
Internet Engineering Task Force W. Eddy, Ed.
Internet-Draft MTI Systems
Obsoletes: 793, 6093 (if approved) August 12, 2014
Updates: 1122 (if approved)
Intended status: Standards Track
Expires: February 13, 2015

Transmission Control Protocol Specification
draft-eddy-rfc793bis-03

Abstract

 This document specifies the Internet's Transmission Control Protocol
 (TCP). TCP is an important transport layer protocol in the Internet
 stack, and has continuously evolved over decades of use and growth of
 the Internet. Over this time, a number of changes have been made to
 TCP as it was specified in RFC 793, though these have only been
 documented in a piecemeal fashion. This document collects and brings
 those changes together with the protocol specification from RFC 793.
 This document obsoletes RFC 793 and several other RFCs (TODO: list
 all actual RFCs when finished).

 RFC EDITOR NOTE: If approved for publication as an RFC, this should
 be marked additionally as "STD: 7" and replace RFC 793 in that role.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 13, 2015.

Eddy Expires February 13, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Specification August 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Purpose and Scope . 3
2. Introduction . 4
3. Functional Specification 5
3.1. Header Format . 5
3.2. Terminology . 9
3.3. Sequence Numbers . 13
3.4. Establishing a connection 19
3.5. Closing a Connection 26
3.6. Precedence and Security 28
3.7. Data Communication 29
3.8. Interfaces . 33
3.8.1. User/TCP Interface 33
3.8.2. TCP/Lower-Level Interface 40

3.9. Event Processing . 41
3.10. Glossary . 64

4. Changes from RFC 793 . 69
5. IANA Considerations . 72
6. Security and Privacy Considerations 72
7. Acknowledgements . 72

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires February 13, 2015 [Page 2]

Internet-Draft TCP Specification August 2014

8. References . 73
8.1. Normative References 73
8.2. Informative References 73

Appendix A. TCP Requirement Summary 73
 Author's Address . 76

1. Purpose and Scope

 In 1981, RFC 793 [2] was released, documenting the Transmission
 Control Protocol (TCP), and replacing earlier specifications for TCP
 that had been published in the past.

 Since then, TCP has been implemented many times, and has been used as
 a transport protocol for numerous applications on the Internet.

 For several decades, RFC 793 plus a number of other documents have
 combined to serve as the specification for TCP [4]. Over time, a
 number of errata have been identified on RFC 793, as well as
 deficiencies in security, performance, and other aspects. A number
 of enhancements has grown and been documented separately. These were
 never accumulated together into an update to the base specification.

 The purpose of this document is to bring together all of the IETF
 Standards Track changes that have been made to the basic TCP
 functional specification and unify them into an update of the RFC 793
 protocol specification. Some companion documents are referenced for
 important algorithms that TCP uses (e.g. for congestion control), but
 have not been attempted to include in this document. This is a
 conscious choice, as this base specification can be used with
 multiple additional algorithms that are developed and incorporated
 separately, but all TCP implementations need to implement this
 specification as a common basis in order to interoperate. As some
 additional TCP features have become quite complicated themselves
 (e.g. advanced loss recovery and congestion control), future
 companion documents may attempt to similarly bring these together.

 In addition to the protocol specification that descibes the TCP
 segment format, generation, and processing rules that are to be
 implemented in code, RFC 793 and other updates also contain
 informative and descriptive text for human readers to understand
 aspects of the protocol design and operation. This document does not
 attempt to alter or update this informative text, and is focused only
 on updating the normative protocol specification. We preserve
 references to the documentation containing the important explanations
 and rationale, where appropriate.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires February 13, 2015 [Page 3]

Internet-Draft TCP Specification August 2014

 This document is intended to be useful both in checking existing TCP
 implementations for conformance, as well as in writing new
 implementations.

2. Introduction

RFC 793 contains a discussion of the TCP design goals and provides
 examples of its operation, including examples of connection
 establishment, closing connections, and retransmitting packets to
 repair losses.

 This document describes the basic functionality expected in modern
 implementations of TCP, and replaces the protocol specification in

RFC 793. It does not replicate or attempt to update the examples and
 other discussion in RFC 793. Other documents are referenced to
 provide explanation of the theory of operation, rationale, and
 detailed discussion of design decisions. This document only focuses
 on the normative behavior of the protocol.

 TEMPORARY EDITOR'S NOTE: This is an early revision in the process of
 updating RFC 793. Many planned changes are not yet incorporated.

 ***Please do not use this revision as a basis for any work or
 reference.***

 A list of changes from RFC 793 is contained in Section 4.

 TEMPORARY EDITOR'S NOTE: the current revision of this document does
 not yet collect all of the changes that will be in the final version.
 The set of content changes planned for each revision is roughly:

 -00 was a proposal for the scope of the document and description
 of the need for an update to RFC 793

 -01 incorporated the RFC 793 section 3 content with no additional
 changes into XML2RFC format for easy tracking of the changes
 between RFC 793 and future revisions of the document

 -02 incorporates the verified errata on RFC 793 as of March 20,
 2014

 -03 incorporates urgent pointer changes from RFC 6093

 -04 will incorporate RFC 6528

 -05 and beyond are intended to incorporate changes from other RFCs
 that updated 793

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793#section-3
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc6528

Eddy Expires February 13, 2015 [Page 4]

Internet-Draft TCP Specification August 2014

3. Functional Specification

3.1. Header Format

 TCP segments are sent as internet datagrams. The Internet Protocol
 header carries several information fields, including the source and
 destination host addresses [2]. A TCP header follows the internet
 header, supplying information specific to the TCP protocol. This
 division allows for the existence of host level protocols other than
 TCP.

 TCP Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Data | |U|A|P|R|S|F| |
 | Offset| Reserved |R|C|S|S|Y|I| Window |
 | | |G|K|H|T|N|N| |
 +-+
 | Checksum | Urgent Pointer |
 +-+
 | Options | Padding |
 +-+
 | data |
 +-+

 TCP Header Format

 Note that one tick mark represents one bit position.

 Figure 1

 Source Port: 16 bits

 The source port number.

 Destination Port: 16 bits

 The destination port number.

 Sequence Number: 32 bits

Eddy Expires February 13, 2015 [Page 5]

Internet-Draft TCP Specification August 2014

 The sequence number of the first data octet in this segment (except
 when SYN is present). If SYN is present the sequence number is the
 initial sequence number (ISN) and the first data octet is ISN+1.

 Acknowledgment Number: 32 bits

 If the ACK control bit is set this field contains the value of the
 next sequence number the sender of the segment is expecting to
 receive. Once a connection is established this is always sent.

 Data Offset: 4 bits

 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.

 Reserved: 6 bits

 Reserved for future use. Must be zero.

 Control Bits: 6 bits (from left to right):

 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

 Window: 16 bits

 The number of data octets beginning with the one indicated in the
 acknowledgment field which the sender of this segment is willing to
 accept.

 Checksum: 16 bits

 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header and text. If a
 segment contains an odd number of header and text octets to be
 checksummed, the last octet is padded on the right with zeros to
 form a 16 bit word for checksum purposes. The pad is not
 transmitted as part of the segment. While computing the checksum,
 the checksum field itself is replaced with zeros.

 The checksum also covers a 96 bit pseudo header conceptually
 prefixed to the TCP header. This pseudo header contains the Source
 Address, the Destination Address, the Protocol, and TCP length.

Eddy Expires February 13, 2015 [Page 6]

Internet-Draft TCP Specification August 2014

 This gives the TCP protection against misrouted segments. This
 information is carried in the Internet Protocol and is transferred
 across the TCP/Network interface in the arguments or results of
 calls by the TCP on the IP.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+

 The TCP Length is the TCP header length plus the data length in
 octets (this is not an explicitly transmitted quantity, but is
 computed), and it does not count the 12 octets of the pseudo
 header.

 Urgent Pointer: 16 bits

 This field communicates the current value of the urgent pointer as
 a positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet following
 the urgent data. This field is only be interpreted in segments
 with the URG control bit set.

 Options: variable

 Options may occupy space at the end of the TCP header and are a
 multiple of 8 bits in length. All options are included in the
 checksum. An option may begin on any octet boundary. There are
 two cases for the format of an option:

 Case 1: A single octet of option-kind.

 Case 2: An octet of option-kind, an octet of option-length, and
 the actual option-data octets.

 The option-length counts the two octets of option-kind and option-
 length as well as the option-data octets.

 Note that the list of options may be shorter than the data offset
 field might imply. The content of the header beyond the End-of-
 Option option must be header padding (i.e., zero).

 A TCP must implement all options.

Eddy Expires February 13, 2015 [Page 7]

Internet-Draft TCP Specification August 2014

 Currently defined options include (kind indicated in octal):

 Kind Length Meaning
 ---- ------ -------
 0 - End of option list.
 1 - No-Operation.
 2 4 Maximum Segment Size.

 Specific Option Definitions

 End of Option List

 +--------+
 |00000000|
 +--------+
 Kind=0

 This option code indicates the end of the option list. This
 might not coincide with the end of the TCP header according to
 the Data Offset field. This is used at the end of all options,
 not the end of each option, and need only be used if the end of
 the options would not otherwise coincide with the end of the TCP
 header.

 No-Operation

 +--------+
 |00000001|
 +--------+
 Kind=1

 This option code may be used between options, for example, to
 align the beginning of a subsequent option on a word boundary.
 There is no guarantee that senders will use this option, so
 receivers must be prepared to process options even if they do
 not begin on a word boundary.

 Maximum Segment Size

 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+
 Kind=2 Length=4

 Maximum Segment Size Option Data: 16 bits

 If this option is present, then it communicates the maximum
 receive segment size at the TCP which sends this segment. This

Eddy Expires February 13, 2015 [Page 8]

Internet-Draft TCP Specification August 2014

 field may be sent in the initial connection request (i.e., in
 segments with the SYN control bit set) and must not be sent in
 other segments. If this option is not used, any segment size is
 allowed.

 Padding: variable

 The TCP header padding is used to ensure that the TCP header ends
 and data begins on a 32 bit boundary. The padding is composed of
 zeros.

3.2. Terminology

 Before we can discuss very much about the operation of the TCP we
 need to introduce some detailed terminology. The maintenance of a
 TCP connection requires the remembering of several variables. We
 conceive of these variables being stored in a connection record
 called a Transmission Control Block or TCB. Among the variables
 stored in the TCB are the local and remote socket numbers, the
 security and precedence of the connection, pointers to the user's
 send and receive buffers, pointers to the retransmit queue and to the
 current segment. In addition several variables relating to the send
 and receive sequence numbers are stored in the TCB.

 Send Sequence Variables

 SND.UNA - send unacknowledged
 SND.NXT - send next
 SND.WND - send window
 SND.UP - send urgent pointer
 SND.WL1 - segment sequence number used for last window update
 SND.WL2 - segment acknowledgment number used for last window
 update
 ISS - initial send sequence number

 Receive Sequence Variables

 RCV.NXT - receive next
 RCV.WND - receive window
 RCV.UP - receive urgent pointer
 IRS - initial receive sequence number

 The following diagrams may help to relate some of these variables to
 the sequence space.

Eddy Expires February 13, 2015 [Page 9]

Internet-Draft TCP Specification August 2014

 Send Sequence Space

 1 2 3 4
 ----------|----------|----------|----------
 SND.UNA SND.NXT SND.UNA
 +SND.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers of unacknowledged data
 3 - sequence numbers allowed for new data transmission
 4 - future sequence numbers which are not yet allowed

 Send Sequence Space

 Figure 2

 The send window is the portion of the sequence space labeled 3 in
 Figure 2.

 Receive Sequence Space

 1 2 3
 ----------|----------|----------
 RCV.NXT RCV.NXT
 +RCV.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers allowed for new reception
 3 - future sequence numbers which are not yet allowed

 Receive Sequence Space

 Figure 3

 The receive window is the portion of the sequence space labeled 2 in
 Figure 3.

 There are also some variables used frequently in the discussion that
 take their values from the fields of the current segment.

 Current Segment Variables

 SEG.SEQ - segment sequence number
 SEG.ACK - segment acknowledgment number
 SEG.LEN - segment length
 SEG.WND - segment window
 SEG.UP - segment urgent pointer
 SEG.PRC - segment precedence value

Eddy Expires February 13, 2015 [Page 10]

Internet-Draft TCP Specification August 2014

 A connection progresses through a series of states during its
 lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
 ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
 TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
 because it represents the state when there is no TCB, and therefore,
 no connection. Briefly the meanings of the states are:

 LISTEN - represents waiting for a connection request from any
 remote TCP and port.

 SYN-SENT - represents waiting for a matching connection request
 after having sent a connection request.

 SYN-RECEIVED - represents waiting for a confirming connection
 request acknowledgment after having both received and sent a
 connection request.

 ESTABLISHED - represents an open connection, data received can be
 delivered to the user. The normal state for the data transfer
 phase of the connection.

 FIN-WAIT-1 - represents waiting for a connection termination
 request from the remote TCP, or an acknowledgment of the
 connection termination request previously sent.

 FIN-WAIT-2 - represents waiting for a connection termination
 request from the remote TCP.

 CLOSE-WAIT - represents waiting for a connection termination
 request from the local user.

 CLOSING - represents waiting for a connection termination request
 acknowledgment from the remote TCP.

 LAST-ACK - represents waiting for an acknowledgment of the
 connection termination request previously sent to the remote TCP
 (this termination request sent to the remote TCP already included
 an acknowledgment of the termination request sent from the remote
 TCP).

 TIME-WAIT - represents waiting for enough time to pass to be sure
 the remote TCP received the acknowledgment of its connection
 termination request.

 CLOSED - represents no connection state at all.

