
Network Working Group R. Enns, Editor
Internet-Draft Juniper Networks
Expires: December 28, 2003 June 29, 2003

XMLCONF Configuration Protocol
draft-enns-xmlconf-spec-01

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 There is a need for standardized mechanisms to manipulate, install,
 edit, and delete the configuration of a network device. In addition,
 there is a need to retrieve device state information and receive
 asynchronous device state messages in a manner consistent with the
 configuration mechanisms. There is great interest in using an
 XML-based data encoding because a significant set of tools for
 manipulating ASCII text and XML encoded data already exists.

Enns, Editor Expires December 28, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XMLCONF Protocol June 2003

Table of Contents

1. Introduction . 5
1.1 Protocol Overview . 6
1.1.1 Capabilities . 7
1.2 Separation of Configuration and State Data 7
1.3 Executive Commands . 8
1.4 Terminology . 8
1.4.1 Configuration Session 8
2. Transport Protocol Requirements 9
2.1 Connection-oriented operation 9
2.2 Security and Privacy . 9
2.3 Authentication . 9
2.4 Channels . 10
2.4.1 Management Channel . 10
2.4.2 Operation Channel . 11
2.4.3 Notification Channel . 11
3. RPC Model . 12
3.1 Namespace . 12
3.2 <rpc> Element . 12
3.3 <rpc-reply> Element . 13
3.4 <rpc-abort> Element . 13
3.5 <rpc-abort-reply> Element 14
3.6 <rpc-error> Element . 14
3.7 <ok> Element . 15
3.8 <rpc-progress> Element 15
3.9 Pipelining . 16
4. Configuration Model . 17
4.1 Configuration Datastores 17
5. Protocol Operations . 18
5.1 <get-config> . 18
5.2 <edit-config> . 21
5.3 <copy-config> . 25
5.4 <delete-config> . 27
5.5 <get-state> . 28
5.6 <kill-session> . 29
6. Capabilities . 31
6.1 Capabilities Exchange 31
6.2 Writable-Running Capability 32
6.2.1 Description . 32
6.2.2 Dependencies . 32
6.2.3 Capability and Namespace 32
6.2.4 New Operations . 32
6.2.5 Modifications to Existing Operations 32
6.3 Candidate Configuration Capability 33
6.3.1 Description . 33
6.3.2 Dependencies . 33
6.3.3 Capability and Namespace 34

Enns, Editor Expires December 28, 2003 [Page 2]

Internet-Draft XMLCONF Protocol June 2003

6.3.4 New Operations . 34
6.3.5 Modifications to Existing Operations 35
6.4 Validate Capability . 37
6.4.1 Description . 37
6.4.2 Dependencies . 37
6.4.3 Capability and Namespace 37
6.4.4 New Operations . 37
6.5 Distinct Startup Capability 38
6.5.1 Description . 38
6.5.2 Dependencies . 38
6.5.3 Capability and Namespace 38
6.5.4 New Operations . 39
6.5.5 Modifications to Existing Operations 39
6.6 Lock Capability . 39
6.6.1 Description . 39
6.6.2 Dependencies . 40
6.6.3 Capability and Namespace 40
6.6.4 New Operations . 40
6.7 Notifications Capability 42
6.7.1 Description . 43
6.7.2 Dependencies . 43
6.7.3 Capability and Namespace 43
6.7.4 New Operations . 43
6.8 URL Capability . 45
6.8.1 Description . 45
6.8.2 Dependencies . 45
6.8.3 Capability and Namespace 45
6.8.4 New Operations . 45
6.8.5 Modifications to Existing Operations 45
7. XML Usage Guidelines for XMLCONF 47
7.1 No DTDs . 47
7.2 Avoid Mixed Content . 47
7.3 No Attributes in the Default Namespace 47
7.4 Use Container Elements for Lists 48
7.5 Elements and Attributes 48
7.5.1 Consider Attributes as Metadata 48
7.5.2 Consider the Lack of Extensibility of Attributes 48
7.6 Proper Tag Names . 48
7.7 Namespaces . 49
8. BEEP Mapping . 51
8.1 XMLCONF Session Initiation 51
8.2 XMLCONF RPC Execution 51
8.3 XMLCONF <rpc-abort> and <rpc-progress> 52
8.4 XMLCONF Session Teardown 52
8.5 BEEP Profiles for XMLCONF Channels 52
8.5.1 Management Channel Profile 52
8.5.2 Operations Channel Profile 54
8.5.3 Notification Channel Profile 56

Enns, Editor Expires December 28, 2003 [Page 3]

