
Network Working Group W. Eddy
Internet-Draft Verizon
Expires: January 7, 2008 July 6, 2007

Using Self-Delimiting Numeric Values in Protocols
draft-eddy-dtn-sdnv-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 7, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Eddy Expires January 7, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Using SDNVs July 2007

Abstract

 Self-Delimiting Numeric Values (SDNVs) have recently been introduced
 as a field type within proposed Delay-Tolerant Networking protocols.
 The basic goal of an SDNV is to hold a non-negative integer value of
 arbitrary magnitude, without consuming much more space than
 necessary. The primary motivation is to conserve the bits sent
 across low-capacity or energy-intensive links typical of NASA deep-
 space missions, with a secondary goal of allowing the protocol to
 automatically adjust to unforseen usage scenarios. This can be
 desirable in that it allows protocol designers to avoid making
 difficult and potentially erroneous engineering decisions that may
 have to be hacked around in the future. This document describes
 formats and algorithms for SDNV encoding and decoding, and discusses
 implementation and usage of SDNVs.

Table of Contents

1. Introduction . 3
1.1. Problems with Fixed Value Fields 3
1.2. SDNVs for DTN Protocols 4
1.3. SDNV Usage . 4

2. Definition of SDNVs . 7
3. Basic Algorithms . 8
3.1. Encoding Algorithm . 8
3.2. Decoding Algorithm . 8

4. Comparison to Alternatives 10
5. Security Considerations 13
6. IANA Considerations . 14
7. Acknowledgements . 15
8. Informative References . 16
Appendix A. SNDV Python Source Code 18

 Author's Address . 20
 Intellectual Property and Copyright Statements 21

Eddy Expires January 7, 2008 [Page 2]

Internet-Draft Using SDNVs July 2007

1. Introduction

 This section begins by describing a common problem encountered in
 network protocol engineering. It then provides some background on
 the Self-Delimiting Numeric Values (SDNVs) proposed for use in Delay-
 Tolerant Networking (DTN) protocols, and motivates their potential
 applicability in other networking protocols.

1.1. Problems with Fixed Value Fields

 Protocol designers commonly face an optimization problem in
 determining the proper size for header fields. There is a strong
 desire to keep fields as small as possible, in order to reduce the
 protocol's overhead on the wire, and also allow for fast processing.
 Since protocols can be used many years (even decades) after they are
 designed, and networking technology has tended to change rapidly, it
 is not uncommon for the use, deployment, or performance of a
 particular protocol to be limited or infringed upon by the length of
 some header field being too short. Two well-known examples of this
 phenomenon are the TCP advertised receive window, and the IPv4
 address length.

 TCP segments contain an advertised receive window field that is fixed
 at 16 bits [RFC0793], encoding a maximum value of around 65
 kilobytes. The purpose of this value is to provide flow control, by
 allowing a receiver to specify how many sent bytes its peer can have
 outstanding (unacknowledged) at any time, thus allowing the receiver
 to limit its buffer size. As network speeds have grown by several
 orders of magnitude since TCP's inception, the combination of the 65
 kilobyte maximum advertised window and long round-trip times
 prevented TCP senders from being able to acheive the high-rates that
 the underlying network supported. This limitation was remedied
 through the use of the Window Scale option [RFC1323], which provides
 a multiplier for the advertised window field. However, the Window
 Scale multiplier is fixed for the duration of the connection,
 requires bi-directional support, and limits the precision of the
 advertised receive window, so this is certainly a less-than-ideal
 solution. Because of the field width limit in the original design
 however, the Window Scale is necessary for TCP to reach high sending
 rates.

 An IPv4 address is fixed at 32 bits [RFC0791] (as a historical note,
 earlier versions of the IP specification supported variable-length
 addresses). Due to the way that subnetting and assignment of address
 blocks was performed, the number of IPv4 addresses has been seen as a
 limit to the growth of the Internet [Hain05]. Two divergent paths to
 solve this problem have been the use of Network Address Translators
 (NATs) and the development of IPv6. NATs have caused a number of

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc0791

Eddy Expires January 7, 2008 [Page 3]

Internet-Draft Using SDNVs July 2007

 side-issues and problems [RFC2993], leading to increased complexity
 and fragility, as well as forcing work-arounds to be engineered for
 many other protocols to function within a NATed environment. The
 IPv6 solution's transitional work has been underway for several
 years, but has still only begun to have visible impact on the global
 Internet.