 A TCP connection progresses from one state to another in response to
 events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,

Eddy Expires February 13, 2015 [Page 11]

Internet-Draft TCP Specification August 2014

 ABORT, and STATUS; the incoming segments, particularly those
 containing the SYN, ACK, RST and FIN flags; and timeouts.

 The state diagram in Figure 4 illustrates only state changes,
 together with the causing events and resulting actions, but addresses
 neither error conditions nor actions which are not connected with
 state changes. In a later section, more detail is offered with
 respect to the reaction of the TCP to events.

 NOTA BENE: this diagram is only a summary and must not be taken as
 the total specification.

 +---------+ ---------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 rcv RST (note 1) +---------+ CLOSE | \
 -------------------->| LISTEN | ---------- | |
 / +---------+ delete TCB | |
 / rcv SYN | | SEND | |
 / ----------- | | ------- | V
 +---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd SYN,ACK	
	------------------ -------------------	
 +---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+
 | -------------- | | -----------
 | x | | snd ACK
 | V V
 | CLOSE +---------+
 | ------- | ESTAB |
 | snd FIN +---------+
 | CLOSE | | rcv FIN
 V ------- | | -------
 +---------+ snd FIN / \ snd ACK +---------+
 | FIN |<----------------- ------------------>| CLOSE |
 | WAIT-1 |------------------ | WAIT |
 +---------+ rcv FIN \ +---------+
 | rcv ACK of FIN ------- | CLOSE |
 | -------------- snd ACK | ------- |
 V x V snd FIN V
 +---------+ +---------+ +---------+

Eddy Expires February 13, 2015 [Page 12]

Internet-Draft TCP Specification August 2014

 |FINWAIT-2| | CLOSING | | LAST-ACK|
 +---------+ +---------+ +---------+
 | rcv ACK of FIN | rcv ACK of FIN |
 | rcv FIN -------------- | Timeout=2MSL -------------- |
 | ------- x V ------------ x V
 \ snd ACK +---------+delete TCB +---------+
 ------------------------>|TIME WAIT|------------------>| CLOSED |
 +---------+ +---------+

 note 1: The transition from SYN-RCVD to LISTEN on receiving a RST is
 conditional on having reached SYN-RCVD after a passive open.

 note 2: An unshown transition exists from FIN-WAIT-1 to TIME-WAIT if
 a FIN is received and the local FIN is also acknowledged.

 TCP Connection State Diagram

 Figure 4

3.3. Sequence Numbers

 A fundamental notion in the design is that every octet of data sent
 over a TCP connection has a sequence number. Since every octet is
 sequenced, each of them can be acknowledged. The acknowledgment
 mechanism employed is cumulative so that an acknowledgment of
 sequence number X indicates that all octets up to but not including X
 have been received. This mechanism allows for straight-forward
 duplicate detection in the presence of retransmission. Numbering of
 octets within a segment is that the first data octet immediately
 following the header is the lowest numbered, and the following octets
 are numbered consecutively.

 It is essential to remember that the actual sequence number space is
 finite, though very large. This space ranges from 0 to 2**32 - 1.
 Since the space is finite, all arithmetic dealing with sequence
 numbers must be performed modulo 2**32. This unsigned arithmetic
 preserves the relationship of sequence numbers as they cycle from
 2**32 - 1 to 0 again. There are some subtleties to computer modulo
 arithmetic, so great care should be taken in programming the
 comparison of such values. The symbol "=<" means "less than or
 equal" (modulo 2**32).

 The typical kinds of sequence number comparisons which the TCP must
 perform include:

 (a) Determining that an acknowledgment refers to some sequence
 number sent but not yet acknowledged.

Eddy Expires February 13, 2015 [Page 13]

Internet-Draft TCP Specification August 2014

 (b) Determining that all sequence numbers occupied by a segment
 have been acknowledged (e.g., to remove the segment from a
 retransmission queue).

 (c) Determining that an incoming segment contains sequence numbers
 which are expected (i.e., that the segment "overlaps" the receive
 window).

 In response to sending data the TCP will receive acknowledgments.
 The following comparisons are needed to process the acknowledgments.

 SND.UNA = oldest unacknowledged sequence number

 SND.NXT = next sequence number to be sent

 SEG.ACK = acknowledgment from the receiving TCP (next sequence
 number expected by the receiving TCP)

 SEG.SEQ = first sequence number of a segment

 SEG.LEN = the number of octets occupied by the data in the segment
 (counting SYN and FIN)

 SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

 A new acknowledgment (called an "acceptable ack"), is one for which
 the inequality below holds:

 SND.UNA < SEG.ACK =< SND.NXT

 A segment on the retransmission queue is fully acknowledged if the
 sum of its sequence number and length is less or equal than the
 acknowledgment value in the incoming segment.

 When data is received the following comparisons are needed:

 RCV.NXT = next sequence number expected on an incoming segments,
 and is the left or lower edge of the receive window

 RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
 segment, and is the right or upper edge of the receive window

 SEG.SEQ = first sequence number occupied by the incoming segment

 SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
 segment

Eddy Expires February 13, 2015 [Page 14]

Internet-Draft TCP Specification August 2014

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the
 segment falls in the window, the second part of the test checks to
 see if the end of the segment falls in the window; if the segment
 passes either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 Note that when the receive window is zero no segments should be
 acceptable except ACK segments. Thus, it is be possible for a TCP to
 maintain a zero receive window while transmitting data and receiving
 ACKs. However, even when the receive window is zero, a TCP must
 process the RST and URG fields of all incoming segments.

 We have taken advantage of the numbering scheme to protect certain
 control information as well. This is achieved by implicitly
 including some control flags in the sequence space so they can be
 retransmitted and acknowledged without confusion (i.e., one and only
 one copy of the control will be acted upon). Control information is
 not physically carried in the segment data space. Consequently, we
 must adopt rules for implicitly assigning sequence numbers to
 control. The SYN and FIN are the only controls requiring this
 protection, and these controls are used only at connection opening
 and closing. For sequence number purposes, the SYN is considered to
 occur before the first actual data octet of the segment in which it

Eddy Expires February 13, 2015 [Page 15]

Internet-Draft TCP Specification August 2014

 occurs, while the FIN is considered to occur after the last actual
 data octet in a segment in which it occurs. The segment length
 (SEG.LEN) includes both data and sequence space occupying controls.
 When a SYN is present then SEG.SEQ is the sequence number of the SYN.

 Initial Sequence Number Selection

 The protocol places no restriction on a particular connection being
 used over and over again. A connection is defined by a pair of
 sockets. New instances of a connection will be referred to as
 incarnations of the connection. The problem that arises from this is
 -- "how does the TCP identify duplicate segments from previous
 incarnations of the connection?" This problem becomes apparent if
 the connection is being opened and closed in quick succession, or if
 the connection breaks with loss of memory and is then reestablished.

 To avoid confusion we must prevent segments from one incarnation of a
 connection from being used while the same sequence numbers may still
 be present in the network from an earlier incarnation. We want to
 assure this, even if a TCP crashes and loses all knowledge of the
 sequence numbers it has been using. When new connections are
 created, an initial sequence number (ISN) generator is employed which
 selects a new 32 bit ISN. The generator is bound to a (possibly
 fictitious) 32 bit clock whose low order bit is incremented roughly
 every 4 microseconds. Thus, the ISN cycles approximately every 4.55
 hours. Since we assume that segments will stay in the network no
 more than the Maximum Segment Lifetime (MSL) and that the MSL is less
 than 4.55 hours we can reasonably assume that ISN's will be unique.

 For each connection there is a send sequence number and a receive
 sequence number. The initial send sequence number (ISS) is chosen by
 the data sending TCP, and the initial receive sequence number (IRS)
 is learned during the connection establishing procedure.

 For a connection to be established or initialized, the two TCPs must
 synchronize on each other's initial sequence numbers. This is done
 in an exchange of connection establishing segments carrying a control
 bit called "SYN" (for synchronize) and the initial sequence numbers.
 As a shorthand, segments carrying the SYN bit are also called "SYNs".
 Hence, the solution requires a suitable mechanism for picking an
 initial sequence number and a slightly involved handshake to exchange
 the ISN's.

 The synchronization requires each side to send it's own initial
 sequence number and to receive a confirmation of it in acknowledgment
 from the other side. Each side must also receive the other side's
 initial sequence number and send a confirming acknowledgment.

Eddy Expires February 13, 2015 [Page 16]

Internet-Draft TCP Specification August 2014

 1) A --> B SYN my sequence number is X
 2) A <-- B ACK your sequence number is X
 3) A <-- B SYN my sequence number is Y
 4) A --> B ACK your sequence number is Y

 Because steps 2 and 3 can be combined in a single message this is
 called the three way (or three message) handshake.

 A three way handshake is necessary because sequence numbers are not
 tied to a global clock in the network, and TCPs may have different
 mechanisms for picking the ISN's. The receiver of the first SYN has
 no way of knowing whether the segment was an old delayed one or not,
 unless it remembers the last sequence number used on the connection
 (which is not always possible), and so it must ask the sender to
 verify this SYN. The three way handshake and the advantages of a
 clock-driven scheme are discussed in [3].

 Knowing When to Keep Quiet

 To be sure that a TCP does not create a segment that carries a
 sequence number which may be duplicated by an old segment remaining
 in the network, the TCP must keep quiet for a maximum segment
 lifetime (MSL) before assigning any sequence numbers upon starting up
 or recovering from a crash in which memory of sequence numbers in use
 was lost. For this specification the MSL is taken to be 2 minutes.
 This is an engineering choice, and may be changed if experience
 indicates it is desirable to do so. Note that if a TCP is
 reinitialized in some sense, yet retains its memory of sequence
 numbers in use, then it need not wait at all; it must only be sure to
 use sequence numbers larger than those recently used.

 The TCP Quiet Time Concept

 This specification provides that hosts which "crash" without
 retaining any knowledge of the last sequence numbers transmitted on
 each active (i.e., not closed) connection shall delay emitting any
 TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
 in the internet system of which the host is a part. In the
 paragraphs below, an explanation for this specification is given.
 TCP implementors may violate the "quiet time" restriction, but only
 at the risk of causing some old data to be accepted as new or new
 data rejected as old duplicated by some receivers in the internet
 system.

 TCPs consume sequence number space each time a segment is formed and
 entered into the network output queue at a source host. The
 duplicate detection and sequencing algorithm in the TCP protocol
 relies on the unique binding of segment data to sequence space to the

Eddy Expires February 13, 2015 [Page 17]

Internet-Draft TCP Specification August 2014

 extent that sequence numbers will not cycle through all 2**32 values
 before the segment data bound to those sequence numbers has been
 delivered and acknowledged by the receiver and all duplicate copies
 of the segments have "drained" from the internet. Without such an
 assumption, two distinct TCP segments could conceivably be assigned
 the same or overlapping sequence numbers, causing confusion at the
 receiver as to which data is new and which is old. Remember that
 each segment is bound to as many consecutive sequence numbers as
 there are octets of data and SYN or FIN flags in the segment.

 Under normal conditions, TCPs keep track of the next sequence number
 to emit and the oldest awaiting acknowledgment so as to avoid
 mistakenly using a sequence number over before its first use has been
 acknowledged. This alone does not guarantee that old duplicate data
 is drained from the net, so the sequence space has been made very
 large to reduce the probability that a wandering duplicate will cause
 trouble upon arrival. At 2 megabits/sec. it takes 4.5 hours to use
 up 2**32 octets of sequence space. Since the maximum segment
 lifetime in the net is not likely to exceed a few tens of seconds,
 this is deemed ample protection for foreseeable nets, even if data
 rates escalate to l0's of megabits/sec. At 100 megabits/sec, the
 cycle time is 5.4 minutes which may be a little short, but still
 within reason.

 The basic duplicate detection and sequencing algorithm in TCP can be
 defeated, however, if a source TCP does not have any memory of the
 sequence numbers it last used on a given connection. For example, if
 the TCP were to start all connections with sequence number 0, then
 upon crashing and restarting, a TCP might re-form an earlier
 connection (possibly after half-open connection resolution) and emit
 packets with sequence numbers identical to or overlapping with
 packets still in the network which were emitted on an earlier
 incarnation of the same connection. In the absence of knowledge
 about the sequence numbers used on a particular connection, the TCP
 specification recommends that the source delay for MSL seconds before
 emitting segments on the connection, to allow time for segments from
 the earlier connection incarnation to drain from the system.

 Even hosts which can remember the time of day and used it to select
 initial sequence number values are not immune from this problem
 (i.e., even if time of day is used to select an initial sequence
 number for each new connection incarnation).

 Suppose, for example, that a connection is opened starting with
 sequence number S. Suppose that this connection is not used much and
 that eventually the initial sequence number function (ISN(t)) takes
 on a value equal to the sequence number, say S1, of the last segment
 sent by this TCP on a particular connection. Now suppose, at this

Eddy Expires February 13, 2015 [Page 18]

Internet-Draft TCP Specification August 2014

 instant, the host crashes, recovers, and establishes a new
 incarnation of the connection. The initial sequence number chosen is
 S1 = ISN(t) -- last used sequence number on old incarnation of
 connection! If the recovery occurs quickly enough, any old
 duplicates in the net bearing sequence numbers in the neighborhood of
 S1 may arrive and be treated as new packets by the receiver of the
 new incarnation of the connection.

 The problem is that the recovering host may not know for how long it
 crashed nor does it know whether there are still old duplicates in
 the system from earlier connection incarnations.