Internet-Draft XMLCONF Protocol June 2003

9. XML Schema for XMLCONF RPC and Protocol Operations 57
10. XML Schema for XMLCONF State Data 63
11. Security Considerations 66
12. Authors and Acknowledgements 67

 Normative References . 68
 Informative References 69
 Author's Address . 69

A. Capability Template . 70
A.1 capability-name (template) 70
A.1.1 Overview . 70
A.1.2 Dependencies . 70
A.1.3 Capability and Namespace 70
A.1.4 New Operations . 70
A.1.5 Modifications to Existing Operations 70
A.1.6 Interactions with Other Capabilities 70
B. Configuring Multiple Devices with XMLCONF 71
B.1 Operations on Individual Devices 71
B.1.1 Acquiring the Configuration Lock 71
B.1.2 Loading the Update . 72
B.1.3 Validating the Incoming Configuration 73
B.1.4 Checkpointing the Running Configuration 74
B.1.5 Changing the Running Configuration 74
B.1.6 Testing the New Configuration 75
B.1.7 Making the Change Permanent 75
B.1.8 Releasing the Configuration Lock 76
B.2 Operations on Multiple Devices 76

 Intellectual Property and Copyright Statements 78

Enns, Editor Expires December 28, 2003 [Page 4]

Internet-Draft XMLCONF Protocol June 2003

1. Introduction

 The XMLCONF protocol defines a simple mechanism through which a
 network device can be managed. Configuration data, state
 information, and system notifications can be retrieved. New
 configuration data can be uploaded and manipulated. The protocol
 allows the device to expose a full, formal, application programming
 interface (API). Applications can use this straight-forward API to
 send and receive full and partial configuration data sets.

 XMLCONF uses a remote procedure call (RPC) paradigm to define a
 formal API for the network device. A client encodes an RPC in XML
 [1] and sends it to a server using secure, connection-oriented
 session. The server responds with a reply encoded in XML. The
 contents of both the request and the response are fully described in
 XML DTDs or XML schemas, or both, allowing both parties to recognize
 the syntax constraints imposed on the exchange.

 A key aspect of XMLCONF is an attempt to allow the functionality of
 the API to closely mirror the native functionality of the device.
 This reduces implementation costs and allows timely access to new
 features. In addition, applications can access both the syntactic
 and semantic content of the device's native user interface.

 XMLCONF allows a client to discover the set of protocol extensions
 supported by the server. These "capabilities" permit the client to
 adjust its behavior to take advantage of the features exposed by the
 device. The capability definitions can be easily extended in a
 noncentralized manner. Standard and vendor-specific capabilities can
 be defined with semantic and syntactic rigor.

 The XMLCONF protocol is a building block in a system of automated
 configuration. XML is the lingua franca of interchange, providing a
 flexible but fully specified encoding mechanism for hierarchical
 content. XMLCONF can be used in concert with XML-based
 transformation technologies such as XSLT to provide a system for
 automated generation of full and partial configurations. The system
 can query one or more databases for data about networking topologies,
 links, policies, customers, and services. This data can be
 transformed using one or more XSLT [8] scripts from a
 vendor-independent data schema into a form that is specific to the
 vendor, product, operating system, and software release. The
 resulting data can be passed to the device using the XMLCONF
 protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

https://datatracker.ietf.org/doc/html/rfc2119

Enns, Editor Expires December 28, 2003 [Page 5]

Internet-Draft XMLCONF Protocol June 2003

1.1 Protocol Overview

 XMLCONF uses a simple RPC-based mechanism to facilitate communication
 between a client and a server. The client is a script or application
 typically running as part of a network manager. The server is a
 network device. The terms "device" and "server" are used
 interchangeably in this document, as are "client" and "application".

 XMLCONF can be conceptually partitioned into four layers:

 Layer Example
 +-------------+ +-----------------------------+
 | Content | | Configuration data |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | Operations | | <get-config>, <edit-config> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | RPC | | <rpc>, <rpc-reply> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | Transport | | BEEP, SSH, SSL, console |
 +-------------+ +-----------------------------+

 1. The transport layer provides a communication path between the
 client and server. XMLCONF can be layered over any transport
 that provides a set of basic requirements. Section 2 discusses
 these requirements.

 2. The RPC layer provides a simple, transport-independent framing
 mechanism for encoding RPCs. Section 3 documents this protocol.

 3. The operations layer defines a set of base operations invoked as
 RPC methods with XML-encoded parameters. Section 5 details the
 list of base operations.

