
Network Working Group L. Eggert

Internet-Draft Nokia

Intended status: Experimental June 23, 2010

Expires: December 25, 2010

Congestion Control for the Constrained Application Protocol (CoAP)

draft-eggert-core-congestion-control-00

Abstract

The Constrained Application Protocol (CoAP) is a simple, low-overhead,

UDP-based protocol for use with resource-constrained IP networks and

nodes. CoAP defines a simple technique to individually retransmit lost

messages, but has no other congestion control mechanisms. This document

motivates the need for additional congestion control mechanisms, and

defines some simple strawman proposals. The goal is to encourage

experimentation with these and other proposals, in order to determine

which mechanisms are feasible to implement on resource-constrained

nodes and are effective real deployments.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79. This document may not be modified, and

derivative works of it may not be created, except to format it for

publication as an RFC or to translate it into languages other than

English.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet-Drafts is at

http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as “work in progress.”

This Internet-Draft will expire on December 25, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

1. Introduction

The Constrained Application Protocol (CoAP) [I‑D.ietf‑core‑coap]

(Shelby, Z., Frank, B., and D. Sturek, “Constrained Application

Protocol (CoAP),” June 2010.) is a simple, low-overhead, UDP-based

protocol for use with resource-constrained IP networks and nodes.

CoAP defines two kinds of interactions between end-points:

a client/server interaction model, where request or notify

messages initiate a transaction with a server, which may send a

response to the client with a matching transaction ID

an asynchronous subscribe/notify interaction model, where a

server can send notify messages to a client about a resource

which the client has subscribed to

CoAP uses the User Datagram Protocol (UDP) [RFC0768] (Postel, J., “User

Datagram Protocol,” August 1980.) to transmit these messages and

defines a simple mechanism to individually retransmit lost messages

using an exponentially backed-off timer.

This document argues that although this retransmission mechanism is a

required first step to implement congestion control for CoAP, it alone

is not sufficient to alleviate network overload in all conditions.

Section 2 (Discussion of Internet Congestion Control Principles) gives

a short summary of Internet congestion control principles, and

Section 3 (CoAP Congestion Control) presents some simple strawman

proposals that attempt to complement the current message retransmission

mechanism in CoAP.

2. Discussion of Internet Congestion Control Principles

[RFC2914] (Floyd, S., “Congestion Control Principles,” September 2000.)

describes the best current practices for congestion control in the

Internet, and requires that Internet communication employ congestion

control mechanisms. Because UDP itself provides no congestion control

mechanisms, it is up to the applications and application-layer

protocols that use UDP for Internet communication to employ suitable

mechanisms to prevent congestion collapse and establish a degree of

fairness. CoAP is one such application-layer protocol.

1.

2.

[RFC2914] (Floyd, S., “Congestion Control Principles,” September 2000.)

identifies two major reasons why congestion control mechanisms are

critical for the stable operation of the Internet:

The prevention of congestion collapse, i.e., a state where an

increase in network load results in a decrease in useful work

done by the network.

The establishment of a degree of fairness, i.e., allowing

multiple flows to share the capacity of a path reasonably

equitably.

The overwhelming majority of the bytes on the Internet are caused by

bulk transfers, and the traditional congestion control mechanisms are

engineered to saturate the network without driving it into congestive

collapse. Fairness between flows is an important consideration when the

network operates around the saturation point, so that new flows are not

disadvantaged compared to established flows, and can obtain a

reasonable share of the capacity quickly.

The environments that CoAP targets are IP networks, although more

resource-constrained ones than the "big-I" Internet. This does not

eliminate the need for end-point-based congestion control. If anything,

the environments that CoAP will be deployed in have fewer capabilities

for network provisioning, traffic engineering and capacity allocation,

which are among the techniques that can sometimes offset the need for

end-to-end congestion control to some degree.

However, the environments that CoAP targets are sufficiently different

from the "big-I" Internet so that the motivations for congestion

control from [RFC2914] (Floyd, S., “Congestion Control Principles,”

September 2000.) should probably be weighted differently. CoAP networks

will not be used for bulk data transfers and CoAP nodes will not need

to use a significant fraction of the capacity of a path to provide a

useful service. (In fact, they are often too resource-constrained to do

so in the first place.) Under normal operation, a CoAP network will be

mostly idle, which means that fairness between the transmissions of

different CoAP nodes is not a large issue. A CoAP congestion control

mechanism can hence focus on preventing congestion collapse, which is a

much more tractable problem given the specific conditions of CoAP

environments.