 One way to deal with this problem is to deliberately delay emitting
 segments for one MSL after recovery from a crash- this is the "quiet
 time" specification. Hosts which prefer to avoid waiting are willing
 to risk possible confusion of old and new packets at a given
 destination may choose not to wait for the "quite time".
 Implementors may provide TCP users with the ability to select on a
 connection by connection basis whether to wait after a crash, or may
 informally implement the "quite time" for all connections.
 Obviously, even where a user selects to "wait," this is not necessary
 after the host has been "up" for at least MSL seconds.

 To summarize: every segment emitted occupies one or more sequence
 numbers in the sequence space, the numbers occupied by a segment are
 "busy" or "in use" until MSL seconds have passed, upon crashing a
 block of space-time is occupied by the octets and SYN or FIN flags of
 the last emitted segment, if a new connection is started too soon and
 uses any of the sequence numbers in the space-time footprint of the
 last segment of the previous connection incarnation, there is a
 potential sequence number overlap area which could cause confusion at
 the receiver.

3.4. Establishing a connection

 The "three-way handshake" is the procedure used to establish a
 connection. This procedure normally is initiated by one TCP and
 responded to by another TCP. The procedure also works if two TCP
 simultaneously initiate the procedure. When simultaneous attempt
 occurs, each TCP receives a "SYN" segment which carries no
 acknowledgment after it has sent a "SYN". Of course, the arrival of
 an old duplicate "SYN" segment can potentially make it appear, to the
 recipient, that a simultaneous connection initiation is in progress.
 Proper use of "reset" segments can disambiguate these cases.

 Several examples of connection initiation follow. Although these
 examples do not show connection synchronization using data-carrying
 segments, this is perfectly legitimate, so long as the receiving TCP

Eddy Expires February 13, 2015 [Page 19]

Internet-Draft TCP Specification August 2014

 doesn't deliver the data to the user until it is clear the data is
 valid (i.e., the data must be buffered at the receiver until the
 connection reaches the ESTABLISHED state). The three-way handshake
 reduces the possibility of false connections. It is the
 implementation of a trade-off between memory and messages to provide
 information for this checking.

 The simplest three-way handshake is shown in Figure 5 below. The
 figures should be interpreted in the following way. Each line is
 numbered for reference purposes. Right arrows (-->) indicate
 departure of a TCP segment from TCP A to TCP B, or arrival of a
 segment at B from A. Left arrows (<--), indicate the reverse.
 Ellipsis (...) indicates a segment which is still in the network
 (delayed). An "XXX" indicates a segment which is lost or rejected.
 Comments appear in parentheses. TCP states represent the state AFTER
 the departure or arrival of the segment (whose contents are shown in
 the center of each line). Segment contents are shown in abbreviated
 form, with sequence number, control flags, and ACK field. Other
 fields such as window, addresses, lengths, and text have been left
 out in the interest of clarity.

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

 Basic 3-Way Handshake for Connection Synchronization

 Figure 5

 In line 2 of Figure 5, TCP A begins by sending a SYN segment
 indicating that it will use sequence numbers starting with sequence
 number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it
 received from TCP A. Note that the acknowledgment field indicates
 TCP B is now expecting to hear sequence 101, acknowledging the SYN
 which occupied sequence 100.

 At line 4, TCP A responds with an empty segment containing an ACK for
 TCP B's SYN; and in line 5, TCP A sends some data. Note that the
 sequence number of the segment in line 5 is the same as in line 4

Eddy Expires February 13, 2015 [Page 20]

Internet-Draft TCP Specification August 2014

 because the ACK does not occupy sequence number space (if it did, we
 would wind up ACKing ACK's!).

 Simultaneous initiation is only slightly more complex, as is shown in
 Figure 6. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
 ESTABLISHED.

 TCP A TCP B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 7. ... <SEQ=100><ACK=301><CTL=SYN,ACK> --> ESTABLISHED

 Simultaneous Connection Synchronization

 Figure 6

 The principle reason for the three-way handshake is to prevent old
 duplicate connection initiations from causing confusion. To deal
 with this, a special control message, reset, has been devised. If
 the receiving TCP is in a non-synchronized state (i.e., SYN-SENT,
 SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
 If the TCP is in one of the synchronized states (ESTABLISHED, FIN-
 WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
 aborts the connection and informs its user. We discuss this latter
 case under "half-open" connections below.

Eddy Expires February 13, 2015 [Page 21]

Internet-Draft TCP Specification August 2014

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-RECEIVED

 4. SYN-SENT <-- <SEQ=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

 5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

 6. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 7. SYN-SENT <-- <SEQ=400><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 8. ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLISHED

 Recovery from Old Duplicate SYN

 Figure 7

 As a simple example of recovery from old duplicates, consider
 Figure 7. At line 3, an old duplicate SYN arrives at TCP B. TCP B
 cannot tell that this is an old duplicate, so it responds normally
 (line 4). TCP A detects that the ACK field is incorrect and returns
 a RST (reset) with its SEQ field selected to make the segment
 believable. TCP B, on receiving the RST, returns to the LISTEN
 state. When the original SYN (pun intended) finally arrives at line
 6, the synchronization proceeds normally. If the SYN at line 6 had
 arrived before the RST, a more complex exchange might have occurred
 with RST's sent in both directions.

 Half-Open Connections and Other Anomalies

 An established connection is said to be "half-open" if one of the
 TCPs has closed or aborted the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a crash that resulted in loss of
 memory. Such connections will automatically become reset if an
 attempt is made to send data in either direction. However, half-open
 connections are expected to be unusual, and the recovery procedure is
 mildly involved.

 If at site A the connection no longer exists, then an attempt by the
 user at site B to send any data on it will result in the site B TCP
 receiving a reset control message. Such a message indicates to the

Eddy Expires February 13, 2015 [Page 22]

Internet-Draft TCP Specification August 2014

 site B TCP that something is wrong, and it is expected to abort the
 connection.

 Assume that two user processes A and B are communicating with one
 another when a crash occurs causing loss of memory to A's TCP.
 Depending on the operating system supporting A's TCP, it is likely
 that some error recovery mechanism exists. When the TCP is up again,
 A is likely to start again from the beginning or from a recovery
 point. As a result, A will probably try to OPEN the connection again
 or try to SEND on the connection it believes open. In the latter
 case, it receives the error message "connection not open" from the
 local (A's) TCP. In an attempt to establish the connection, A's TCP
 will send a segment containing SYN. This scenario leads to the
 example shown in Figure 8. After TCP A crashes, the user attempts to
 re-open the connection. TCP B, in the meantime, thinks the
 connection is open.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. CLOSED ESTABLISHED

 3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (??)

 4. (!!) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

 5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

 6. SYN-SENT CLOSED

 7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

 Half-Open Connection Discovery

 Figure 8

 When the SYN arrives at line 3, TCP B, being in a synchronized state,
 and the incoming segment outside the window, responds with an
 acknowledgment indicating what sequence it next expects to hear (ACK
 100). TCP A sees that this segment does not acknowledge anything it
 sent and, being unsynchronized, sends a reset (RST) because it has
 detected a half-open connection. TCP B aborts at line 5. TCP A will
 continue to try to establish the connection; the problem is now
 reduced to the basic 3-way handshake of Figure 5.

 An interesting alternative case occurs when TCP A crashes and TCP B
 tries to send data on what it thinks is a synchronized connection.

Eddy Expires February 13, 2015 [Page 23]

Internet-Draft TCP Specification August 2014

 This is illustrated in Figure 9. In this case, the data arriving at
 TCP A from TCP B (line 2) is unacceptable because no such connection
 exists, so TCP A sends a RST. The RST is acceptable so TCP B
 processes it and aborts the connection.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

 3. --> <SEQ=100><CTL=RST> --> (ABORT!!)

 Active Side Causes Half-Open Connection Discovery

 Figure 9

 In Figure 10, we find the two TCPs A and B with passive connections
 waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
 into action. A SYN-ACK is returned (line 3) and causes TCP A to
 generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
 the reset and returns to its passive LISTEN state.

 TCP A TCP B

 1. LISTEN LISTEN

 2. ... <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

 3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN!)

 5. LISTEN LISTEN

 Old Duplicate SYN Initiates a Reset on two Passive Sockets

 Figure 10

 A variety of other cases are possible, all of which are accounted for
 by the following rules for RST generation and processing.

 Reset Generation

Eddy Expires February 13, 2015 [Page 24]

Internet-Draft TCP Specification August 2014

 As a general rule, reset (RST) must be sent whenever a segment
 arrives which apparently is not intended for the current connection.
 A reset must not be sent if it is not clear that this is the case.

 There are three groups of states:

 1. If the connection does not exist (CLOSED) then a reset is sent
 in response to any incoming segment except another reset. In
 particular, SYNs addressed to a non-existent connection are
 rejected by this means.

 If the incoming segment has the ACK bit set, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the CLOSED state.

 2. If the connection is in any non-synchronized state (LISTEN,
 SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
 something not yet sent (the segment carries an unacceptable ACK),
 or if an incoming segment has a security level or compartment
 which does not exactly match the level and compartment requested
 for the connection, a reset is sent.

 If our SYN has not been acknowledged and the precedence level of
 the incoming segment is higher than the precedence level requested
 then either raise the local precedence level (if allowed by the
 user and the system) or send a reset; or if the precedence level
 of the incoming segment is lower than the precedence level
 requested then continue as if the precedence matched exactly (if
 the remote TCP cannot raise the precedence level to match ours
 this will be detected in the next segment it sends, and the
 connection will be terminated then). If our SYN has been
 acknowledged (perhaps in this incoming segment) the precedence
 level of the incoming segment must match the local precedence
 level exactly, if it does not a reset must be sent.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the same state.

 3. If the connection is in a synchronized state (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
 any unacceptable segment (out of window sequence number or
 unacceptable acknowledgment number) must elicit only an empty
 acknowledgment segment containing the current send-sequence number

Eddy Expires February 13, 2015 [Page 25]

Internet-Draft TCP Specification August 2014

 and an acknowledgment indicating the next sequence number expected
 to be received, and the connection remains in the same state.

 If an incoming segment has a security level, or compartment, or
 precedence which does not exactly match the level, and
 compartment, and precedence requested for the connection,a reset
 is sent and the connection goes to the CLOSED state. The reset
 takes its sequence number from the ACK field of the incoming
 segment.

 Reset Processing

 In all states except SYN-SENT, all reset (RST) segments are validated
 by checking their SEQ-fields. A reset is valid if its sequence
 number is in the window. In the SYN-SENT state (a RST received in
 response to an initial SYN), the RST is acceptable if the ACK field
 acknowledges the SYN.

 The receiver of a RST first validates it, then changes state. If the
 receiver was in the LISTEN state, it ignores it. If the receiver was
 in SYN-RECEIVED state and had previously been in the LISTEN state,
 then the receiver returns to the LISTEN state, otherwise the receiver
 aborts the connection and goes to the CLOSED state. If the receiver
 was in any other state, it aborts the connection and advises the user
 and goes to the CLOSED state.

3.5. Closing a Connection

 CLOSE is an operation meaning "I have no more data to send." The
 notion of closing a full-duplex connection is subject to ambiguous
 interpretation, of course, since it may not be obvious how to treat
 the receiving side of the connection. We have chosen to treat CLOSE
 in a simplex fashion. The user who CLOSEs may continue to RECEIVE
 until he is told that the other side has CLOSED also. Thus, a
 program could initiate several SENDs followed by a CLOSE, and then
 continue to RECEIVE until signaled that a RECEIVE failed because the
 other side has CLOSED. We assume that the TCP will signal a user,
 even if no RECEIVEs are outstanding, that the other side has closed,
 so the user can terminate his side gracefully. A TCP will reliably
 deliver all buffers SENT before the connection was CLOSED so a user
 who expects no data in return need only wait to hear the connection
 was CLOSED successfully to know that all his data was received at the
 destination TCP. Users must keep reading connections they close for
 sending until the TCP says no more data.

 There are essentially three cases:

 1) The user initiates by telling the TCP to CLOSE the connection

Eddy Expires February 13, 2015 [Page 26]

Internet-Draft TCP Specification August 2014

 2) The remote TCP initiates by sending a FIN control signal

 3) Both users CLOSE simultaneously

 Case 1: Local user initiates the close

 In this case, a FIN segment can be constructed and placed on the
 outgoing segment queue. No further SENDs from the user will be
 accepted by the TCP, and it enters the FIN-WAIT-1 state. RECEIVEs
 are allowed in this state. All segments preceding and including
 FIN will be retransmitted until acknowledged. When the other TCP
 has both acknowledged the FIN and sent a FIN of its own, the first
 TCP can ACK this FIN. Note that a TCP receiving a FIN will ACK
 but not send its own FIN until its user has CLOSED the connection
 also.

 Case 2: TCP receives a FIN from the network

 If an unsolicited FIN arrives from the network, the receiving TCP
 can ACK it and tell the user that the connection is closing. The
 user will respond with a CLOSE, upon which the TCP can send a FIN
 to the other TCP after sending any remaining data. The TCP then
 waits until its own FIN is acknowledged whereupon it deletes the
 connection. If an ACK is not forthcoming, after the user timeout
 the connection is aborted and the user is told.

 Case 3: both users close simultaneously

 A simultaneous CLOSE by users at both ends of a connection causes
 FIN segments to be exchanged. When all segments preceding the
 FINs have been processed and acknowledged, each TCP can ACK the
 FIN it has received. Both will, upon receiving these ACKs, delete
 the connection.