 4. The content layer is outside the scope of this document. Given
 the current proprietary nature of the configuration data being
 manipulated, the specification of this content depends on the
 device vendor. It is expected that a separate effort to specify
 a standard data definition language and standard content will be
 undertaken.

Enns, Editor Expires December 28, 2003 [Page 6]

Internet-Draft XMLCONF Protocol June 2003

1.1.1 Capabilities

 An XMLCONF capability is a set of functionality that supplements the
 base XMLCONF specification. The capability is identified by a
 uniform resource identifier (URI). These URIs should follow the
 guidelines as described in Section 6.

 Capabilities augment the base operations of the device, describing
 both additional operations and the content allowed inside operations.
 The client can discover the server's capabilities and use any
 additional operations, parameters, and content defined by those
 capabilities.

 The capability definition may name one or more dependent
 capabilities. These capabilities must be implemented before the
 first capability can function properly. To support a capability, the
 server MUST support any capabilities upon which it depends.

Section 6 defines the capabilities exchange that allows the client to
 discover the server's capabilities. Section 6 also lists the set of
 capabilities defined in this document.

 Additional capabilities can be defined at any time in external
 documents, allowing the set of capabilities to expand over time.
 Standards bodies may define standardized capabilities and vendors may
 define proprietary ones. The URI MUST sufficiently distinguish the
 naming authority to avoid naming collisions.

1.2 Separation of Configuration and State Data

 The information that can be retrieved from a running system is
 separated into two classes, configuration data and state data.
 Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. State data is the additional data on a system that is not
 configuration data such as read-only status information and collected
 statistics. When a devices is performing configuration operations a
 number of problems would arise if state data were included:

 o Comparisons of configuration files would be dominated by
 irrelevant entries such as different statistics.

 o A command to load the file would contain nonsensical commands such
 as commands to write read-only data.

 o The configuration file would be too large.

 To account for these issues, the XMLCONF protocol recognizes the

Enns, Editor Expires December 28, 2003 [Page 7]

Internet-Draft XMLCONF Protocol June 2003

 difference between configuration data and state data and provides
 commands that operate on each independently. For example, the
 <get-config> command retrieves configuration data only while the
 <get-state> command retrieves state data.

 Note that the XMLCONF protocol is concerned only with information
 required to get the system software into its desired running state.
 Other important persistent data such as user files and databases are
 not treated as configuration data by the XMLCONF protocol.
 Similarly, the collection of configuration files stored on a system
 (for example, the configuration files themselves) is not itself
 included in configuration data.

 If a local database of user authentication data is stored on the
 device, whether it is included in configuration data is an
 implementation dependent matter.

1.3 Executive Commands

 The XMLCONF protocol provides for executive commands to perform other
 functions on the system that ease the process of configuring the
 system. Examples include resetting a line card, issuing ping and
 traceroute commands, and debugging.

1.4 Terminology

1.4.1 Configuration Session

 A configuration session is the logical connection between a network
 administrator or network configuration application and a network
 device. A device MUST support one or more concurrent sessions.
 Global configuration attributes can be changed during any session,
 and the affects are visible in all sessions. Session-specific
 attributes affect only the session in which they are changed.

Enns, Editor Expires December 28, 2003 [Page 8]

Internet-Draft XMLCONF Protocol June 2003

2. Transport Protocol Requirements

 XMLCONF uses an RPC-based communication paradigm. A client sends a
 series of zero or more RPC request operations, which cause the server
 to respond with a corresponding series of RPC replies.

 The XMLCONF protocol can be layered on any transport that provides
 the required set of functionality. It is not bound to any particular
 transport protocol, but allows a mapping to define how it can be
 implemented over any specific protocol.

 This section details the characteristics that XMLCONF requires from
 the underlying transport protocol.

2.1 Connection-oriented operation

 XMLCONF is connection-oriented, requiring a persistent connection
 between peers. This connection must provide reliable, sequenced data
 delivery.

 XMLCONF connections are long-lived, persisting between protocol
 operations. This allows the client to make changes to the state of
 the connection that will persist for the lifetime of the connection.
 For example, authentication information specified for a connection
 remains in effect until the connection is closed.

 In addition, resources requested from the server for a particular
 connection MUST be automatically released when the connection closes,
 making failure recovery simpler and more robust. For example, when a
 lock is acquired by a peer, the lock persists until either explicitly
 released or the server is informed that the connection has been
 terminated. If a connection is terminated while the client holds a
 lock, the server can perform any appropriate recovery.

