3. IP Multicast compatibility

This draft adds the (optional) MSER-Segment field (IPv6 address),

with the primary option being that IPv6 packets with MSR/RBS

extension header can support IPv6 multicast without additional IPv6

in IPv6 extension headers or IPv6 in IPv6 encapsulation. Without

this MSER-Segment, there is no field to carry the IPv6 Multicast

Destination Address required to support IPv6 Multicast.

Support for IPv6 Multicast with MSR/RBS not only enables efficient

end-to-end IPv6 multicast with stateless source-routing, but it also

allows to use MSR/RBS even when it only encapsulates another IP or

IPv6 multicast packet. This is the common case when using MVPN,

where the CE multicast packets (IP or IPv6) are IP Multicast

encapsulated on the PE (IPv4 or IPv6). Because of the MSER Segment

field, all MVPN signaling protocols defined for this so-called SP IP

Multicast instance can be reused with MSR6/RBS.

IP Multicast compatibility also should make it easier to support

MSR6/RBS in Host stacks via socket APIs. These already support

extension headers, but it is a lot more complex to introduce new

socket types, which would ve required when MSR6/RBS can not be made

to look like either IP Multicast (or IP Unicast) to the Socket API.

A.1.4. Terminology

This document proposes the terms MSR, MSIR and MSER for routers

using MSR6 stateless multicast.

A.1.5. Text changes

Large part of the text where rewritten, and pseudocode from [I-

D.eckert-bier-cgm2-rbs] was inherited.

A.2. Comparison with RBS for BIER

[I-D.eckert-bier-cgm2-rbs] introduced RBS-Address encoding for BIER

without being specific to what encapsulation to use for it. It also

describes the overall architectural use of RBS addresses and their

scalability benefits.

[I-D.eckert-bier-cgm2-rbs] as an architecture document (wrt. to use

of a controller for example) is also applicable to MSR6/RBS, as are

the scalability benefits of RBS. For current brevity of this draft,

none of that text has been copied here (yet).

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.eckert-bier-cgm2-rbs] stays valid as a valuable protocol option

for BIER, especially as an improvement over BIER-TE due to the

simplification in architectural complexity (variety of adjacencies

to further save bits in the static Bitstring in BIER-TE), and the

better scaling of RBS addresses compared to BIER-TE and even BIER

Bitstrings in large networks. Scale specifically means the need for

fewer packet copies to the same set of BFER (MSER) in large SP

networks.

[I-D.eckert-bier-cgm2-rbs] does not currently include the

optimization of RBS-Length/RBS-Offset to avoid rewriting/shortening

the whole RBS-Address on every copy, but that would be equally an

option there.

Authors' Addresses

Toerless Eckert

Futurewei Technologies USA

2220 Central Expressway

Santa Clara, CA 95050

United States of America

Email: tte@cs.fau.de

Xuesong Geng

Huawei 2012 NT Lab

China

Email: gengxuesong@huawei.com

Xiuli Zheng

Huawei 2012 NT Lab

China

Email: zhengxiuli@huawei.com

Rui Meng

Huawei 2012 NT Lab

China

Email: mengrui@huawei.com

Fengkai Li

Huawei 2012 NT Lab

Email: lifengkai@huawei.com

¶

¶

mailto:tte@cs.fau.de
mailto:gengxuesong@huawei.com
mailto:zhengxiuli@huawei.com
mailto:mengrui@huawei.com
mailto:lifengkai@huawei.com

	Recursive Bitstring Structure (RBS) for Multicast Source Routing over IPv6 (MSR6)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Introduction
	1.2. Forwarding overview

	2. Specification
	2.1. RBS-Address
	2.2. RBS-BIFT
	2.3. Multicast Source Routing (MSR6) Header with RBS Sub-type
	2.3.1. MRH extension header (refresher)

	2.4. MRH Sub-Type specific data for RBS
	2.5. MRS6/RBS processing
	2.5.1. MSIR header creation
	2.5.2. Common processing
	2.5.3. MSER header processing

	2.6. MSR processing of RBS-Address
	2.6.1. MSR processing of receive adjacency
	2.6.2. MSR per-hop processing
	2.6.2.1. MSR processing for R=0 adjacency
	2.6.2.2. MSR processing for R=1 adjacency

	3. MSR/RBS forwarding Pseudocode
	4. IANA requests
	5. Security considerations
	5.1. Changelog

	6. Acknowledgments
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Background / Explanations
	A.1. Evolution from draft-xu-msr6-rbs
	A.1.1. RBS-Offset/RBS-Length
	A.1.2. Type-specific data encoding
	A.1.3. IP Multicast compatibility
	A.1.4. Terminology
	A.1.5. Text changes

	A.2. Comparison with RBS for BIER

	Authors' Addresses