Eddy Expires February 13, 2015 [Page 27]

Internet-Draft TCP Specification August 2014

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

 3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT

 4. (Close)
 TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

 5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED

 6. (2 MSL)
 CLOSED

 Normal Close Sequence

 Figure 11

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close) (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ... FIN-WAIT-1
 <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <--
 ... <SEQ=100><ACK=300><CTL=FIN,ACK> -->

 3. CLOSING --> <SEQ=101><ACK=301><CTL=ACK> ... CLOSING
 <-- <SEQ=301><ACK=101><CTL=ACK> <--
 ... <SEQ=101><ACK=301><CTL=ACK> -->

 4. TIME-WAIT TIME-WAIT
 (2 MSL) (2 MSL)
 CLOSED CLOSED

 Simultaneous Close Sequence

 Figure 12

3.6. Precedence and Security

 The intent is that connection be allowed only between ports operating
 with exactly the same security and compartment values and at the
 higher of the precedence level requested by the two ports.

Eddy Expires February 13, 2015 [Page 28]

Internet-Draft TCP Specification August 2014

 The precedence and security parameters used in TCP are exactly those
 defined in the Internet Protocol (IP) [2]. Throughout this TCP
 specification the term "security/compartment" is intended to indicate
 the security parameters used in IP including security, compartment,
 user group, and handling restriction.

 A connection attempt with mismatched security/compartment values or a
 lower precedence value must be rejected by sending a reset.
 Rejecting a connection due to too low a precedence only occurs after
 an acknowledgment of the SYN has been received.

 Note that TCP modules which operate only at the default value of
 precedence will still have to check the precedence of incoming
 segments and possibly raise the precedence level they use on the
 connection.

 The security parameters may be used even in a non-secure environment
 (the values would indicate unclassified data), thus hosts in non-
 secure environments must be prepared to receive the security
 parameters, though they need not send them.

3.7. Data Communication

 Once the connection is established data is communicated by the
 exchange of segments. Because segments may be lost due to errors
 (checksum test failure), or network congestion, TCP uses
 retransmission (after a timeout) to ensure delivery of every segment.
 Duplicate segments may arrive due to network or TCP retransmission.
 As discussed in the section on sequence numbers the TCP performs
 certain tests on the sequence and acknowledgment numbers in the
 segments to verify their acceptability.

 The sender of data keeps track of the next sequence number to use in
 the variable SND.NXT. The receiver of data keeps track of the next
 sequence number to expect in the variable RCV.NXT. The sender of
 data keeps track of the oldest unacknowledged sequence number in the
 variable SND.UNA. If the data flow is momentarily idle and all data
 sent has been acknowledged then the three variables will be equal.

 When the sender creates a segment and transmits it the sender
 advances SND.NXT. When the receiver accepts a segment it advances
 RCV.NXT and sends an acknowledgment. When the data sender receives
 an acknowledgment it advances SND.UNA. The extent to which the
 values of these variables differ is a measure of the delay in the
 communication. The amount by which the variables are advanced is the
 length of the data and SYN or FIN flags in the segment. Note that
 once in the ESTABLISHED state all segments must carry current
 acknowledgment information.

Eddy Expires February 13, 2015 [Page 29]

Internet-Draft TCP Specification August 2014

 The CLOSE user call implies a push function, as does the FIN control
 flag in an incoming segment.

 Retransmission Timeout

 NOTE: TODO this needs to be updated in light of 1122 4.2.2.15 and
 errata 573; this will be done as part of RFC 1122 incorporation into
 this document.
 Because of the variability of the networks that compose an
 internetwork system and the wide range of uses of TCP connections the
 retransmission timeout must be dynamically determined. One procedure
 for determining a retransmission timeout is given here as an
 illustration.

 An Example Retransmission Timeout Procedure

 Measure the elapsed time between sending a data octet with a
 particular sequence number and receiving an acknowledgment that
 covers that sequence number (segments sent do not have to match
 segments received). This measured elapsed time is the Round Trip
 Time (RTT). Next compute a Smoothed Round Trip Time (SRTT) as:

 SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)

 and based on this, compute the retransmission timeout (RTO) as:

 RTO = min[UBOUND,max[LBOUND,(BETA*SRTT)]]

 where UBOUND is an upper bound on the timeout (e.g., 1 minute),
 LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
 a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
 factor (e.g., 1.3 to 2.0).

 The Communication of Urgent Information

 As a result of implementation differences and middlebox interactions,
 new applications SHOULD NOT employ the TCP urgent mechanism.
 However, TCP implementations MUST still include support for the
 urgent mechanism. Details can be found in RFC 6093 [5].

 The objective of the TCP urgent mechanism is to allow the sending
 user to stimulate the receiving user to accept some urgent data and
 to permit the receiving TCP to indicate to the receiving user when
 all the currently known urgent data has been received by the user.

 This mechanism permits a point in the data stream to be designated as
 the end of urgent information. Whenever this point is in advance of
 the receive sequence number (RCV.NXT) at the receiving TCP, that TCP

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6093

Eddy Expires February 13, 2015 [Page 30]

Internet-Draft TCP Specification August 2014

 must tell the user to go into "urgent mode"; when the receive
 sequence number catches up to the urgent pointer, the TCP must tell
 user to go into "normal mode". If the urgent pointer is updated
 while the user is in "urgent mode", the update will be invisible to
 the user.

 The method employs a urgent field which is carried in all segments
 transmitted. The URG control flag indicates that the urgent field is
 meaningful and must be added to the segment sequence number to yield
 the urgent pointer. The absence of this flag indicates that there is
 no urgent data outstanding.

 To send an urgent indication the user must also send at least one
 data octet. If the sending user also indicates a push, timely
 delivery of the urgent information to the destination process is
 enhanced.

 A TCP MUST support a sequence of urgent data of any length. [3]

 A TCP MUST inform the application layer asynchronously whenever it
 receives an Urgent pointer and there was previously no pending urgent
 data, or whenvever the Urgent pointer advances in the data stream.
 There MUST be a way for the application to learn how much urgent data
 remains to be read from the connection, or at least to determine
 whether or not more urgent data remains to be read. [3]

 Managing the Window

 The window sent in each segment indicates the range of sequence
 numbers the sender of the window (the data receiver) is currently
 prepared to accept. There is an assumption that this is related to
 the currently available data buffer space available for this
 connection.

 Indicating a large window encourages transmissions. If more data
 arrives than can be accepted, it will be discarded. This will result
 in excessive retransmissions, adding unnecessarily to the load on the
 network and the TCPs. Indicating a small window may restrict the
 transmission of data to the point of introducing a round trip delay
 between each new segment transmitted.

 The mechanisms provided allow a TCP to advertise a large window and
 to subsequently advertise a much smaller window without having
 accepted that much data. This, so called "shrinking the window," is
 strongly discouraged. The robustness principle dictates that TCPs
 will not shrink the window themselves, but will be prepared for such
 behavior on the part of other TCPs.

Eddy Expires February 13, 2015 [Page 31]

Internet-Draft TCP Specification August 2014

 The sending TCP must be prepared to accept from the user and send at
 least one octet of new data even if the send window is zero. The
 sending TCP must regularly retransmit to the receiving TCP even when
 the window is zero. Two minutes is recommended for the
 retransmission interval when the window is zero. This retransmission
 is essential to guarantee that when either TCP has a zero window the
 re-opening of the window will be reliably reported to the other.

 When the receiving TCP has a zero window and a segment arrives it
 must still send an acknowledgment showing its next expected sequence
 number and current window (zero).

 The sending TCP packages the data to be transmitted into segments
 which fit the current window, and may repackage segments on the
 retransmission queue. Such repackaging is not required, but may be
 helpful.

 In a connection with a one-way data flow, the window information will
 be carried in acknowledgment segments that all have the same sequence
 number so there will be no way to reorder them if they arrive out of
 order. This is not a serious problem, but it will allow the window
 information to be on occasion temporarily based on old reports from
 the data receiver. A refinement to avoid this problem is to act on
 the window information from segments that carry the highest
 acknowledgment number (that is segments with acknowledgment number
 equal or greater than the highest previously received).

 The window management procedure has significant influence on the
 communication performance. The following comments are suggestions to
 implementers.

 Window Management Suggestions

 Allocating a very small window causes data to be transmitted in
 many small segments when better performance is achieved using
 fewer large segments.

 One suggestion for avoiding small windows is for the receiver to
 defer updating a window until the additional allocation is at
 least X percent of the maximum allocation possible for the
 connection (where X might be 20 to 40).

 Another suggestion is for the sender to avoid sending small
 segments by waiting until the window is large enough before
 sending data. If the user signals a push function then the data
 must be sent even if it is a small segment.

Eddy Expires February 13, 2015 [Page 32]

Internet-Draft TCP Specification August 2014

 Note that the acknowledgments should not be delayed or unnecessary
 retransmissions will result. One strategy would be to send an
 acknowledgment when a small segment arrives (with out updating the
 window information), and then to send another acknowledgment with
 new window information when the window is larger.

 The segment sent to probe a zero window may also begin a break up
 of transmitted data into smaller and smaller segments. If a
 segment containing a single data octet sent to probe a zero window
 is accepted, it consumes one octet of the window now available.
 If the sending TCP simply sends as much as it can whenever the
 window is non zero, the transmitted data will be broken into
 alternating big and small segments. As time goes on, occasional
 pauses in the receiver making window allocation available will
 result in breaking the big segments into a small and not quite so
 big pair. And after a while the data transmission will be in
 mostly small segments.

 The suggestion here is that the TCP implementations need to
 actively attempt to combine small window allocations into larger
 windows, since the mechanisms for managing the window tend to lead
 to many small windows in the simplest minded implementations.

3.8. Interfaces

 There are of course two interfaces of concern: the user/TCP interface
 and the TCP/lower-level interface. We have a fairly elaborate model
 of the user/TCP interface, but the interface to the lower level
 protocol module is left unspecified here, since it will be specified
 in detail by the specification of the lower level protocol. For the
 case that the lower level is IP we note some of the parameter values
 that TCPs might use.

3.8.1. User/TCP Interface

 The following functional description of user commands to the TCP is,
 at best, fictional, since every operating system will have different
 facilities. Consequently, we must warn readers that different TCP
 implementations may have different user interfaces. However, all
 TCPs must provide a certain minimum set of services to guarantee that
 all TCP implementations can support the same protocol hierarchy.
 This section specifies the functional interfaces required of all TCP
 implementations.

 TCP User Commands

 The following sections functionally characterize a USER/TCP
 interface. The notation used is similar to most procedure or

Eddy Expires February 13, 2015 [Page 33]

Internet-Draft TCP Specification August 2014

 function calls in high level languages, but this usage is not
 meant to rule out trap type service calls (e.g., SVCs, UUOs,
 EMTs).

 The user commands described below specify the basic functions the
 TCP must perform to support interprocess communication.
 Individual implementations must define their own exact format, and
 may provide combinations or subsets of the basic functions in
 single calls. In particular, some implementations may wish to
 automatically OPEN a connection on the first SEND or RECEIVE
 issued by the user for a given connection.

 In providing interprocess communication facilities, the TCP must
 not only accept commands, but must also return information to the
 processes it serves. The latter consists of:

 (a) general information about a connection (e.g., interrupts,
 remote close, binding of unspecified foreign socket).

 (b) replies to specific user commands indicating success or
 various types of failure.

 Open

 Format: OPEN (local port, foreign socket, active/passive [,
 timeout] [, precedence] [, security/compartment] [, options])
 -> local connection name

 We assume that the local TCP is aware of the identity of the
 processes it serves and will check the authority of the process
 to use the connection specified. Depending upon the
 implementation of the TCP, the local network and TCP
 identifiers for the source address will either be supplied by
 the TCP or the lower level protocol (e.g., IP). These
 considerations are the result of concern about security, to the
 extent that no TCP be able to masquerade as another one, and so
 on. Similarly, no process can masquerade as another without
 the collusion of the TCP.

 If the active/passive flag is set to passive, then this is a
 call to LISTEN for an incoming connection. A passive open may
 have either a fully specified foreign socket to wait for a
 particular connection or an unspecified foreign socket to wait
 for any call. A fully specified passive call can be made
 active by the subsequent execution of a SEND.

 A transmission control block (TCB) is created and partially
 filled in with data from the OPEN command parameters.

Eddy Expires February 13, 2015 [Page 34]

Internet-Draft TCP Specification August 2014

 On an active OPEN command, the TCP will begin the procedure to
 synchronize (i.e., establish) the connection at once.

 The timeout, if present, permits the caller to set up a timeout
 for all data submitted to TCP. If data is not successfully
 delivered to the destination within the timeout period, the TCP
 will abort the connection. The present global default is five
 minutes.

 The TCP or some component of the operating system will verify
 the users authority to open a connection with the specified
 precedence or security/compartment. The absence of precedence
 or security/compartment specification in the OPEN call
 indicates the default values must be used.

 TCP will accept incoming requests as matching only if the
 security/compartment information is exactly the same and only
 if the precedence is equal to or higher than the precedence
 requested in the OPEN call.

 The precedence for the connection is the higher of the values
 requested in the OPEN call and received from the incoming
 request, and fixed at that value for the life of the
 connection.Implementers may want to give the user control of
 this precedence negotiation. For example, the user might be
 allowed to specify that the precedence must be exactly matched,
 or that any attempt to raise the precedence be confirmed by the
 user.

 A local connection name will be returned to the user by the
 TCP. The local connection name can then be used as a short
 hand term for the connection defined by the <local socket,
 foreign socket> pair.

 Send

 Format: SEND (local connection name, buffer address, byte
 count, PUSH flag, URGENT flag [,timeout])

 This call causes the data contained in the indicated user
 buffer to be sent on the indicated connection. If the
 connection has not been opened, the SEND is considered an
 error. Some implementations may allow users to SEND first; in
 which case, an automatic OPEN would be done. If the calling
 process is not authorized to use this connection, an error is
 returned.