2.2 Security and Privacy

 XMLCONF connections must provide security and privacy. XMLCONF
 depends on the underlying protocol for this capability. An XMLCONF
 peer assumes that an appropriate level of security and privacy are
 provided independent of this document. For example, connections may
 be encrypted in TLS [4] (or SSH [11]), depending on the underlying
 protocol.

2.3 Authentication

 XMLCONF connections must be authenticated. The underlying protocol
 is responsible for authentication. The peer assumes that the
 connection's authentication information has been validated by the

Enns, Editor Expires December 28, 2003 [Page 9]

Internet-Draft XMLCONF Protocol June 2003

 underlying protocol using sufficiently trustworthy mechanisms and
 that the peer's entity can be trusted.

 One goal of XMLCONF is to provide a programmatic interface to the
 device that closely follows the functionality of the device's native
 interface. Therefore, it is expected that the underlying protocol
 uses existing authentication mechanisms defined by the device. For
 example, a device that supports RADIUS [5] should use RADIUS to
 authenticate XMLCONF sessions.

 The authentication process should result in an entity whose
 permissions and capabilities are known to the device. These
 permissions must be enforced during the XMLCONF session. For
 example, if the native user interface restricts users from changing
 the network interface configuration, the user should not be able to
 change this configuration data using XMLCONF.

2.4 Channels

 XMLCONF requires two distinct communication channels and an optional
 third channel.

 One channel, called the "management channel", carries information for
 managing the XMLCONF session.

 A second channel, called the "operation channel", carries a series of
 RPCs that constitute the real content of the XMLCONF session.

 A third optional channel, called the "notification channel", carries
 asynchronous notifications. This channel is established only if both
 parties request it during the initial capabilities exchange. (See

Section 6 for more information.)

2.4.1 Management Channel

 The XMLCONF session is considered to start when the management
 channel is opened and ends when this channel is closed. If the
 operation channel is open when the management channel is closed, it
 should be closed immediately. Only one management channel can exist
 within a particular session, although multiple sessions can be opened
 simultaneously.

 The management channel serves three main purposes:

 o Advertise the capabilities supported by each peer.

 o Manage outstanding RPCs on operation channels (that is, aborting
 them).

Enns, Editor Expires December 28, 2003 [Page 10]

Internet-Draft XMLCONF Protocol June 2003

 o Send progress reports.

2.4.1.1 Managing Operation Channel

 Creation of the operation channel is transport-specific.

2.4.1.2 Managing Outstanding RPCs

 XML data streams by their nature prohibit unrelated data from being
 intermingled with normal content. This implies that an operation
 must be managed by an external data path to avoid intermixing the
 true content data with the management data. This is the origin of
 the requirement for multiple channels.

2.4.2 Operation Channel

 The operation channel is used to perform XMLCONF protocol operations
 using the <rpc> and <rpc-reply> tags. The RPC model is discussed in

Section 3.

 Most of the XMLCONF operations are performed as RPCs over the
 operation channel.

2.4.3 Notification Channel

 The XMLCONF protocol allows for different notification profiles. A
 specific profile must be supported by both peers for the notification
 mechanism defined in that profile to be used. This document
 specifies a mapping to the Reliable Delivery for Syslog messages.

 Notifications are discussed in Section 6 and RFC 3195 [7].

https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 11]

Internet-Draft XMLCONF Protocol June 2003

3. RPC Model

 The XMLCONF protocol uses an RPC-based communication model. XMLCONF
 peers use <rpc> and <rpc-reply> elements to provide
 transport-independent framing of protocol requests and responses.

3.1 Namespace

 The <rpc>, <rpc-reply>, and <rpc-progress> elements are defined in
 the following namespace:

http://ietf.org/xmlconf/1.0/base

3.2 <rpc> Element

 The <rpc> element is used in both the management and operation
 channels.

 The <rpc> element has a mandatory attribute "message-id", which is an
 arbitrary string chosen by the sender of the RPC that will commonly
 encode a monotonically increasing integer. The receiver of the RPC
 does not decode or interpret this string but simply saves it to use
 as an "message-id" attribute in any resulting <rpc-reply>,
 <rpc-abort-reply> or <rpc-progress> messages. For example:

 <rpc message-id="101" xmlns="http://ietf.org/xmlconf/1.0/base">
 <some-method>
 ...
 </some-method>
 </rpc>

 The name and parameters of an RPC are encoded as the contents of the
 <rpc> element. The name of the RPC is an element directly inside the
 <rpc> element, and any parameters are encoded inside this element.