 Of course, in both the case of the TCP receive window and IPv4
 address length, the field size chosen by the designers seemed like a
 good idea at the time. The fields were more than big enough for the
 originally perceived usage of the protocols, and yet were small
 enough to allow the total headers to remain compact and relatively
 easy and efficient to parse on machines of the time. The fixed sizes
 that were defined represented a tradeoff between the scalability of
 the protocol versus the overhead and efficiency of processing. In
 both cases, these engineering decisions turned out to be painfully
 incorrect.

1.2. SDNVs for DTN Protocols

 In proposals for the DTN Bundle Protocol (BP) [SB05] and Licklider
 Transmission Protocol (LTP) [RBF06], SDNVs have been used for several
 fields including identifiers, payload/header lengths, and serial
 (sequence) numbers. SDNVs were developed for use in these types of
 fields, to avoid sending more bytes than needed, as well as avoiding
 fixed sizes that may not end up being appropriate. For example,
 since LTP is intended primarily for use in long-delay interplanetary
 communications [BRF06], where links may be fairly low in capacity, it
 is desirable to avoid the header overhead of routinely sending a 64-
 bit field where a 16-bit field would suffice. Since many of the
 nodes implementing LTP are expected to be beyond the current range of
 human spaceflight, upgrading their on-board LTP implementations to
 use longer values if the defined fields are found to be too short
 would also be problematic. Furthermore, extensions similar in
 mechanism to TCP's Window Scale option are unsuitable for use in DTN
 protocols since due to high delays, DTN protocols must avoid
 handshaking and configuration parameter negotiation to the greatest
 extent possible. All of these reasons make the choice of SDNVs for
 use in DTN protocols particularly wise.

1.3. SDNV Usage

 In short, an SDNV is simply a way of representing non-negative
 integers (both positive integers of arbitrary magnitude and 0),
 without expending too-much unneccessary space. This definition
 allows SDNVs to represent many common protocol header fields, such
 as:

https://datatracker.ietf.org/doc/html/rfc2993

Eddy Expires January 7, 2008 [Page 4]

Internet-Draft Using SDNVs July 2007

 o Random identification fields as used in the IPsec Security
 Parameters Index or in IP headers for fragment reassembly (Note:
 the 16-bit IP ID field for fragment reassembly was recently found
 to be too short in some environments [I-D.heffner-frag-harmful]),

 o Sequence numbers as in TCP or SCTP,

 o Values used in cryptographic algorithms such as RSA keys, Diffie-
 Hellman key-agreement, or coordinates of points on elliptic
 curves.

 o Message lengths as used in file transfer protocols.

 o Nonces and cookies.

 o Etc.

 The use of SDNVs rather than fixed length fields gives protocol
 designers the ability to somewhat circumvent making difficult-to-
 reverse field-sizing decisions, since the SDNV wire-format grows and
 shrinks depending on the particular value encoded. SDNVs do not
 necessarily provide optimal encodings for values of any particular
 length, however they allow protocol designers to avoid potential
 blunders in assigning fixed lengths, and remove the complexity
 involved with either negotiating field lengths or constructing
 protocol extensions.

 To our knowledge, at this time, no protocols designed for use outside
 of the DTN domain have proposed to use SDNVs, however there is no
 inherent reason not to use SDNVs more broadly in the future. The two
 examples cited here of fields that have proven too-small in general
 Internet protocols are only a small sampling of the much larger set
 of similar instances that the authors can think of.

 Many protocols use a Type-Length-Value method for encoding variable
 length strings (e.g. TCP's options format, or many of the fields in
 IKEv2). An SDNV is equivalent to combining the length and value
 portions of this type of field, with the overhead of the length
 portion amortized out over the bytes of the value. The penalty paid
 for this in an SDNV may be several extra bytes for long values (e.g.
 1024 bit RSA keys). See Section 4 for further discussion and a
 comparison.