Eddy Expires February 13, 2015 [Page 35]

Internet-Draft TCP Specification August 2014

 If the PUSH flag is set, the data must be transmitted promptly
 to the receiver, and the PUSH bit will be set in the last TCP
 segment created from the buffer. If the PUSH flag is not set,
 the data may be combined with data from subsequent SENDs for
 transmission efficiency.

 New applications SHOULD NOT set the URGENT flag [5] due to
 implementation differences and middlebox issues.

 If the URGENT flag is set, segments sent to the destination TCP
 will have the urgent pointer set. The receiving TCP will
 signal the urgent condition to the receiving process if the
 urgent pointer indicates that data preceding the urgent pointer
 has not been consumed by the receiving process. The purpose of
 urgent is to stimulate the receiver to process the urgent data
 and to indicate to the receiver when all the currently known
 urgent data has been received. The number of times the sending
 user's TCP signals urgent will not necessarily be equal to the
 number of times the receiving user will be notified of the
 presence of urgent data.

 If no foreign socket was specified in the OPEN, but the
 connection is established (e.g., because a LISTENing connection
 has become specific due to a foreign segment arriving for the
 local socket), then the designated buffer is sent to the
 implied foreign socket. Users who make use of OPEN with an
 unspecified foreign socket can make use of SEND without ever
 explicitly knowing the foreign socket address.

 However, if a SEND is attempted before the foreign socket
 becomes specified, an error will be returned. Users can use
 the STATUS call to determine the status of the connection. In
 some implementations the TCP may notify the user when an
 unspecified socket is bound.

 If a timeout is specified, the current user timeout for this
 connection is changed to the new one.

 In the simplest implementation, SEND would not return control
 to the sending process until either the transmission was
 complete or the timeout had been exceeded. However, this
 simple method is both subject to deadlocks (for example, both
 sides of the connection might try to do SENDs before doing any
 RECEIVEs) and offers poor performance, so it is not
 recommended. A more sophisticated implementation would return
 immediately to allow the process to run concurrently with
 network I/O, and, furthermore, to allow multiple SENDs to be in
 progress. Multiple SENDs are served in first come, first

Eddy Expires February 13, 2015 [Page 36]

Internet-Draft TCP Specification August 2014

 served order, so the TCP will queue those it cannot service
 immediately.

 We have implicitly assumed an asynchronous user interface in
 which a SEND later elicits some kind of SIGNAL or pseudo-
 interrupt from the serving TCP. An alternative is to return a
 response immediately. For instance, SENDs might return
 immediate local acknowledgment, even if the segment sent had
 not been acknowledged by the distant TCP. We could
 optimistically assume eventual success. If we are wrong, the
 connection will close anyway due to the timeout. In
 implementations of this kind (synchronous), there will still be
 some asynchronous signals, but these will deal with the
 connection itself, and not with specific segments or buffers.

 In order for the process to distinguish among error or success
 indications for different SENDs, it might be appropriate for
 the buffer address to be returned along with the coded response
 to the SEND request. TCP-to-user signals are discussed below,
 indicating the information which should be returned to the
 calling process.

 Receive

 Format: RECEIVE (local connection name, buffer address, byte
 count) -> byte count, urgent flag, push flag

 This command allocates a receiving buffer associated with the
 specified connection. If no OPEN precedes this command or the
 calling process is not authorized to use this connection, an
 error is returned.

 In the simplest implementation, control would not return to the
 calling program until either the buffer was filled, or some
 error occurred, but this scheme is highly subject to deadlocks.
 A more sophisticated implementation would permit several
 RECEIVEs to be outstanding at once. These would be filled as
 segments arrive. This strategy permits increased throughput at
 the cost of a more elaborate scheme (possibly asynchronous) to
 notify the calling program that a PUSH has been seen or a
 buffer filled.

 If enough data arrive to fill the buffer before a PUSH is seen,
 the PUSH flag will not be set in the response to the RECEIVE.
 The buffer will be filled with as much data as it can hold. If
 a PUSH is seen before the buffer is filled the buffer will be
 returned partially filled and PUSH indicated.

Eddy Expires February 13, 2015 [Page 37]

Internet-Draft TCP Specification August 2014

 If there is urgent data the user will have been informed as
 soon as it arrived via a TCP-to-user signal. The receiving
 user should thus be in "urgent mode". If the URGENT flag is
 on, additional urgent data remains. If the URGENT flag is off,
 this call to RECEIVE has returned all the urgent data, and the
 user may now leave "urgent mode". Note that data following the
 urgent pointer (non-urgent data) cannot be delivered to the
 user in the same buffer with preceding urgent data unless the
 boundary is clearly marked for the user.

 To distinguish among several outstanding RECEIVEs and to take
 care of the case that a buffer is not completely filled, the
 return code is accompanied by both a buffer pointer and a byte
 count indicating the actual length of the data received.

 Alternative implementations of RECEIVE might have the TCP
 allocate buffer storage, or the TCP might share a ring buffer
 with the user.

 Close

 Format: CLOSE (local connection name)

 This command causes the connection specified to be closed. If
 the connection is not open or the calling process is not
 authorized to use this connection, an error is returned.
 Closing connections is intended to be a graceful operation in
 the sense that outstanding SENDs will be transmitted (and
 retransmitted), as flow control permits, until all have been
 serviced. Thus, it should be acceptable to make several SEND
 calls, followed by a CLOSE, and expect all the data to be sent
 to the destination. It should also be clear that users should
 continue to RECEIVE on CLOSING connections, since the other
 side may be trying to transmit the last of its data. Thus,
 CLOSE means "I have no more to send" but does not mean "I will
 not receive any more." It may happen (if the user level
 protocol is not well thought out) that the closing side is
 unable to get rid of all its data before timing out. In this
 event, CLOSE turns into ABORT, and the closing TCP gives up.

 The user may CLOSE the connection at any time on his own
 initiative, or in response to various prompts from the TCP
 (e.g., remote close executed, transmission timeout exceeded,
 destination inaccessible).

 Because closing a connection requires communication with the
 foreign TCP, connections may remain in the closing state for a

Eddy Expires February 13, 2015 [Page 38]

Internet-Draft TCP Specification August 2014

 short time. Attempts to reopen the connection before the TCP
 replies to the CLOSE command will result in error responses.

 Close also implies push function.

 Status

 Format: STATUS (local connection name) -> status data

 This is an implementation dependent user command and could be
 excluded without adverse effect. Information returned would
 typically come from the TCB associated with the connection.

 This command returns a data block containing the following
 information:

 local socket,
 foreign socket,
 local connection name,
 receive window,
 send window,
 connection state,
 number of buffers awaiting acknowledgment,
 number of buffers pending receipt,
 urgent state,
 precedence,
 security/compartment,
 and transmission timeout.

 Depending on the state of the connection, or on the
 implementation itself, some of this information may not be
 available or meaningful. If the calling process is not
 authorized to use this connection, an error is returned. This
 prevents unauthorized processes from gaining information about
 a connection.

 Abort

 Format: ABORT (local connection name)

 This command causes all pending SENDs and RECEIVES to be
 aborted, the TCB to be removed, and a special RESET message to
 be sent to the TCP on the other side of the connection.
 Depending on the implementation, users may receive abort
 indications for each outstanding SEND or RECEIVE, or may simply
 receive an ABORT-acknowledgment.

 TCP-to-User Messages

Eddy Expires February 13, 2015 [Page 39]

Internet-Draft TCP Specification August 2014

 It is assumed that the operating system environment provides a
 means for the TCP to asynchronously signal the user program.
 When the TCP does signal a user program, certain information is
 passed to the user. Often in the specification the information
 will be an error message. In other cases there will be
 information relating to the completion of processing a SEND or
 RECEIVE or other user call.

 The following information is provided:

 Local Connection Name Always
 Response String Always
 Buffer Address Send & Receive
 Byte count (counts bytes received) Receive
 Push flag Receive
 Urgent flag Receive

3.8.2. TCP/Lower-Level Interface

 The TCP calls on a lower level protocol module to actually send and
 receive information over a network. One case is that of the ARPA
 internetwork system where the lower level module is the Internet
 Protocol (IP) [2].

 If the lower level protocol is IP it provides arguments for a type of
 service and for a time to live. TCP uses the following settings for
 these parameters:

 Type of Service = Precedence: given by user, Delay: normal,
 Throughput: normal, Reliability: normal; or binary XXX00000, where
 XXX are the three bits determining precedence, e.g. 000 means
 routine precedence.

 Time to Live = one minute, or 00111100.

 Note that the assumed maximum segment lifetime is two minutes.
 Here we explicitly ask that a segment be destroyed if it cannot
 be delivered by the internet system within one minute.

 If the lower level is IP (or other protocol that provides this
 feature) and source routing is used, the interface must allow the
 route information to be communicated. This is especially important
 so that the source and destination addresses used in the TCP checksum
 be the originating source and ultimate destination. It is also
 important to preserve the return route to answer connection requests.

 Any lower level protocol will have to provide the source address,
 destination address, and protocol fields, and some way to determine

Eddy Expires February 13, 2015 [Page 40]

Internet-Draft TCP Specification August 2014

 the "TCP length", both to provide the functional equivalent service
 of IP and to be used in the TCP checksum.

3.9. Event Processing

 The processing depicted in this section is an example of one possible
 implementation. Other implementations may have slightly different
 processing sequences, but they should differ from those in this
 section only in detail, not in substance.

 The activity of the TCP can be characterized as responding to events.
 The events that occur can be cast into three categories: user calls,
 arriving segments, and timeouts. This section describes the
 processing the TCP does in response to each of the events. In many
 cases the processing required depends on the state of the connection.

 Events that occur:

 User Calls

 OPEN
 SEND
 RECEIVE
 CLOSE
 ABORT
 STATUS

 Arriving Segments

 SEGMENT ARRIVES

 Timeouts

 USER TIMEOUT
 RETRANSMISSION TIMEOUT
 TIME-WAIT TIMEOUT

 The model of the TCP/user interface is that user commands receive an
 immediate return and possibly a delayed response via an event or
 pseudo interrupt. In the following descriptions, the term "signal"
 means cause a delayed response.

 Error responses are given as character strings. For example, user
 commands referencing connections that do not exist receive "error:
 connection not open".

Eddy Expires February 13, 2015 [Page 41]

Internet-Draft TCP Specification August 2014

 Please note in the following that all arithmetic on sequence numbers,
 acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
 of the sequence number space. Also note that "=<" means less than or
 equal to (modulo 2**32).

 A natural way to think about processing incoming segments is to
 imagine that they are first tested for proper sequence number (i.e.,
 that their contents lie in the range of the expected "receive window"
 in the sequence number space) and then that they are generally queued
 and processed in sequence number order.

 When a segment overlaps other already received segments we
 reconstruct the segment to contain just the new data, and adjust the
 header fields to be consistent.

 Note that if no state change is mentioned the TCP stays in the same
 state.

Eddy Expires February 13, 2015 [Page 42]

Internet-Draft TCP Specification August 2014

 OPEN Call

 CLOSED STATE (i.e., TCB does not exist)

 Create a new transmission control block (TCB) to hold
 connection state information. Fill in local socket identifier,
 foreign socket, precedence, security/compartment, and user
 timeout information. Note that some parts of the foreign
 socket may be unspecified in a passive OPEN and are to be
 filled in by the parameters of the incoming SYN segment.
 Verify the security and precedence requested are allowed for
 this user, if not return "error: precedence not allowed" or
 "error: security/compartment not allowed." If passive enter
 the LISTEN state and return. If active and the foreign socket
 is unspecified, return "error: foreign socket unspecified"; if
 active and the foreign socket is specified, issue a SYN
 segment. An initial send sequence number (ISS) is selected. A
 SYN segment of the form <SEQ=ISS><CTL=SYN> is sent. Set
 SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT state, and
 return.

 If the caller does not have access to the local socket
 specified, return "error: connection illegal for this process".
 If there is no room to create a new connection, return "error:
 insufficient resources".

 LISTEN STATE

 If active and the foreign socket is specified, then change the
 connection from passive to active, select an ISS. Send a SYN
 segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
 state. Data associated with SEND may be sent with SYN segment
 or queued for transmission after entering ESTABLISHED state.
 The urgent bit if requested in the command must be sent with
 the data segments sent as a result of this command. If there
 is no room to queue the request, respond with "error:
 insufficient resources". If Foreign socket was not specified,
 then return "error: foreign socket unspecified".

Eddy Expires February 13, 2015 [Page 43]

Internet-Draft TCP Specification August 2014

 SYN-SENT STATE
 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection already exists".

Eddy Expires February 13, 2015 [Page 44]

Internet-Draft TCP Specification August 2014

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, then
 return "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment, set
 SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
 associated with SEND may be sent with SYN segment or queued for
 transmission after entering ESTABLISHED state. The urgent bit
 if requested in the command must be sent with the data segments
 sent as a result of this command. If there is no room to queue
 the request, respond with "error: insufficient resources". If
 Foreign socket was not specified, then return "error: foreign
 socket unspecified".

 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue the data for transmission after entering ESTABLISHED
 state. If no space to queue, respond with "error: insufficient
 resources".

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). If there is
 insufficient space to remember this buffer, simply return
 "error: insufficient resources".

 If the urgent flag is set, then SND.UP <- SND.NXT and set the
 urgent pointer in the outgoing segments.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing" and do not service request.

Eddy Expires February 13, 2015 [Page 45]

Internet-Draft TCP Specification August 2014

 RECEIVE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE
 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue for processing after entering ESTABLISHED state. If
 there is no room to queue this request, respond with "error:
 insufficient resources".

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If insufficient incoming segments are queued to satisfy the
 request, queue the request. If there is no queue space to
 remember the RECEIVE, respond with "error: insufficient
 resources".

