
IETF Jitendra Kumar
Internet-Draft Balaji Rajendran
Intended status: Best Current Practice Bindhumadhava BS
Expires: August 8, 2019 C-DAC Bangalore
 February 04, 2019

Enhanced XML Digital Signature Algorithm to Mitigate Wrapping Attacks
draft-enhanced-xml-digital-signature-algorithm-01

Abstract

 XML signature standard [RFC3275]identifies signed elements by their
 unique identities in the XML document. However this allows shifting
 of XML elements from one location to another within the same XML
 document, without affecting the ability to verify the signature.
 This flexibility paves the way for an attacker to tweak the original
 XML message without getting noticed by the receiver, leading to XML
 Signature wrapping or rewriting attacks. This document proposes to
 use absolute XPath as a "Positional Token" and modifies the existing
 XML Digital Signature algorithm to overcome this attack.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Jitendra Kumar, et al. Expires August 8, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Abbreviated Title February 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. XML Digital Signature structure 3
3. Suggested Modified Algorithm 3
3.1. Algorithm for XML Signature 4
3.2. Algorithm for verification of Signature 4

 3.2.1. Verifying SignedInfo Element Digest with Decrypted
 Digest from SignatureValue element 5

4. Simple Example . 5
5. Algorithm Validation . 9
5.1. Mitigation of XML Signature wrapping attacks 9

 5.2. Mitigation of XML elements jumbling type of wrapping
 attacks . 9

6. Conclusion . 9
7. IANA Considerations . 10
8. Security Considerations 10
9. References . 10
9.1. Normative References 10
9.2. Informative References 10

 Authors' Addresses . 11

1. Introduction

 McIntosh and Austel have illustrated that a SOAP message with XML
 Digital Signature (described in wrapping_attack [wrapping_attack])
 can be forged without invalidating the signature and they have
 further illustrated that a SOAP message content, protected by an XML
 Digital Signature, as specified in WS-Security(refer, WS-Security
 [WS-Security]) can be forged without invalidating the signature.
 This attack is possible because the XML Digital Signature refers to a
 signed element in XML document in a way without giving significance
 to the position within the XML document. An attacker may inject
 additional nodes replacing the signed nodes while still preserving
 the signed nodes inside the document at different levels in the
 hierarchy of the XML tree, such that it results in successful
 signature verification thereby resulting in XML Re-Writing or
 Wrapping attack.

Jitendra Kumar, et al. Expires August 8, 2019 [Page 2]

Internet-Draft Abbreviated Title February 2019

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. XML Digital Signature structure

 XML Signatures (described in RFC3275 [RFC3275]) are applied to
 arbitrary digital content (data objects).Data objects are digested,
 the resulting value is placed in an element (with other information)
 and that element is then digested and cryptographically signed.XML
 digital signatures are represented by the Signature element which has
 the following structure (where "?" denotes zero or one occurrence;
 "+" denotes one or more occurrences; and "*" denotes zero or more
 occurrences):

 <Signature ID?>
 <SignedInfo>
 <CanonicalizationMethod/>
 <SignatureMethod/>
 (<Reference URI? >
 (<Transforms>)?
 <DigestMethod>
 <DigestValue>
 </Reference>)+
 </SignedInfo>
 <SignatureValue>
 (<KeyInfo>)?
 (<Object ID?>)*
 </Signature>

 Signatures are related to data objects via URIs [URI]. Within an XML
 document, signatures are related to local data objects via fragment
 identifiers.