The current IETF congestion control mechanisms, such as TCP [RFC5681]

(Allman, M., Paxson, V., and E. Blanton, “TCP Congestion Control,”

September 2009.) or TFRC [RFC5348] (Floyd, S., Handley, M., Padhye, J.,

and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol

Specification,” September 2008.), all focus on determining a "safe"

sending rate for a bulk transfer, i.e., for a single flow of many

packets between a sender and destination where many packets are in

flight at any given time. They measure the path characteristics, such

as round-trip time (RTT) and packet loss rate, by monitoring the

1.

2.

ongoing transfer and use this information to adjust the sending rate of

the flow during the transmission.

This approach is not feasible for CoAP. The infrequent request/response

interaction that CoAP supports does not generate sufficient data about

the path characteristics to drive a traditional congestion control

loop, even if the notion of "a flow" to a destination is extended from

"one CoAP transaction" to "a sequence of CoAP transactions". This

approach is also not applicable to multicast transmissions, which CoAP

offers.

[RFC5405] (Eggert, L. and G. Fairhurst, “Unicast UDP Usage Guidelines

for Application Designers,” November 2008.) documents the IETF's

current best practices for using UDP for unicast communication in the

Internet. It provides guidance on topics such as message sizes,

reliability, checksums, middlebox traversal and congestion control.

Section 3.1.2 of [RFC5405] (Eggert, L. and G. Fairhurst, “Unicast UDP

Usage Guidelines for Application Designers,” November 2008.), which

focuses on congestion control for low data-volume applications, is

especially relevant to CoAP.

Section 3.1.2 of [RFC5405] (Eggert, L. and G. Fairhurst, “Unicast UDP

Usage Guidelines for Application Designers,” November 2008.)

acknowledges that the traditional IETF congestion control mechanisms

are not applicable for low data-volume application protocols such as

CoAP. Instead, it recommends that such application protocols:

maintain an estimate of the RTT for any destination with which

they communicate, or assume a conservative fixed value of 3

seconds when no RTT estimate can be obtained (e.g.,

unidirectional communication)

control their transmission behavior by not sending on average

more than one UDP datagram per RTT to a destination

detect packet loss and exponentially back their retransmission

timer off when a loss event occurs

employ congestion control for both directions of a bi-directional

communication

CoAP follows some of these guidelines already. It uses a fixed value of

1 second for its retransmission timer for both requests and responses,

which although shorter than the recommended value in [RFC5405] (Eggert,

L. and G. Fairhurst, “Unicast UDP Usage Guidelines for Application

Designers,” November 2008.) is likely appropriate for many of its

deployment scenarios. CoAP also uses exponential back-off for its

retransmission timer.

This alone, however, does not result in a complete congestion control

mechanism for CoAP. Section 3 (CoAP Congestion Control) defines an

experimental complement to the current CoAP mechanism described in

*

*

*

*

[I‑D.ietf‑core‑coap] (Shelby, Z., Frank, B., and D. Sturek,

“Constrained Application Protocol (CoAP),” June 2010.).

3. CoAP Congestion Control

This section proposes several congestion control techniques for CoAP

that are intended to improve its ability to prevent congestion

collapse. At the moment, these techniques are described with the intent

of encouraging experimentation with such proposals in CoAP simulations

and testbed deployments. Of particular interest are mechanism requiring

little computation and state, i.e., mechanisms that can be implemented

in resource-constrained nodes without much overhead.

3.1. Retransmissions

CoAP already defines a simple retransmission scheme with exponential

back-off, where messages that have not been responded to in

RESPONSE_TIMEOUT are retransmitted, followed by doubling

RESPONSE_TIMEOUT. Up to MAX_RETRANSMIT retransmission attempts are

made. (At the moment, [I‑D.ietf‑core‑coap] (Shelby, Z., Frank, B., and

D. Sturek, “Constrained Application Protocol (CoAP),” June 2010.)

defines RESPONSE_TIMEOUT to be 1 second and MAX_RETRANSMIT to be five

attempts.) As stated above, although RESPONSE_TIMEOUT is shorter than

what [RFC5405] (Eggert, L. and G. Fairhurst, “Unicast UDP Usage

Guidelines for Application Designers,” November 2008.) recommends, the

shorter value is likely to not cause large issues in many deployments

that CoAP targets.

However, using a fixed value for RESPONSE_TIMEOUT instead of basing it

on the measured RTT to a destination has some minor drawbacks. CoAP may

be used in deployments where the path RTTs can approach the currently

defined RESPONSE_TIMEOUT of 1 second, such as Internet deployments

involving GSM or 3G links, or cases where preparing a response can

involve significant computation or where it otherwise incurs delays,

such as long sleep cycles at the receiver. Fixed timeouts that are too

short can cause spurious retransmissions, i.e., unnecessary

retransmissions in cases where either the request or the response are

still in transit. Spurious retransmissions, especially persistent ones,

waste resources.