 Reassemble queued incoming segments into receive buffer and
 return to user. Mark "push seen" (PUSH) if this is the case.

 If RCV.UP is in advance of the data currently being passed to
 the user notify the user of the presence of urgent data.

 When the TCP takes responsibility for delivering data to the
 user that fact must be communicated to the sender via an
 acknowledgment. The formation of such an acknowledgment is
 described below in the discussion of processing an incoming
 segment.

 CLOSE-WAIT STATE

 Since the remote side has already sent FIN, RECEIVEs must be
 satisfied by text already on hand, but not yet delivered to the
 user. If no text is awaiting delivery, the RECEIVE will get a
 "error: connection closing" response. Otherwise, any remaining
 text can be used to satisfy the RECEIVE.

 CLOSING STATE
 LAST-ACK STATE

Eddy Expires February 13, 2015 [Page 46]

Internet-Draft TCP Specification August 2014

 TIME-WAIT STATE

 Return "error: connection closing".

Eddy Expires February 13, 2015 [Page 47]

Internet-Draft TCP Specification August 2014

 CLOSE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs are returned with "error: closing"
 responses. Delete TCB, enter CLOSED state, and return.

 SYN-SENT STATE

 Delete the TCB and return "error: closing" responses to any
 queued SENDs, or RECEIVEs.

 SYN-RECEIVED STATE

 If no SENDs have been issued and there is no pending data to
 send, then form a FIN segment and send it, and enter FIN-WAIT-1
 state; otherwise queue for processing after entering
 ESTABLISHED state.

 ESTABLISHED STATE

 Queue this until all preceding SENDs have been segmentized,
 then form a FIN segment and send it. In any case, enter FIN-
 WAIT-1 state.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Strictly speaking, this is an error and should receive a
 "error: connection closing" response. An "ok" response would
 be acceptable, too, as long as a second FIN is not emitted (the
 first FIN may be retransmitted though).

 CLOSE-WAIT STATE

 Queue this request until all preceding SENDs have been
 segmentized; then send a FIN segment, enter LAST-ACK state.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

Eddy Expires February 13, 2015 [Page 48]

Internet-Draft TCP Specification August 2014

 Respond with "error: connection closing".

Eddy Expires February 13, 2015 [Page 49]

Internet-Draft TCP Specification August 2014

 ABORT Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs should be returned with "error:
 connection reset" responses. Delete TCB, enter CLOSED state,
 and return.

 SYN-SENT STATE

 All queued SENDs and RECEIVEs should be given "connection
 reset" notification, delete the TCB, enter CLOSED state, and
 return.

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE

 Send a reset segment:

 <SEQ=SND.NXT><CTL=RST>

 All queued SENDs and RECEIVEs should be given "connection
 reset" notification; all segments queued for transmission
 (except for the RST formed above) or retransmission should be
 flushed, delete the TCB, enter CLOSED state, and return.

 CLOSING STATE LAST-ACK STATE TIME-WAIT STATE

 Respond with "ok" and delete the TCB, enter CLOSED state, and
 return.

Eddy Expires February 13, 2015 [Page 50]

Internet-Draft TCP Specification August 2014

 STATUS Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Return "state = LISTEN", and the TCB pointer.

 SYN-SENT STATE

 Return "state = SYN-SENT", and the TCB pointer.

 SYN-RECEIVED STATE

 Return "state = SYN-RECEIVED", and the TCB pointer.

 ESTABLISHED STATE

 Return "state = ESTABLISHED", and the TCB pointer.

 FIN-WAIT-1 STATE

 Return "state = FIN-WAIT-1", and the TCB pointer.

 FIN-WAIT-2 STATE

 Return "state = FIN-WAIT-2", and the TCB pointer.

 CLOSE-WAIT STATE

 Return "state = CLOSE-WAIT", and the TCB pointer.

 CLOSING STATE

 Return "state = CLOSING", and the TCB pointer.

 LAST-ACK STATE

 Return "state = LAST-ACK", and the TCB pointer.

 TIME-WAIT STATE

 Return "state = TIME-WAIT", and the TCB pointer.

Eddy Expires February 13, 2015 [Page 51]

Internet-Draft TCP Specification August 2014

 SEGMENT ARRIVES

 If the state is CLOSED (i.e., TCB does not exist) then

 all data in the incoming segment is discarded. An incoming
 segment containing a RST is discarded. An incoming segment not
 containing a RST causes a RST to be sent in response. The
 acknowledgment and sequence field values are selected to make
 the reset sequence acceptable to the TCP that sent the
 offending segment.

 If the ACK bit is off, sequence number zero is used,

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the ACK bit is on,

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 If the state is LISTEN then

 first check for an RST

 An incoming RST should be ignored. Return.

 second check for an ACK

 Any acknowledgment is bad if it arrives on a connection
 still in the LISTEN state. An acceptable reset segment
 should be formed for any arriving ACK-bearing segment. The
 RST should be formatted as follows:

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 third check for a SYN

 If the SYN bit is set, check the security. If the security/
 compartment on the incoming segment does not exactly match
 the security/compartment in the TCB then send a reset and
 return.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

Eddy Expires February 13, 2015 [Page 52]

Internet-Draft TCP Specification August 2014

 If the SEG.PRC is greater than the TCB.PRC then if allowed
 by the user and the system set TCB.PRC<-SEG.PRC, if not
 allowed send a reset and return.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the SEG.PRC is less than the TCB.PRC then continue.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any
 other control or text should be queued for processing later.
 ISS should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any
 other incoming control or data (combined with SYN) will be
 processed in the SYN-RECEIVED state, but processing of SYN
 and ACK should not be repeated. If the listen was not fully
 specified (i.e., the foreign socket was not fully
 specified), then the unspecified fields should be filled in
 now.

 fourth other text or control

 Any other control or text-bearing segment (not containing
 SYN) must have an ACK and thus would be discarded by the ACK
 processing. An incoming RST segment could not be valid,
 since it could not have been sent in response to anything
 sent by this incarnation of the connection. So you are
 unlikely to get here, but if you do, drop the segment, and
 return.

 If the state is SYN-SENT then

 first check the ACK bit

 If the ACK bit is set

 If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset
 (unless the RST bit is set, if so drop the segment and
 return)

 <SEQ=SEG.ACK><CTL=RST>

 and discard the segment. Return.

Eddy Expires February 13, 2015 [Page 53]

Internet-Draft TCP Specification August 2014

 If SND.UNA < SEG.ACK =< SND.NXT then the ACK is
 acceptable. (TODO: in processing Errata ID 3300, it was
 noted that some stacks in the wild that do not send data
 on the SYN are just checking that SEG.ACK == SND.NXT ...
 think about whether anything should be said about that
 here)

 second check the RST bit

 If the RST bit is set

 If the ACK was acceptable then signal the user "error:
 connection reset", drop the segment, enter CLOSED state,
 delete TCB, and return. Otherwise (no ACK) drop the
 segment and return.

 third check the security and precedence

 If the security/compartment in the segment does not exactly
 match the security/compartment in the TCB, send a reset

 If there is an ACK

 <SEQ=SEG.ACK><CTL=RST>

 Otherwise

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If there is an ACK

 The precedence in the segment must match the precedence
 in the TCB, if not, send a reset

 <SEQ=SEG.ACK><CTL=RST>

 If there is no ACK

 If the precedence in the segment is higher than the
 precedence in the TCB then if allowed by the user and the
 system raise the precedence in the TCB to that in the
 segment, if not allowed to raise the prec then send a
 reset.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the precedence in the segment is lower than the
 precedence in the TCB continue.

Eddy Expires February 13, 2015 [Page 54]

Internet-Draft TCP Specification August 2014

 If a reset was sent, discard the segment and return.

 fourth check the SYN bit

 This step should be reached only if the ACK is ok, or there
 is no ACK, and it the segment did not contain a RST.

 If the SYN bit is on and the security/compartment and
 precedence are acceptable then, RCV.NXT is set to SEG.SEQ+1,
 IRS is set to SEG.SEQ. SND.UNA should be advanced to equal
 SEG.ACK (if there is an ACK), and any segments on the
 retransmission queue which are thereby acknowledged should
 be removed.

 If SND.UNA > ISS (our SYN has been ACKed), change the
 connection state to ESTABLISHED, form an ACK segment

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. Data or controls which were queued for
 transmission may be included. If there are other controls
 or text in the segment then continue processing at the sixth
 step below where the URG bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. Set the variables:

 SND.WND <- SEG.WND
 SND.WL1 <- SEG.SEQ
 SND.WL2 <- SEG.ACK

 If there are other controls or text in the segment, queue
 them for processing after the ESTABLISHED state has been
 reached, return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise,

 first check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE

Eddy Expires February 13, 2015 [Page 55]

Internet-Draft TCP Specification August 2014

 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on
 arrival are used to discard old duplicates, but further
 processing is done in SEG.SEQ order. If a segment's
 contents straddle the boundary between old and new, only the
 new parts should be processed.

 There are four cases for the acceptability test for an
 incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs
 and RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so
 drop the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable
 segment and return.

 In the following it is assumed that the segment is the
 idealized segment that begins at RCV.NXT and does not exceed
 the window. One could tailor actual segments to fit this
 assumption by trimming off any portions that lie outside the
 window (including SYN and FIN), and only processing further

Eddy Expires February 13, 2015 [Page 56]

Internet-Draft TCP Specification August 2014

 if the segment then begins at RCV.NXT. Segments with higher
 beginning sequence numbers should be held for later
 processing.

 second check the RST bit,

 SYN-RECEIVED STATE

 If the RST bit is set

 If this connection was initiated with a passive OPEN
 (i.e., came from the LISTEN state), then return this
 connection to LISTEN state and return. The user need
 not be informed. If this connection was initiated
 with an active OPEN (i.e., came from SYN-SENT state)
 then the connection was refused, signal the user
 "connection refused". In either case, all segments on
 the retransmission queue should be removed. And in
 the active OPEN case, enter the CLOSED state and
 delete the TCB, and return.

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT

 If the RST bit is set then, any outstanding RECEIVEs and
 SEND should receive "reset" responses. All segment
 queues should be flushed. Users should also receive an
 unsolicited general "connection reset" signal. Enter the
 CLOSED state, delete the TCB, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 If the RST bit is set then, enter the CLOSED state,
 delete the TCB, and return.

 third check security and precedence

 SYN-RECEIVED

 If the security/compartment and precedence in the segment
 do not exactly match the security/compartment and
 precedence in the TCB then send a reset, and return.

Eddy Expires February 13, 2015 [Page 57]

Internet-Draft TCP Specification August 2014

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT
 CLOSING
 LAST-ACK
 TIME-WAIT

 If the security/compartment and precedence in the segment
 do not exactly match the security/compartment and
 precedence in the TCB then send a reset, any outstanding
 RECEIVEs and SEND should receive "reset" responses. All
 segment queues should be flushed. Users should also
 receive an unsolicited general "connection reset" signal.
 Enter the CLOSED state, delete the TCB, and return.

 Note this check is placed following the sequence check to
 prevent a segment from an old connection between these ports
 with a different security or precedence from causing an
 abort of the current connection.

 fourth, check the SYN bit,

 SYN-RECEIVED
 ESTABLISHED STATE
 FIN-WAIT STATE-1
 FIN-WAIT STATE-2
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 TODO: need to incorporate RFC 1122 4.2.2.20(e) here

 If the SYN is in the window it is an error, send a reset,
 any outstanding RECEIVEs and SEND should receive "reset"
 responses, all segment queues should be flushed, the user
 should also receive an unsolicited general "connection
 reset" signal, enter the CLOSED state, delete the TCB,
 and return.

 If the SYN is not in the window this step would not be
 reached and an ack would have been sent in the first step
 (sequence number check).

 fifth check the ACK field,

 if the ACK bit is off drop the segment and return

https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires February 13, 2015 [Page 58]

Internet-Draft TCP Specification August 2014

 if the ACK bit is on

 SYN-RECEIVED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then enter ESTABLISHED
 state and continue processing with variables below set
 to:

 SND.WND <- SEG.WND
 SND.WL1 <- SEG.SEQ
 SND.WL2 <- SEG.ACK

 If the segment acknowledgment is not acceptable,
 form a reset segment,

 <SEQ=SEG.ACK><CTL=RST>

 and send it.

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <-
 SEG.ACK. Any segments on the retransmission queue
 which are thereby entirely acknowledged are removed.
 Users should receive positive acknowledgments for
 buffers which have been SENT and fully acknowledged
 (i.e., SEND buffer should be returned with "ok"
 response). If the ACK is a duplicate (SEG.ACK =<
 SND.UNA), it can be ignored. If the ACK acks
 something not yet sent (SEG.ACK > SND.NXT) then send
 an ACK, drop the segment, and return.

 If SND.UNA =< SEG.ACK =< SND.NXT, the send window
 should be updated. If (SND.WL1 < SEG.SEQ or (SND.WL1
 = SEG.SEQ and SND.WL2 =< SEG.ACK)), set SND.WND <-
 SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <-
 SEG.ACK.

 Note that SND.WND is an offset from SND.UNA, that
 SND.WL1 records the sequence number of the last
 segment used to update SND.WND, and that SND.WL2
 records the acknowledgment number of the last segment
 used to update SND.WND. The check here prevents using
 old segments to update the window.

 FIN-WAIT-1 STATE

Eddy Expires February 13, 2015 [Page 59]

Internet-Draft TCP Specification August 2014

 In addition to the processing for the ESTABLISHED
 state, if our FIN is now acknowledged then enter FIN-
 WAIT-2 and continue processing in that state.

 FIN-WAIT-2 STATE

 In addition to the processing for the ESTABLISHED
 state, if the retransmission queue is empty, the
 user's CLOSE can be acknowledged ("ok") but do not
 delete the TCB.