3. Suggested Modified Algorithm

 As XML requests are prone to XML Signature wrapping attacks and these
 vulnerabilities stems from the usage of ID (Identity) to identify the
 signed XML subtree. There are many solutions proposed to mitigate
 such attacks but still,such attacks can't be fully eliminated. In
 this document, we have proposed the addition of XPath as a doping to
 the XML element being signed to mitigate XML Signature wrapping
 attacks. We propose to use "Absolute XPath" instead of ID in
 <Reference> node's "URI" attribute to refer to the signed element.
 Absolute XPath can be used as "Positional Token", as this token

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc3275

Jitendra Kumar, et al. Expires August 8, 2019 [Page 3]

Internet-Draft Abbreviated Title February 2019

 exactly points to the position of the element being signed. During
 the signing process, this "Positional Token" gets added as an
 attribute e.g. PosToken= "Absolute XPath") to the element that is
 subjected to be signed.This absolute XPath as a "Positional Token"
 would identify the signed element in XML Signature and addition of
 this "Positional Token" as an attribute to the element being signed
 would eliminate the chances of XML Signature Wrapping attacks wherein
 the calculated digest of the signed element in forged XML document
 will not match with the respective digest value in <DigestValue> node
 during signature validation process. We propose a modified XML
 signature algorithm which suggests usage of absolute XPath as a
 "Positional Token" and it will be used during signing as well as
 during signature validation process. The algorithms proposed are as
 follows:

3.1. Algorithm for XML Signature

 1. KS=Load(Keystore.JKS) //Load certificates and keys
 2. For each element subjected to be signed(represented
 by its "id" attribute value) {
 3. ABSXpath= "Absolute XPath" of element to be signed
 as identified with its "Id" attribute value
 4. ProtectTree=Node as identified by ABSXpath
 5. MixedElement=AppendSyntacticToken(ProtectTree,
ABSXpath)
 /*Append a Positional Token as an attribute,
 "PosToken= ABSXpath" to the ProtectTree */
 6. H=Hash(MixedElement)
 7. Add ABSXpath to <Reference> node's "URI" attribute
value
 8. Enclose H to <DigestValue> node inside the <Reference>
node,
 as defined in XML Signature standard.
 9. }
 10. SignedInfoHash=calculate hash of <SignedInfo> element
 /* Calculate the digest of the <SignedInfo> element */
 11. SignedXML=Encrypt(SignedInfoHash , KS.PrivateKey)
 /*Signing that digest and enclosing the signature value
 in a <SignatureValue> element */

3.2. Algorithm for verification of Signature

Jitendra Kumar, et al. Expires August 8, 2019 [Page 4]

Internet-Draft Abbreviated Title February 2019

 1. SignInfoDigest=Calculate digest of the <SignedInfo>
element
 2. SignatureValueContent= content inside <SignatureValue>
node
 3. Flag=VerifySignature(Public Key, SignatureValueContent,
SignInInfoDigest)
 4. If(Flag){
 5. Ids=All URI's in <Reference> nodes inside the
<SignedInfo> node
 6. For each Id from Ids){
 7. ABSXpath=Get the content of Id
 8. Subtree=Get the sub tree identified by ABSXpath
 9. MixedElement =AppendSyntacticTokenSubTree(Subtree,
ABSXpath)
 /* Append a Positional Token as an attribute,
 "PosToken= ABSXpath" to the Subtree */
 10. H=Hash (MixedElement)/* generate hash value of signed
elements. */
 11. Digest=Get digest value under the <Reference>
 node and inside <DigestValue> node, whose "URI" is
equal to Id
 12. If(H!=Digest){
 13. return "Signature Validation Failed"
 14. }else{
 15. return "Signature Validation Successful"
 16. }
 17. } //For loop
 18. else
 19. return "Signature Validation Failed"
 20. }

3.2.1. Verifying SignedInfo Element Digest with Decrypted Digest from
 SignatureValue element

 1. VerifySignature(PublicKey,
SignatureValueContent, SignInInfoDigest){
 2. DecryptedDigest=Decrypt SignatureValueContent
with PublicKey
 3. If(DecryptedDigest!=SignInInfoDigest){
 4. return False
 5. }
 6. else{
 7. return True
 8. }
 9. }

4. Simple Example

Jitendra Kumar, et al. Expires August 8, 2019 [Page 5]