 As is shown in later sections, for large values, the current SDNV
 scheme is fairly inefficient in terms of space (1/8 of the bits are
 overhead) and not particularly easy to encode/decode in comparison to
 alternatives. The best use of SDNVs may often be to define the
 Length field of a TLV structure to be an SDNV whose value is the

Eddy Expires January 7, 2008 [Page 5]

Internet-Draft Using SDNVs July 2007

 length of the TLV's Value field. In this way, one can avoid forcing
 large numbers from being directly encoded as an SDNV, yet retain the
 extensibility that using SDNVs grants.

Eddy Expires January 7, 2008 [Page 6]

Internet-Draft Using SDNVs July 2007

2. Definition of SDNVs

 An early definition of the SDNV format bore resemblance to the ASN.1
 [ASN1] Basic Encoding Rules (BER) [ASN1-BER] for lengths (Section

8.1.3 of X.690). The current SDNV format is the one used by ASN.1
 BER for encoding tag identifiers greater than or equal to 31 (Section

8.1.2.4.2 of X.690). A comparison between the current SDNV format
 and the early SDNV format is made in Section 4.

 The currently-used format is very simple. Before encoding, an
 integer is represented as a left-to-right bitstring beginning with
 its most significant bit, and ending with its least signifcant bit.
 On the wire, the bits are encoded into a series of bytes. The most
 significant bit of each wire format byte specifies whether it is the
 final byte of the encoded value (when it holds a 0), or not (when it
 holds a 1). The remaining 7 bits of each byte in the wire format are
 taken in-order from the integer's bitstring representation. If the
 bitstring's length is not a multiple of 7, then the string is left-
 padded with 0s.

 For example:

 o 1 (decimal) is represented by the bitstring "0000001" and encoded
 as the single byte 0x01 (in hexadecimal)

 o 128 is represented by the bitstring "10000001 00000000" and
 encoded as the bytes 0x81 followed by 0x00.

 o Other values can be found in the test vectors of the source code
 in Appendix A

 To be perfectly clear, and avoid potential interoperability issues
 (as have occurred with ASN.1 BER time values), we explicitly state
 two considerations regarding zero-padding. (1) When encoding SDNVs,
 any leading (most significant) zero bits in the input number might be
 discarded by the SDNV encoder. Protocols that use SDNVs should not
 rely on leading-zeros being retained after encoding and decoding
 operations. (2) When decoding SDNVs, the relevant number of leading
 zeros required to pad up to a machine word or other natural data unit
 might be added. These are put in the most-significant positions in
 order to not change the value of the number.

Eddy Expires January 7, 2008 [Page 7]

Internet-Draft Using SDNVs July 2007

3. Basic Algorithms

 This section describes some simple algorithms for creating and
 parsing SDNV fields. These may not be the most efficient algorithms
 possible, however, they are easy to read, understand, and implement.

Appendix A contains Python source code implementing the routines
 described here. Only SDNV's of the currently-used form are
 considered in this section.

3.1. Encoding Algorithm

 There is a very simple algorithm for the encoding operation that
 converts a non-negative integer (n, of length 1+floor(log_2 n) bits)
 into an SDNV. This algorithm takes n as its only argument and
 returns a string of bytes:

 o (Initial Step) Set the return value to a byte sharing the least
 significant 7 bits of n, and with 0 in the most significant bit,
 but do not return yet. Right shift n 7 bits and use this as the
 new n value. If implemented using call-by-reference rather than
 call-by-value, make a copy of n for local use at the start of the
 function call.

 o (Recursion Step) If n == 0, return. Otherwise, take the byte
 0x80, and bitwise-or it with the 7 least significant bits left in
 n. Set the return value to this result with the previous return
 string appended to it. Set n to itself shifted right 7 bits
 again. Repeat Recursion Step.

 This encoding algorithm can easily be seen to have time complexity of
 O(log_2 n), since it takes a number of steps equal to ceil(n/7), and
 no additional space beyond the size of the result (8/7 log_2 n) is
 required. One aspect of this algorithm is that it assumes strings
 can be efficiently appended to new bytes. One way to implement this
 is to allocate a buffer for the expected length of the result and
 fill that buffer one byte at a time from the right end.

3.2. Decoding Algorithm

 Decoding SNDVs is a more difficult operation than encoding them, due
 to the fact that no bound on the resulting value is known until the
 SDNV is parsed, at which point the value itself is already known.
 This means that if space is allocated for decoding the value of an
 SDNV into, it is never known whether this space will be overflowed
 until it is 7 bits away from happening.