 CLOSE-WAIT STATE

 Do the same processing as for the ESTABLISHED state.

 CLOSING STATE

 In addition to the processing for the ESTABLISHED
 state, if the ACK acknowledges our FIN then enter the
 TIME-WAIT state, otherwise ignore the segment.

 LAST-ACK STATE

 The only thing that can arrive in this state is an
 acknowledgment of our FIN. If our FIN is now
 acknowledged, delete the TCB, enter the CLOSED state,
 and return.

 TIME-WAIT STATE

 The only thing that can arrive in this state is a
 retransmission of the remote FIN. Acknowledge it, and
 restart the 2 MSL timeout.

 sixth, check the URG bit,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and
 signal the user that the remote side has urgent data if
 the urgent pointer (RCV.UP) is in advance of the data
 consumed. If the user has already been signaled (or is
 still in the "urgent mode") for this continuous sequence
 of urgent data, do not signal the user again.

 CLOSE-WAIT STATE

Eddy Expires February 13, 2015 [Page 60]

Internet-Draft TCP Specification August 2014

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 This should not occur, since a FIN has been received from
 the remote side. Ignore the URG.

 seventh, process the segment text,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Once in the ESTABLISHED state, it is possible to deliver
 segment text to user RECEIVE buffers. Text from segments
 can be moved into buffers until either the buffer is full
 or the segment is empty. If the segment empties and
 carries an PUSH flag, then the user is informed, when the
 buffer is returned, that a PUSH has been received.

 When the TCP takes responsibility for delivering the data
 to the user it must also acknowledge the receipt of the
 data.

 Once the TCP takes responsibility for the data it
 advances RCV.NXT over the data accepted, and adjusts
 RCV.WND as appropriate to the current buffer
 availability. The total of RCV.NXT and RCV.WND should
 not be reduced.

 Please note the window management suggestions in section
3.7.

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 This acknowledgment should be piggybacked on a segment
 being transmitted if possible without incurring undue
 delay.

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 This should not occur, since a FIN has been received from
 the remote side. Ignore the segment text.

Eddy Expires February 13, 2015 [Page 61]

Internet-Draft TCP Specification August 2014

 eighth, check the FIN bit,

 Do not process the FIN if the state is CLOSED, LISTEN or
 SYN-SENT since the SEG.SEQ cannot be validated; drop the
 segment and return.

 If the FIN bit is set, signal the user "connection closing"
 and return any pending RECEIVEs with same message, advance
 RCV.NXT over the FIN, and send an acknowledgment for the
 FIN. Note that FIN implies PUSH for any segment text not
 yet delivered to the user.

 SYN-RECEIVED STATE
 ESTABLISHED STATE

 Enter the CLOSE-WAIT state.

 FIN-WAIT-1 STATE

 If our FIN has been ACKed (perhaps in this segment),
 then enter TIME-WAIT, start the time-wait timer, turn
 off the other timers; otherwise enter the CLOSING
 state.

 FIN-WAIT-2 STATE

 Enter the TIME-WAIT state. Start the time-wait timer,
 turn off the other timers.

 CLOSE-WAIT STATE

 Remain in the CLOSE-WAIT state.

 CLOSING STATE

 Remain in the CLOSING state.

 LAST-ACK STATE

 Remain in the LAST-ACK state.

 TIME-WAIT STATE

 Remain in the TIME-WAIT state. Restart the 2 MSL
 time-wait timeout.

 and return.

Eddy Expires February 13, 2015 [Page 62]

Internet-Draft TCP Specification August 2014

 USER TIMEOUT

 USER TIMEOUT

 For any state if the user timeout expires, flush all queues,
 signal the user "error: connection aborted due to user timeout"
 in general and for any outstanding calls, delete the TCB, enter
 the CLOSED state and return.

 RETRANSMISSION TIMEOUT

 For any state if the retransmission timeout expires on a
 segment in the retransmission queue, send the segment at the
 front of the retransmission queue again, reinitialize the
 retransmission timer, and return.

 TIME-WAIT TIMEOUT

 If the time-wait timeout expires on a connection delete the
 TCB, enter the CLOSED state and return.

Eddy Expires February 13, 2015 [Page 63]

Internet-Draft TCP Specification August 2014

3.10. Glossary

 1822 BBN Report 1822, "The Specification of the Interconnection of
 a Host and an IMP". The specification of interface between a
 host and the ARPANET.

 ACK
 A control bit (acknowledge) occupying no sequence space,
 which indicates that the acknowledgment field of this segment
 specifies the next sequence number the sender of this segment
 is expecting to receive, hence acknowledging receipt of all
 previous sequence numbers.

 ARPANET message
 The unit of transmission between a host and an IMP in the
 ARPANET. The maximum size is about 1012 octets (8096 bits).

 ARPANET packet
 A unit of transmission used internally in the ARPANET between
 IMPs. The maximum size is about 126 octets (1008 bits).

 connection
 A logical communication path identified by a pair of sockets.

 datagram
 A message sent in a packet switched computer communications
 network.

 Destination Address
 The destination address, usually the network and host
 identifiers.

 FIN
 A control bit (finis) occupying one sequence number, which
 indicates that the sender will send no more data or control
 occupying sequence space.

 fragment
 A portion of a logical unit of data, in particular an
 internet fragment is a portion of an internet datagram.

 FTP
 A file transfer protocol.

 header
 Control information at the beginning of a message, segment,
 fragment, packet or block of data.

Eddy Expires February 13, 2015 [Page 64]

Internet-Draft TCP Specification August 2014

 host
 A computer. In particular a source or destination of
 messages from the point of view of the communication network.

 Identification
 An Internet Protocol field. This identifying value assigned
 by the sender aids in assembling the fragments of a datagram.

 IMP
 The Interface Message Processor, the packet switch of the
 ARPANET.

 internet address
 A source or destination address specific to the host level.

 internet datagram
 The unit of data exchanged between an internet module and the
 higher level protocol together with the internet header.

 internet fragment
 A portion of the data of an internet datagram with an
 internet header.

 IP
 Internet Protocol.

 IRS
 The Initial Receive Sequence number. The first sequence
 number used by the sender on a connection.

 ISN
 The Initial Sequence Number. The first sequence number used
 on a connection, (either ISS or IRS). Selected on a clock
 based procedure.

 ISS
 The Initial Send Sequence number. The first sequence number
 used by the sender on a connection.

 leader
 Control information at the beginning of a message or block of
 data. In particular, in the ARPANET, the control information
 on an ARPANET message at the host-IMP interface.

 left sequence
 This is the next sequence number to be acknowledged by the
 data receiving TCP (or the lowest currently unacknowledged

Eddy Expires February 13, 2015 [Page 65]

Internet-Draft TCP Specification August 2014

 sequence number) and is sometimes referred to as the left
 edge of the send window.

 local packet
 The unit of transmission within a local network.

 module
 An implementation, usually in software, of a protocol or
 other procedure.

 MSL
 Maximum Segment Lifetime, the time a TCP segment can exist in
 the internetwork system. Arbitrarily defined to be 2
 minutes.

 octet
 An eight bit byte.

 Options
 An Option field may contain several options, and each option
 may be several octets in length. The options are used
 primarily in testing situations; for example, to carry
 timestamps. Both the Internet Protocol and TCP provide for
 options fields.

 packet
 A package of data with a header which may or may not be
 logically complete. More often a physical packaging than a
 logical packaging of data.

 port
 The portion of a socket that specifies which logical input or
 output channel of a process is associated with the data.

 process
 A program in execution. A source or destination of data from
 the point of view of the TCP or other host-to-host protocol.

 PUSH
 A control bit occupying no sequence space, indicating that
 this segment contains data that must be pushed through to the
 receiving user.

 RCV.NXT
 receive next sequence number

 RCV.UP
 receive urgent pointer

Eddy Expires February 13, 2015 [Page 66]

Internet-Draft TCP Specification August 2014

 RCV.WND
 receive window

 receive next sequence number
 This is the next sequence number the local TCP is expecting
 to receive.

 receive window
 This represents the sequence numbers the local (receiving)
 TCP is willing to receive. Thus, the local TCP considers
 that segments overlapping the range RCV.NXT to RCV.NXT +
 RCV.WND - 1 carry acceptable data or control. Segments
 containing sequence numbers entirely outside of this range
 are considered duplicates and discarded.

 RST
 A control bit (reset), occupying no sequence space,
 indicating that the receiver should delete the connection
 without further interaction. The receiver can determine,
 based on the sequence number and acknowledgment fields of the
 incoming segment, whether it should honor the reset command
 or ignore it. In no case does receipt of a segment
 containing RST give rise to a RST in response.

 RTP
 Real Time Protocol: A host-to-host protocol for communication
 of time critical information.

 SEG.ACK
 segment acknowledgment

 SEG.LEN
 segment length

 SEG.PRC
 segment precedence value

 SEG.SEQ
 segment sequence

 SEG.UP
 segment urgent pointer field

 SEG.WND
 segment window field

 segment

Eddy Expires February 13, 2015 [Page 67]

Internet-Draft TCP Specification August 2014

 A logical unit of data, in particular a TCP segment is the
 unit of data transfered between a pair of TCP modules.

 segment acknowledgment
 The sequence number in the acknowledgment field of the
 arriving segment.

 segment length
 The amount of sequence number space occupied by a segment,
 including any controls which occupy sequence space.

 segment sequence
 The number in the sequence field of the arriving segment.

 send sequence
 This is the next sequence number the local (sending) TCP will
 use on the connection. It is initially selected from an
 initial sequence number curve (ISN) and is incremented for
 each octet of data or sequenced control transmitted.

 send window
 This represents the sequence numbers which the remote
 (receiving) TCP is willing to receive. It is the value of
 the window field specified in segments from the remote (data
 receiving) TCP. The range of new sequence numbers which may
 be emitted by a TCP lies between SND.NXT and SND.UNA +
 SND.WND - 1. (Retransmissions of sequence numbers between
 SND.UNA and SND.NXT are expected, of course.)

 SND.NXT
 send sequence

 SND.UNA
 left sequence

 SND.UP
 send urgent pointer

 SND.WL1
 segment sequence number at last window update

 SND.WL2
 segment acknowledgment number at last window update

 SND.WND
 send window

 socket

Eddy Expires February 13, 2015 [Page 68]

Internet-Draft TCP Specification August 2014

 An address which specifically includes a port identifier,
 that is, the concatenation of an Internet Address with a TCP
 port.

 Source Address
 The source address, usually the network and host identifiers.

 SYN
 A control bit in the incoming segment, occupying one sequence
 number, used at the initiation of a connection, to indicate
 where the sequence numbering will start.

 TCB
 Transmission control block, the data structure that records
 the state of a connection.

 TCB.PRC
 The precedence of the connection.

 TCP
 Transmission Control Protocol: A host-to-host protocol for
 reliable communication in internetwork environments.

 TOS
 Type of Service, an Internet Protocol field.

 Type of Service
 An Internet Protocol field which indicates the type of
 service for this internet fragment.

 URG
 A control bit (urgent), occupying no sequence space, used to
 indicate that the receiving user should be notified to do
 urgent processing as long as there is data to be consumed
 with sequence numbers less than the value indicated in the
 urgent pointer.

 urgent pointer
 A control field meaningful only when the URG bit is on. This
 field communicates the value of the urgent pointer which
 indicates the data octet associated with the sending user's
 urgent call.

4. Changes from RFC 793

 TODO: this entire section will need to be edited and condensed before
 the document is finalized. It currently represents a plan for future
 updates mixed with notes on what changes have already been completed.

https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires February 13, 2015 [Page 69]

Internet-Draft TCP Specification August 2014

 It should likely be an appendix, and in the final RFC, only the
 changes should be listed, and not what particular revision of the I-D
 they were made within.

 The -00 revision of this document was merely a proposal and rough
 plan for updating RFC 793.

 The -01 revision of this document incorporates the content of RFC 793
 Section 3 titled "FUNCTIONAL SPECIFICATION". Other content from RFC

793 has not been incorporated. The -01 revision of this document
 makes some minor formatting changes to the RFC 793 content in order
 to convert the content into XML2RFC format and account for left-out
 parts of RFC 793. For instance, figure numbering differs and some
 indentation is not exactly the same.

 The -02 revision of this document incorporates errata that have been
 verified:

 Errata ID 573: Reported by Bob Braden (note: This errata basically
 is just a reminder that RFC 1122 updates 793. Some of the
 associated changes are left pending to a separate revision that
 incorporates 1122. Bob's mention of PUSH in 793 section 2.8 was
 not applicable here because that section was not part of the
 "functional specification". Also the 1122 text on the
 retransmission timeout also has been updated by subsequent RFCs,
 so the change here deviates from Bob's suggestion to apply the
 1122 text.)
 Errata ID 574: Reported by Yin Shuming
 Errata ID 700: Reported by Yin Shuming
 Errata ID 701: Reported by Yin Shuming
 Errata ID 1283: Reported by Pei-chun Cheng
 Errata ID 1561: Reported by Constantin Hagemeier
 Errata ID 1562: Reported by Constantin Hagemeier
 Errata ID 1564: Reported by Constantin Hagemeier
 Errata ID 1565: Reported by Constantin Hagemeier
 Errata ID 1571: Reported by Constantin Hagemeier
 Errata ID 1572: Reported by Constantin Hagemeier
 Errata ID 2296: Reported by Vishwas Manral
 Errata ID 2297: Reported by Vishwas Manral
 Errata ID 2298: Reported by Vishwas Manral
 Errata ID 2748: Reported by Mykyta Yevstifeyev
 Errata ID 2749: Reported by Mykyta Yevstifeyev
 Errata ID 2934: Reported by Constantin Hagemeier
 Errata ID 3213: Reported by EugnJun Yi
 Errata ID 3300: Reported by Botong Huang
 Errata ID 3301: Reported by Botong Huang

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793#section-3
https://datatracker.ietf.org/doc/html/rfc793#section-3
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires February 13, 2015 [Page 70]

Internet-Draft TCP Specification August 2014

 Note: Some verified errata were not used in this update, as they
 relate to sections of RFC 793 elided from this document. These
 include Errata ID 572, 575, and 1569.
 Note: Errata ID 3602 was not applied in this revision as it is
 duplicative of the 1122 corrections.
 There is an errata 3305 currently reported that need to be
 verified, held, or rejected by the ADs; it is addressing the same
 issue as draft-gont-tcpm-tcp-seq-validation and was not attempted
 to be applied to this document.