This section therefore proposes that CoAP deployments experiment with

maintaining an estimate of the RTT for any destination with which they

communicate. Specifically, it is suggested that deployments experiment

with the algorithm specified in [RFC2988] (Paxson, V. and M. Allman,

“Computing TCP's Retransmission Timer,” November 2000.) to compute a

smoothed RTT (SRTT) estimate, and compute RESPONSE_TIMEOUT in the same

way [RFC2988] (Paxson, V. and M. Allman, “Computing TCP's

Retransmission Timer,” November 2000.) computes RTO.

A second suggestion is to experiment with a longer RESPONSE_TIMEOUT,

such as 3 seconds, which is what [RFC5405] (Eggert, L. and G.

Fairhurst, “Unicast UDP Usage Guidelines for Application Designers,”

November 2008.) recommends, in order to determine if there are

significant drawbacks or whether this value could be lengthened.

3.2. Aggregate Congestion Control

Traditional Internet congestion control algorithms control the sending

rate of a single flow. When a node establishes multiple, parallel

flows, their congestion control loops run (mostly) independently of one

another. Interactions between the control loops of parallel flows is

(mostly) indirect, e.g., a rate increase of one flow may cause packet

loss and a rate decrease to another.

CoAP "flows", i.e., sequences of infrequent CoAP transactions between

the same two nodes, do not require much more per-flow congestion

control than a retransmission scheme that reduces the rate (increases

the back-off) of a flow under loss, and a (low) cap on the number of

allowed outstanding requests to a destination. ([RFC5405] (Eggert, L.

and G. Fairhurst, “Unicast UDP Usage Guidelines for Application

Designers,” November 2008.) recommends "on average not more than one"

outstanding transaction to a given destination.)

On the other hand, CoAP applications may potentially want to initiate

many transactions with different nodes at the same time. Allowing CoAP

applications to initiate an unlimited number of parallel transactions

gives them the means for causing overload, and depends on application-

level measures to detect and correctly mitigate this failure. Because

each transaction only consumes a very limited amount of resources, it

is arguably more important to control the total outstanding number of

transactions, compared to controlling the rate at which each individual

one is being (re)transmitted. The CoAP spec [I‑D.ietf‑core‑coap]

(Shelby, Z., Frank, B., and D. Sturek, “Constrained Application

Protocol (CoAP),” June 2010.) does currently not impose any limit on

how many parallel transactions to different nodes an end-point may have

outstanding.

Given the importance of preventing congestion collapse, this document

argues that the CoAP protocol should specify a common mechanism for

congestion controlling the aggregate traffic a CoAP node sends into the

network. In other words, the CoAP stack should locally drop

application-generated messages under overload situations, rather than

attempting to send them into the network, irrespective of the

destination.

One proposal is to implement a simple windowing algorithm. In this

mechanism, a CoAP node has a certain number of "transmission credits"

available during a time interval. Sending one CoAP message consumes one

transmission credit, independent of which destination it is being sent

to. If all transmission credits have been used up during a time

interval, the CoAP node drops any additional messages that the

applications attempt to send during the remainder of the time interval.

At the end of a time interval, the CoAP node determines whether

responses have been received for all requests it has issued within the

time interval. If this is the case, the CoAP node increases the number

of send credits by one for the following time interval. If responses

fail to arrive for some of the requests issued during the time

interval, the number of permitted CoAP requests is cut in half for the

next interval.

The description above leaves several questions unanswered. These

include the length of the time interval and whether it is fixed or

adapted over time, whether an increase by one and a reduction by half

are the correct parameters for the proposed AIMD (additive increase,

multiplicative decrease) scheme, whether the decrease should be

proportional to the loss rate, and others.

This document does at the moment not attempt to answer these questions.

Instead, it encourages simulations and implementations to explore the

design space, and also consider other non-windowing approaches.

3.3. Explicit Congestion Notification

Explicit Congestion Notification (ECN) [RFC3168] (Ramakrishnan, K.,

Floyd, S., and D. Black, “The Addition of Explicit Congestion

Notification (ECN) to IP,” September 2001.) is an extension to IP that

allows routers to inform end nodes when they approach congestion by

setting a bit in the IP header. The receiver of a message echoes this

bit to the sender, which reacts as if a packet loss had occurred for

the flow.

Deployment of ECN can reduce overall packet loss, because senders can

react to congestion early, i.e., before packet loss occurs. This is

especially attractive in resource-constrained environments, because

retransmissions can be avoided.

If CoAP uses an aggregate congestion control mechanism such as

described in Section Section 3.2 (Aggregate Congestion Control), it

will reduce the amount of transmission credits for the next time

interval when some of the responses received had the ECN bit set.

(Other reactions to ECN markings may be possible.)