 (Initial Step) Set the result to 0. Set a pointer to the beginning
 of the SDNV.

Eddy Expires January 7, 2008 [Page 8]

Internet-Draft Using SDNVs July 2007

 (Recursion Step) Shift the result left 7 bits. Add the lower 7 bits
 of the value at the pointer to the result. If the high-order bit
 under the pointer is a 1, move the pointer right one byte and repeat
 the Recursion Step, otherwise return the current value of the result.

 This decoding algorithm takes no more additional space than what is
 required for the result (7/8 the length of the SDNV) and the pointer.
 The complication is that before the result can be left-shifted in the
 Recursion Step, an implementation needs to first make sure that this
 won't cause any bits to be lost, and re-allocate a larger piece of
 memory for the result, if required. The pure time complexity is the
 same as for the encoding algorithm given, but if re-allocation is
 needed due to the inability to predict the size of the result, in
 reality decoding may be slower.

Eddy Expires January 7, 2008 [Page 9]

Internet-Draft Using SDNVs July 2007

4. Comparison to Alternatives

 This section compares three alternative ways of implementing the
 concept of SDNVs: (1) the TLV scheme commonly used in the Internet
 family, and many other families of protocols, (2) the old style of
 SDNVs (both the SDNV-8 and SDNV-16) defined in an early stage of
 LTP's development [BRF04], and (3) the current SDNV format.

 The TLV method uses two fixed-length fields to hold the Type" and
 Length elements that then imply the syntax and semantics of the
 "value" element. This is only similar to an SDNV in that the value
 element can grow or shrink within the bounds capable of being
 conveyed by the Length field. Two fundamental differences between
 TLVs and SDNVs are that through the Type element, TLVs also contain
 some notion of what their contents are semantically, while SDNVs are
 simply generic non-negative integers, and protocol engineers still
 have to pick fixed-lengths for the Type and Length fields in the TLV
 format.

 Some protocols use TLVs where the value conveyed within the Length
 field needs to be decoded into the actual length of the Value field.
 This may be accomplished through simple multiplication, left-
 shifting, or a look-up table. In any case, this tactic limits the
 granularity of the possible Value lengths, and can contribute some
 degree of bloat if Values do not fit neatly within the available
 decoded Lengths.

 In the SDNV format originally used by LTP, parsing the first byte of
 the SDNV told an implementation how much space was required to hold
 the contained value. There were two different types of SDNVs defined
 for different ranges of use. The SDNV-8 type could hold values up to
 127 in a single byte, while the SDNV-16 type could hold values up to
 32,767 in 2 bytes. Both formats could encode values requiring up to
 N bytes in N+2 bytes, where N<127. The two major difference between
 this old SDNV format and the currently-used SDNV format is that the
 new format is not as easily decoded as the old format was, but the
 new format also has absolutely no limitation on its length.

 The advantage in ease of parsing that the old format manifests itself
 in two aspects: (1) the size of the value is determinable ahead of
 time, in a way equivalent to parsing a TLV, and (2) the actual value
 is directly encoded and decoded, without shifting and masking bits as
 is required in the new format. For these reasons, the old format
 requires less computational overhead to deal with, but is also very
 limited, in that it can only hold a 1024-bit number, at maximum.
 Since according to IETF Best Current Practices, an asymmetric
 cryptography key needed to last for a long term requires using moduli
 of over 1228 bits [RFC3766], this could be seen as a severe

https://datatracker.ietf.org/doc/html/rfc3766

Eddy Expires January 7, 2008 [Page 10]

Internet-Draft Using SDNVs July 2007

 limitation of the old-style of SDNVs, which the currently-used style
 does not suffer from.

 Table 1 compares the maximum values that can be encoded into SDNVs of
 various lengths using the old SDNV-8/16 method and the current SDNV
 method. The only place in this table where SDNV-16 is used rather
 than SDNV-8 is in the 2-byte row. Starting with a single byte, the
 two methods are equivalent, but when using 2 bytes, the old method is
 a more compact encoding by one-bit. From 3 to 7 bytes of length
 though, the current SDNV format is more compact, since it only
 requires one-bit per byte of overhead, whereas the old format used a
 full byte. Thus, at 8 bytes, both schemes are equivalent in
 efficiency since they both use 8 bits of overhead. Up to 129 bytes,
 the old format is more compact than the current one, although after
 this limit it becomes unusable.