 Not related to RFC 793 content, this revision also makes small tweaks
 to the introductory text, fixes indentation of the pseudoheader
 diagram, and notes that the Security Considerations should also
 include privacy, when this section is written.

 The -03 revision of this document revises all discussion of the
 urgent pointer in order to comply with RFC 6093, 1122, and 1011.
 Since 1122 held requirements on the urgent pointer, the full list of
 requirements was brought into an appendix of this document, so that
 it can be updated as-needed.

 TODO: Incomplete list of planned changes - these need to be added to
 and made more specific, as the document proceeds:

 1. incorporate 1122 additions
 2. point to major additional docs like 1323bis and 5681
 3. incorporate relevant parts of 3168 (ECN)
 4. incorporate 6528 (sequence number)
 5. incorporate Fernando's new number-checking fixes (if past the
 IESG in time)
 6. point to PMTUD?
 7. point to 5461 (soft errors)
 8. mention 5961 state machine option
 9. mention 6161 (reducing TIME-WAIT)
 10. incorporate 6429 (ZWP/persist)
 11. incorporate 6691 (MSS)
 12. look at Tony Sabatini suggestion for describing DO field
 13. clearly specify treatment of reserved bits (see TCPM thread on
 EDO draft April 25, 2014)
 14. look at possible mention of draft-minshall-nagle (e.g. as in
 Linux)
 15. make sure that clarifications in RFC 1011 are captured
 16. per TCPM discussion, discussion of checking reserved bits may
 need to be altered from 793

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seq-validation
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/draft-minshall-nagle
https://datatracker.ietf.org/doc/html/rfc1011

Eddy Expires February 13, 2015 [Page 71]

Internet-Draft TCP Specification August 2014

5. IANA Considerations

 This memo includes no request to IANA. Existing IANA registries for
 TCP parameters are sufficient.

 TODO: check whether entries pointing to 793 and other documents
 obsoleted by this one should be updated to point to this one instead.

6. Security and Privacy Considerations

 TODO

 See RFC 6093 [5] for discussion of security considerations related to
 the urgent pointer field.

 Editor's Note: Scott Brim mentioned that this should include a
 PERPASS/privacy review.

7. Acknowledgements

 This document is largely a revision of RFC 793, which Jon Postel was
 the editor of. Due to his excellent work, it was able to last for
 three decades before we felt the need to revise it.

 Andre Oppermann was a contributor and helped to edit the first
 revision of this document.

 We are thankful for the assistance of the IETF TCPM working group
 chairs:

 Michael Scharf
 Yoshifumi Nishida
 Pasi Sarolahti

 On the TCPM mailing list, and at the IETF 88 meeting in Vancouver,
 helpful comments, critiques, and reviews were received from (listed
 alphebetically): David Borman, Yuchung Cheng, Martin Duke, Kevin
 Lahey, Kevin Mason, Matt Mathis, Hagen Paul Pfeifer, Anthony
 Sabatini, Joe Touch, Reji Varghese, Lloyd Wood, and Alex Zimmermann.

 This document includes content from errata that were reported by
 (listed chronologically): Yin Shuming, Bob Braden, Morris M. Keesan,
 Pei-chun Cheng, Constantin Hagemeier, Vishwas Manral, Mykyta
 Yevstifeyev, EungJun Yi, Botong Huang.

https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires February 13, 2015 [Page 72]

Internet-Draft TCP Specification August 2014

8. References

8.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [2] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [3] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [4] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", draft-ietf-tcpm-tcp-

rfc4614bis-07 (work in progress), July 2014.

 [5] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, January 2011.

Appendix A. TCP Requirement Summary

 This section is adapted from RFC 1122.

 TODO: this needs to be seriously redone, to use 793bis section
 numbers instead of 1122 ones, and all 1122 requirements need to be
 reflected in 793bis text.

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 |1122 |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
 Push flag | | | | | | |
 Aggregate or queue un-pushed data |4.2.2.2 | | |x| | |
 Sender collapse successive PSH flags |4.2.2.2 | |x| | | |

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-rfc4614bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-rfc4614bis-07
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires February 13, 2015 [Page 73]

Internet-Draft TCP Specification August 2014

 SEND call can specify PUSH |4.2.2.2 | | |x| | |
 If cannot: sender buffer indefinitely |4.2.2.2 | | | | |x|
 If cannot: PSH last segment |4.2.2.2 |x| | | | |
 Notify receiving ALP of PSH |4.2.2.2 | | |x| | |1
 Send max size segment when possible |4.2.2.2 | |x| | | |
 | | | | | | |
 Window | | | | | | |
 Treat as unsigned number |4.2.2.3 |x| | | | |
 Handle as 32-bit number |4.2.2.3 | |x| | | |
 Shrink window from right |4.2.2.16| | | |x| |
 Robust against shrinking window |4.2.2.16|x| | | | |
 Receiver's window closed indefinitely |4.2.2.17| | |x| | |
 Sender probe zero window |4.2.2.17|x| | | | |
 First probe after RTO |4.2.2.17| |x| | | |
 Exponential backoff |4.2.2.17| |x| | | |
 Allow window stay zero indefinitely |4.2.2.17|x| | | | |
 Sender timeout OK conn with zero wind |4.2.2.17| | | | |x|
 | | | | | | |
 Urgent Data | | | | | | |
 Pointer indicates first non-urgent octet |4.2.2.4 |x| | | | |
 Arbitrary length urgent data sequence |4.2.2.4 |x| | | | |
 Inform ALP asynchronously of urgent data |4.2.2.4 |x| | | | |1
 ALP can learn if/how much urgent data Q'd |4.2.2.4 |x| | | | |1
 | | | | | | |
 TCP Options | | | | | | |
 Receive TCP option in any segment |4.2.2.5 |x| | | | |
 Ignore unsupported options |4.2.2.5 |x| | | | |
 Cope with illegal option length |4.2.2.5 |x| | | | |
 Implement sending & receiving MSS option |4.2.2.6 |x| | | | |
 Send MSS option unless 536 |4.2.2.6 | |x| | | |
 Send MSS option always |4.2.2.6 | | |x| | |
 Send-MSS default is 536 |4.2.2.6 |x| | | | |
 Calculate effective send seg size |4.2.2.6 |x| | | | |
 | | | | | | |
 TCP Checksums | | | | | | |
 Sender compute checksum |4.2.2.7 |x| | | | |
 Receiver check checksum |4.2.2.7 |x| | | | |
 | | | | | | |
 Use clock-driven ISN selection |4.2.2.9 |x| | | | |
 | | | | | | |
 Opening Connections | | | | | | |
 Support simultaneous open attempts |4.2.2.10|x| | | | |
 SYN-RCVD remembers last state |4.2.2.11|x| | | | |
 Passive Open call interfere with others |4.2.2.18| | | | |x|
 Function: simultan. LISTENs for same port |4.2.2.18|x| | | | |
 Ask IP for src address for SYN if necc. |4.2.3.7 |x| | | | |
 Otherwise, use local addr of conn. |4.2.3.7 |x| | | | |
 OPEN to broadcast/multicast IP Address |4.2.3.14| | | | |x|

Eddy Expires February 13, 2015 [Page 74]

Internet-Draft TCP Specification August 2014

 Silently discard seg to bcast/mcast addr |4.2.3.14|x| | | | |
 | | | | | | |
 Closing Connections | | | | | | |
 RST can contain data |4.2.2.12| |x| | | |
 Inform application of aborted conn |4.2.2.13|x| | | | |
 Half-duplex close connections |4.2.2.13| | |x| | |
 Send RST to indicate data lost |4.2.2.13| |x| | | |
 In TIME-WAIT state for 2xMSL seconds |4.2.2.13|x| | | | |
 Accept SYN from TIME-WAIT state |4.2.2.13| | |x| | |
 | | | | | | |
 Retransmissions | | | | | | |
 Jacobson Slow Start algorithm |4.2.2.15|x| | | | |
 Jacobson Congestion-Avoidance algorithm |4.2.2.15|x| | | | |
 Retransmit with same IP ident |4.2.2.15| | |x| | |
 Karn's algorithm |4.2.3.1 |x| | | | |
 Jacobson's RTO estimation alg. |4.2.3.1 |x| | | | |
 Exponential backoff |4.2.3.1 |x| | | | |
 SYN RTO calc same as data |4.2.3.1 | |x| | | |
 Recommended initial values and bounds |4.2.3.1 | |x| | | |
 | | | | | | |
 Generating ACK's: | | | | | | |
 Queue out-of-order segments |4.2.2.20| |x| | | |
 Process all Q'd before send ACK |4.2.2.20|x| | | | |
 Send ACK for out-of-order segment |4.2.2.21| | |x| | |
 Delayed ACK's |4.2.3.2 | |x| | | |
 Delay < 0.5 seconds |4.2.3.2 |x| | | | |
 Every 2nd full-sized segment ACK'd |4.2.3.2 |x| | | | |
 Receiver SWS-Avoidance Algorithm |4.2.3.3 |x| | | | |
 | | | | | | |
 Sending data | | | | | | |
 Configurable TTL |4.2.2.19|x| | | | |
 Sender SWS-Avoidance Algorithm |4.2.3.4 |x| | | | |
 Nagle algorithm |4.2.3.4 | |x| | | |
 Application can disable Nagle algorithm |4.2.3.4 |x| | | | |
 | | | | | | |
 Connection Failures: | | | | | | |
 Negative advice to IP on R1 retxs |4.2.3.5 |x| | | | |
 Close connection on R2 retxs |4.2.3.5 |x| | | | |
 ALP can set R2 |4.2.3.5 |x| | | | |1
 Inform ALP of R1<=retxs<R2 |4.2.3.5 | |x| | | |1
 Recommended values for R1, R2 |4.2.3.5 | |x| | | |
 Same mechanism for SYNs |4.2.3.5 |x| | | | |
 R2 at least 3 minutes for SYN |4.2.3.5 |x| | | | |
 | | | | | | |
 Send Keep-alive Packets: |4.2.3.6 | | |x| | |
 - Application can request |4.2.3.6 |x| | | | |
 - Default is "off" |4.2.3.6 |x| | | | |
 - Only send if idle for interval |4.2.3.6 |x| | | | |

Eddy Expires February 13, 2015 [Page 75]

Internet-Draft TCP Specification August 2014

 - Interval configurable |4.2.3.6 |x| | | | |
 - Default at least 2 hrs. |4.2.3.6 |x| | | | |
 - Tolerant of lost ACK's |4.2.3.6 |x| | | | |
 | | | | | | |
 IP Options | | | | | | |
 Ignore options TCP doesn't understand |4.2.3.8 |x| | | | |
 Time Stamp support |4.2.3.8 | | |x| | |
 Record Route support |4.2.3.8 | | |x| | |
 Source Route: | | | | | | |
 ALP can specify |4.2.3.8 |x| | | | |1
 Overrides src rt in datagram |4.2.3.8 |x| | | | |
 Build return route from src rt |4.2.3.8 |x| | | | |
 Later src route overrides |4.2.3.8 | |x| | | |
 | | | | | | |
 Receiving ICMP Messages from IP |4.2.3.9 |x| | | | |
 Dest. Unreach (0,1,5) => inform ALP |4.2.3.9 | |x| | | |
 Dest. Unreach (0,1,5) => abort conn |4.2.3.9 | | | | |x|
 Dest. Unreach (2-4) => abort conn |4.2.3.9 | |x| | | |
 Source Quench => slow start |4.2.3.9 | |x| | | |
 Time Exceeded => tell ALP, don't abort |4.2.3.9 | |x| | | |
 Param Problem => tell ALP, don't abort |4.2.3.9 | |x| | | |
 | | | | | | |
 Address Validation | | | | | | |
 Reject OPEN call to invalid IP address |4.2.3.10|x| | | | |
 Reject SYN from invalid IP address |4.2.3.10|x| | | | |
 Silently discard SYN to bcast/mcast addr |4.2.3.10|x| | | | |
 | | | | | | |
 TCP/ALP Interface Services | | | | | | |
 Error Report mechanism |4.2.4.1 |x| | | | |
 ALP can disable Error Report Routine |4.2.4.1 | |x| | | |
 ALP can specify TOS for sending |4.2.4.2 |x| | | | |
 Passed unchanged to IP |4.2.4.2 | |x| | | |
 ALP can change TOS during connection |4.2.4.2 | |x| | | |
 Pass received TOS up to ALP |4.2.4.2 | | |x| | |
 FLUSH call |4.2.4.3 | | |x| | |
 Optional local IP addr parm. in OPEN |4.2.4.4 |x| | | | |
 ---|--------|-|-|-|-|-|--

 FOOTNOTES: (1) "ALP" means Application-Layer program.

Author's Address

 Wesley M. Eddy (editor)
 MTI Systems
 US

 Email: wes@mti-systems.com

Eddy Expires February 13, 2015 [Page 76]