Whether ECN support is possible in CoAP deployments remains to be

investigated, because ECN usage requires a negotiation handshake (can

potentially be avoided if support is made mandatory for CoAP

deployments) and because routers need to support ECN marking. At this

point, simulations attempting to quantify the benefits may therefore be

easiest to obtain.

3.4. Multicast Considerations

CoAP requests may be multicast, and result in several replies from

different end-points, potentially consuming much more resource capacity

for the request and response transmissions than a single unicast

transaction. It can therefore be argued that sending multicast requests

should be more conservatively controlled than the sending of unicast

requests.

CoAP already acknowledges this to some degree by not retransmitting

multicast requests at the CoAP-level. Unfortunately, CoAP currently has

no means for preventing an application from doing application-level

retransmissions of multicast requests. Given that the prevention of

congestion collapse is important, such a mechanism should be added.

The aggregate congestion control proposal in Section Section 3.2

(Aggregate Congestion Control) puts a cap on the number of

transmissions allowed during a time interval, including multicast

requests. It is currently unclear whether additional means are required

for CoAP deployments that make heavy use of multicast. As before,

experimentation is encouraged to understand the problem space.

4. IANA Considerations

This document requests no actions from IANA.

[Note to the RFC Editor: Please remove this section upon publication.]

5. Security Considerations

This document has no known security implications.

[Note to the RFC Editor: Please remove this section upon publication.]

6. Acknowledgments

Lars Eggert is partly funded by [TRILOGY] (, “Trilogy Project,” .), a

research project supported by the European Commission under its Seventh

Framework Program.

7. References

7.1. Normative References

[I-D.ietf-

core-coap]

Shelby, Z., Frank, B., and D. Sturek, “Constrained

Application Protocol (CoAP),” draft-ietf-core-coap-00

(work in progress), June 2010 (TXT).

[RFC0768] Postel, J., “User Datagram Protocol,” STD 6, RFC 768,

August 1980 (TXT).

[RFC2914] Floyd, S., “Congestion Control Principles,” BCP 41,

RFC 2914, September 2000 (TXT).

[RFC2988] Paxson, V. and M. Allman, “Computing TCP's

Retransmission Timer,” RFC 2988, November 2000 (TXT).

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, “The

Addition of Explicit Congestion Notification (ECN) to

IP,” RFC 3168, September 2001 (TXT).

[RFC5405] Eggert, L. and G. Fairhurst, “Unicast UDP Usage

Guidelines for Application Designers,” BCP 145,

RFC 5405, November 2008 (TXT).

7.2. Informative References

[RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, “TCP

Friendly Rate Control (TFRC): Protocol Specification,”

RFC 5348, September 2008 (TXT).

[RFC5681] Allman, M., Paxson, V., and E. Blanton, “TCP Congestion

Control,” RFC 5681, September 2009 (TXT).

[TRILOGY] “Trilogy Project,” http://www.trilogy-project.org/.

Author's Address

Lars Eggert

Nokia Research Center

P.O. Box 407

Nokia Group 00045

Finland

Phone: +358 50 48 24461

Email: lars.eggert@nokia.com

URI: http://research.nokia.com/people/lars_eggert

http://www.ietf.org/internet-drafts/draft-ietf-core-coap-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coap-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coap-00.txt
http://tools.ietf.org/html/rfc768
http://www.rfc-editor.org/rfc/rfc768.txt
http://tools.ietf.org/html/rfc2914
http://www.rfc-editor.org/rfc/rfc2914.txt
http://tools.ietf.org/html/rfc2988
http://tools.ietf.org/html/rfc2988
http://www.rfc-editor.org/rfc/rfc2988.txt
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://www.rfc-editor.org/rfc/rfc3168.txt
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/rfc5405
http://www.rfc-editor.org/rfc/rfc5405.txt
http://tools.ietf.org/html/rfc5348
http://tools.ietf.org/html/rfc5348
http://www.rfc-editor.org/rfc/rfc5348.txt
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc5681
http://www.rfc-editor.org/rfc/rfc5681.txt
mailto:lars.eggert@nokia.com
http://research.nokia.com/people/lars_eggert

	Congestion Control for the Constrained Application Protocol (CoAP)draft-eggert-core-congestion-control-00
	Abstract
	Status of this Memo
	Copyright Notice
	1. Introduction
	2. Discussion of Internet Congestion Control Principles
	3. CoAP Congestion Control
	3.1. Retransmissions
	3.2. Aggregate Congestion Control
	3.3. Explicit Congestion Notification
	3.4. Multicast Considerations
	4. IANA Considerations
	5. Security Considerations
	6. Acknowledgments
	7. References
	7.1. Normative References
	7.2. Informative References
	Author's Address