Eddy Expires January 7, 2008 [Page 11]

Internet-Draft Using SDNVs July 2007

 +-------+---------------+-------------+---------------+-------------+
Bytes	SDNV-8/16	SDNV	SDNV-8/16	SDNV
	Maximum Value	Maximum	Overhead Bits	Overhead
		Value		Bits
+-------+---------------+-------------+---------------+-------------+				
1	127	127	1	1
2	32,767	16,383	1	2
3	65,535	2,097,151	8	3
4	2^24 - 1	2^28 - 1	8	4
5	2^32 - 1	2^35 - 1	8	5
6	2^40 - 1	2^42 - 1	8	6
7	2^48 - 1	2^49 - 1	8	7
8	2^56 - 1	2^56 - 1	8	8
9	2^64 - 1	2^63 - 1	8	9
10	2^72 - 1	2^70 - 1	8	10
16	2^120 - 1	2^112 - 1	8	16
32	2^248 - 1	2^224 - 1	8	32
64	2^504 - 1	2^448 - 1	8	64
128	2^1016 - 1	2^896 - 1	8	128
129	2^1024 - 1	2^903 - 1	8	129
130	N/A	2^910 - 1	N/A	130
256	N/A	2^1792 - 1	N/A	256
 +-------+---------------+-------------+---------------+-------------+

 Table 1

 In general, it seems like the most promising use of SDNVs may be to
 define the Length field of a TLV structure to be an SDNV whose value
 is the length of the TLV's Value field. This leverages the strengths
 of the SDNV format and limits the effects of its weaknesses.

Eddy Expires January 7, 2008 [Page 12]

Internet-Draft Using SDNVs July 2007

5. Security Considerations

 The only security considerations with regards to SDNVs are that code
 which parses SDNVs should have bounds-checking logic and be capable
 of handling cases where an SDNV's value is beyond the code's ability
 to parse. These precautions can prevent potential exploits involving
 SDNV decoding routines.

 Stephen Farrell noted that very early definitions of SDNVs also
 allowed negative integers. This was considered a potential security
 hole, since it could expose implementations to underflow attacks
 during SDNV decoding. There is a precedent in that many existing TLV
 decoders map the Length field to a signed integer and are vulnerable
 in this way. An SDNV decoder should be based on unsigned types and
 not have this issue.

Eddy Expires January 7, 2008 [Page 13]

Internet-Draft Using SDNVs July 2007

6. IANA Considerations

 This document has no IANA considerations.

Eddy Expires January 7, 2008 [Page 14]

Internet-Draft Using SDNVs July 2007

7. Acknowledgements

 Scott Burleigh, Manikantan Ramadas, Michael Demmer, Stephen Farrell
 and other members of the IRTF DTN Research Group contributed to the
 development and usage of SDNVs in DTN protocols. George Jones and
 Keith Scott from Mitre, Lloyd Wood, and Gerardo Izquierdo also
 contributed useful comments on and criticisms of this document.

 Work on this document was performed at NASA's Glenn Research Center,
 in support of the NASA Space Communications Architecture Working
 Group (SCAWG), NASA's Earth Science Technology Office (ESTO), and the
 FAA/Eurocontrol Future Communications Study (FCS).

Eddy Expires January 7, 2008 [Page 15]

Internet-Draft Using SDNVs July 2007

8. Informative References

 [ASN1] ITU-T Rec. X.680, "Abstract Syntax Notation One (ASN.1).
 Specification of Basic Notation", ISO/IEC 8824-1:2002,
 2002.

 [ASN1-BER]
 ITU-T Rec. X.690, "Abstract Syntax Notation One (ASN.1).
 Encoding Rules: Specification of Basic Encoding Rules
 (BER), Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)", ISO/IEC 8825-1:2002, 2002.

 [BRF04] Burleigh, S., Ramadas, M., and S. Farrell, "Licklider
 Transmission Protocol", draft-irtf-dtnrg-ltp-00 (expired),
 May 2004.

 [BRF06] Burleigh, S., Ramadas, M., and S. Farrell, "Licklider
 Transmission Protocol - Motivation",

draft-irtf-dtnrg-ltp-motivation-02 (work in progress),
 March 2006.