Internet-Draft Abbreviated Title February 2019

 The <Signature> Lets consider an XML document as an example:

 <?xml version="1.0"?>
 <PatientRecord>
 <Visit date="10pm March 2018">
 <Account id="id1">1234</Account>
 <Name>ABC</Name>
 <Diagnosis>Kidney Function Test</Diagnosis>
 </Visit>
 <Visit date="12pm May 2018">
 <Account id="id2">1235</Account>
 <Name>DEF</Name>
 <Diagnosis>Liver Function Test</Diagnosis>
 </Visit>
 </PatientRecord>

 Figure 1

Jitendra Kumar, et al. Expires August 8, 2019 [Page 6]

Internet-Draft Abbreviated Title February 2019

 Existing XML Signature algorithm would produce a <Signature> element
 for the XML document mentioned in Figure 1, as follows:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#WithComments" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1" />
 <Reference URI="#id1">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/
2000/09/xmldsig#enveloped-signature" />
 <Transform Algorithm="http://www.w3.org/
2001/10/xml-exc-c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1" />
 <DigestValue>.................</DigestValue>
 </Reference>
 <Reference URI="#id2">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/
2000/09/xmldsig#enveloped-signature" />
 <Transform Algorithm="http://www.w3.org/
2001/10/xml-exc-c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1" />
 <DigestValue>................</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>

 </SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509Certificate>

 </X509Certificate>
 </X509Data>
 </KeyInfo>
</Signature>

Jitendra Kumar, et al. Expires August 8, 2019 [Page 7]

Internet-Draft Abbreviated Title February 2019

 The proposed XML Signature algorithm would produce a <Signature>
 element for the XML document mentioned in Figure 1, which is
 described in Figure 2. The "Positional Token" as an attribute
 e.g.(PosToken= "Absolute XPath") is used according to the proposed
 algorithm Section 3.1. Now, <DigestValue> elements inside
 <Signature> element will also contain the trace of "Positional
 Token", hence the relative position of signed elements in the given
 XML document:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#WithComments" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1" />
 <Reference URI="/PatientRecord/Visit[1]/Account[@id='id1']">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/
2000/09/xmldsig#enveloped-signature" />
 <Transform Algorithm="http://www.w3.org/
2001/10/xml-exc-c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1" />
 <DigestValue>.................</DigestValue>
 </Reference>
 <Reference URI="/PatientRecord/Visit[2]/Account[@id='id2']">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/
2000/09/xmldsig#enveloped-signature" />
 <Transform Algorithm="http://www.w3.org/
2001/10/xml-exc-c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1" />
 <DigestValue>................</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>

 </SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509Certificate>

 </X509Certificate>
 </X509Data>

 </KeyInfo>
</Signature>

 Figure 2

Jitendra Kumar, et al. Expires August 8, 2019 [Page 8]

Internet-Draft Abbreviated Title February 2019

5. Algorithm Validation

 In this section, we evaluate how the suggested algorithm can mitigate
 the various scenarios of XML wrapping attacks.

5.1. Mitigation of XML Signature wrapping attacks

 XML Signature Wrapping attacks are possible because of the inherent
 flaw in the signature verification algorithm that identifies the
 position of signed element using ID. This makes it possible to move
 the signed element anywhere easily within the document and still, the
 document would retains its ability to verify its signature.So, in our
 proposed algorithm, we have suggested the use of absolute XPath in
 place of ID for identifying the position of signed elements.Absolute
 XPath has two-fold advantages as it can easily identify the position
 of the signed element within the XML document and it fixes both the
 vertical and horizontal axis of the signed element exactly. The
 absolute XPath expression to identify the signed element will not be
 same in a forged document. The signature validation will fail at
 step-8, of algorithm in Section 3.2, as there is no such node,
 Further, if the attacker modifies the URI attribute and tries to
 perform XML Signature wrapping attack, the digest of <SignedInfo>
 will not match and signature validation will fail at step-4 of the
 algorithm in Section 3.2.