 [Hain05] Hain, T., "A Pragmatic Report on IPv4 Address Space
 Consumption", Internet Protocol Journal Vol. 8, No. 3,
 September 2005.

 [I-D.heffner-frag-harmful]
 Heffner, J., "IPv4 Reassembly Errors at High Data Rates",

draft-heffner-frag-harmful-05 (work in progress),
 May 2007.

 [RBF06] Ramadas, M., Burleigh, S., and S. Farrell, "Licklider
 Transmission Protocol - Specification",

draft-irtf-dtnrg-ltp-04 (work in progress), March 2006.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993,
 November 2000.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,

https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-ltp-00
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-ltp-motivation-02
https://datatracker.ietf.org/doc/html/draft-heffner-frag-harmful-05
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-ltp-04
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/bcp86

Eddy Expires January 7, 2008 [Page 16]

Internet-Draft Using SDNVs July 2007

RFC 3766, April 2004.

 [SB05] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", draft-irtf-dtnrg-bundle-spec-04 (work in
 progress), November 2005.

Eddy Expires January 7, 2008 [Page 17]

https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-bundle-spec-04

Internet-Draft Using SDNVs July 2007

Appendix A. SNDV Python Source Code

 # sdnv_decode() takes a string argument s, which is assumed to be an
 # SDNV. The function returns a pair of the non-negative integer n
 # that is the numeric value encoded in the SDNV, and and integer l
 # that is the distance parsed into the input string. If the slen
 # argument is not given (or is not a non-zero number) then, s is
 # parsed up to the first byte whose high-order bit is 0 -- the
 # length of the SDNV portion of s does not have to be pre-computed
 # by calling code. If the slen argument is given as a non-zero
 # value, then slen bytes of s are parsed. The value for n of -1 is
 # returned for any type of parsing error.
 #
 # NOTE: In python, integers can be of arbitrary size. In other
 # languages, such as C, SDNV-parsing routines should take
 # precautions to avoid overflow (e.g. by using the Gnu MP library,
 # or similar).
 #
 def sdnv_decode(s, slen=0):
 n = long(0)
 for i in range(0, len(s)):
 v = ord(s[i])
 n = n<<7
 n = n + (v & 0x7F)
 if v>>7 == 0:
 slen = i+1
 break
 elif i == len(s)-1 or (slen != 0 and i > slen):
 n = -1 # reached end of input without seeing end of SDNV
 return (n, slen)

 # sdnv_encode() returns the SDNV-encoded string that represents n.
 # An empty string is returned if n is not a non-negative integer
 def sdnv_encode(n):
 r = ""
 # validate input
 if n >= 0 and (type(n) in [type(int(1)), type(long(1))]):
 flag = 0
 done = False
 while not done:
 # encode lowest 7 bits from n
 newbits = n & 0x7F
 n = n>>7
 r = chr(newbits + flag) + r
 if flag == 0:
 flag = 0x80
 if n == 0:
 done = True

Eddy Expires January 7, 2008 [Page 18]

Internet-Draft Using SDNVs July 2007

 return r

 # test cases from LTP and BP internet-drafts, only print failures
 def sdnv_test():
 tests = [(0xABC, chr(0x95) + chr(0x3C)),
 (0x1234, chr(0xA4) + chr (0x34)),
 (0x4234, chr(0x81) + chr(0x84) + chr(0x34)),
 (0x7F, chr(0x7F))]

 for tp in tests:
 # test encoding function
 if sdnv_encode(tp[0]) != tp[1]:
 print "sdnv_encode fails on input %s" % hex(tp[0])
 # test decoding function
 if sdnv_decode(tp[1])[0] != tp[0]:
 print "sdnv_decode fails on input %s, giving %s" % \
 (hex(tp[0]), sdnv_decode(tp[1]))

Eddy Expires January 7, 2008 [Page 19]

Internet-Draft Using SDNVs July 2007

Author's Address

 Wesley M. Eddy
 Verizon Federal Network Systems
 NASA Glenn Research Center
 21000 Brookpark Rd, MS 54-5
 Cleveland, OH 44135

 Phone: 216-433-6682
 Email: weddy@grc.nasa.gov

Eddy Expires January 7, 2008 [Page 20]

Internet-Draft Using SDNVs July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Eddy Expires January 7, 2008 [Page 21]