5.2. Mitigation of XML elements jumbling type of wrapping attacks

 This type of XML Signature wrapping attacks are possible as the
 attacker jumbles the position of signed elements within the document
 exploiting the existing XML Signing algorithm that takes ID into
 consideration for referencing the elements being signed.The proposed
 algorithm suggests using "Absolute XPath" for referencing the signed
 elements as well as doping the elements subjected to be signed with
 it. Hence, the digest of the signed element inside <DigestValue>
 node has a trace of the position of element; refer step-6 of
 algorithm in Section 3.1. Hence, any changes in the position of
 signed elements by the attackers will invalidate the signature; refer
 step-12 of algorithm in Section 3.2,as the calculated digest during
 signature validation will not match with the digest contained in
 <DigestValue> the forged XML document.

6. Conclusion

 XML Signature wrapping attacks try to inject forged elements into the
 XML document structure in such a way that the valid signature covers
 the unmodified elements, while forged elements are processed by the
 application logic. This results in a scenario, where an attacker can
 perform arbitrary web service requests, while authenticating as a

Jitendra Kumar, et al. Expires August 8, 2019 [Page 9]

Internet-Draft Abbreviated Title February 2019

 legitimate user. The proposed algorithm takes help of the absolute
 XPath as a "Positional Token" for identifying the signed elements and
 adding this to the elements being signed as an attribute before the
 canonicalization process has a trace of both content of signed
 element and its position in the XML document as well. Hence, the
 proposed algorithm can solve the issue of XML signature wrapping
 attacks elegantly without much change in the current standard.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 This draft proposes a modification to the existing algorithm of XML
 signature to counter XML Signature wrapping attacks. However other
 forms of attack may be possible that could not be mitigated.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2807] Reagle, J., "XML Signature Requirements", RFC 2807,
 DOI 10.17487/RFC2807, July 2000,
 <https://www.rfc-editor.org/info/rfc2807>.

 [RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible
 Markup Language) XML-Signature Syntax and Processing",

RFC 3275, DOI 10.17487/RFC3275, March 2002,
 <https://www.rfc-editor.org/info/rfc3275>.

9.2. Informative References

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", draft-narten-iana-

considerations-rfc2434bis-09 (work in progress), March
 2008.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 DOI 10.17487/RFC2629, June 1999,
 <https://www.rfc-editor.org/info/rfc2629>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2807
https://www.rfc-editor.org/info/rfc2807
https://datatracker.ietf.org/doc/html/rfc3275
https://www.rfc-editor.org/info/rfc3275
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09
https://datatracker.ietf.org/doc/html/rfc2629
https://www.rfc-editor.org/info/rfc2629

Jitendra Kumar, et al. Expires August 8, 2019 [Page 10]

Internet-Draft Abbreviated Title February 2019

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [wrapping_attack]
 McIntosh, Michael. and Paula. Austel, "XML signature
 element wrapping attacks and countermeasures", 2005,
 <https://dl.acm.org/citation.cfm?id=1103026>.

 [WS-Security]
 OASIS., "OASIS Web Services Security (WSS) TC", 2006,
 <https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=wss>.

Authors' Addresses

 Jitendra Kumar
 C-DAC Bangalore
 #68, Electronics City Hosur Road
 Bangalore 560100
 India

 Email: jitendra@cdac.in

 Balaji Rajendran
 C-DAC Bangalore
 #68, Electronics City Hosur Road
 Bangalore 560100
 India

 Email: balaji@cdac.in

 Bindhumadhava BS
 C-DAC Bangalore
 Old Madras Road, Opposite Hal Aero Engine Division
 Bangalore 560038
 India

 Email: bindhu@cdac.in

https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://dl.acm.org/citation.cfm?id=1103026
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Jitendra Kumar, et al. Expires August 8, 2019 [Page 11]