 The following example invokes a method called "my-own-method" which
 has two parameters, "my-first-parameter", with a value of "14", and
 "another-parameter", with a value of "fred":

 <rpc message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
 <my-own-method xmlns="http://example.net/me/1.0/my-own">
 <my-first-parameter>14</my-first-parameter>
 <another-parameter>fred</another-parameter>
 </my-own-method>
 </rpc>

 The following example invokes a "rock-the-house" method with a

http://ietf.org/xmlconf/1.0/base

Enns, Editor Expires December 28, 2003 [Page 12]

Internet-Draft XMLCONF Protocol June 2003

 "zip-code" parameter of "27606-0100":

 <rpc message-id="103" xmlns="http://ietf.org/xmlconf/1.0/base">
 <rock-the-house xmlns="http://example.net/house/1.0/rock">
 <zip-code>27606-0100</zip-code>
 </rock-the-house>
 </rpc>

 The following example invokes the "rock-the-world" method with no
 parameters:

 <rpc message-id="104" xmlns="http://ietf.org/xmlconf/1.0/base">
 <rock-the-world xmlns="http://example.net/house/1.0/rock"/>
 </rpc>

3.3 <rpc-reply> Element

 The <rpc-reply> message is sent on the operations channel in response
 to a <rpc> operation.

 The <rpc-reply> element has a mandatory attribute "message-id", which
 is equal to the "message-id" attribute of the <rpc> for which this is
 a response.

 The response name and response data are encoded as the contents of
 the <rpc-reply> element. The name of the reply is an element
 directly inside the <rpc-reply> element, and any data is encoded
 inside this element.

 For example:

 <rpc-reply message-id="101" xmlns="http://ietf.org/xmlconf/1.0/base">
 <some-content>
 ...
 </some-content>
 </rpc-reply>

3.4 <rpc-abort> Element

 The <rpc-abort> element is sent on the management channel by the
 sender of an <rpc> who desires to terminate an operation before it
 completes. The <rpc-abort> element includes a mandatory attribute
 "message-id", which is equal to the "message-id" attribute of the
 <rpc> to be terminated.

 The <rpc-abort> operation is encoded as an element with no

Enns, Editor Expires December 28, 2003 [Page 13]

Internet-Draft XMLCONF Protocol June 2003

 subelements or data. For example:

 <rpc-abort message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base"/>

 An <rpc-abort-reply> element is sent immediately on the management
 channel. If the indicated <rpc-reply> is in progress on the
 operations channel, it shall be terminated cleanly by closing all
 open elements. An <rpc-error> element (see Section 3.6) should be
 added to the <rpc-reply> indicating the operation being aborted. If
 the <rpc-reply> has not yet begun, it should be sent containing an
 <rpc-error> element. If multiple <rpc> requests are pending, the
 <rpc-error> and <rpc-reply> messages must be sent in the proper
 order.

 If no pending operation matches the "message-id" attribute, then the
 abort operation completes without error. The <rpc-abort> message can
 be generated only for <rpc> requests that contain an "message-id"
 attribute. If multiple <rpc> requests with the same "message-id"
 exist, then only the request that was received first by the peer is
 aborted.

3.5 <rpc-abort-reply> Element

 The <rpc-abort-reply> message is sent on the management channel in
 response to an <rpc-abort> operation.

 The <rpc-abort-reply> message has a mandatory attribute "message-id",
 which is equal to the "message-id" attribute of the <rpc-abort> for
 which this is a response.

 The <rpc-abort-reply> operation is encoded as an empty element. For
 example:

 <rpc-abort-reply message-id="102" xmlns="http://ietf.org/xmlconf/1.0/
base"/>

3.6 <rpc-error> Element

 The <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request.

 The <rpc-error> element includes the following information:

 o tag: String identifying the error condition.

 o error-code: Integer identifying the error condition.

 o severity: String identifying the error severity, as determined by

Enns, Editor Expires December 28, 2003 [Page 14]

Internet-Draft XMLCONF Protocol June 2003

 the device.

 o edit-path: Configuration data that provides the context for the
 command that caused the error. This can be the empty string if
 the command causing the error is located at the top level of the
 command hierarchy.

 o statement: Configuration or command that caused the error.

 o message: String describing the error condition.

 o action: Action taken by the device in response to this error.

 [ed: A list of standard error codes is TBD. Both protocol error and
 application error codes will be supported by <rpc-error>.]

 <rpc-error message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
 <tag>EXAMPLE_MTU_RANGE</tag>
 <error-code>128</error-code>
 <severity>error</severity>
 <statement>mtu 21050;</statement>
 <message>MTU 21050 on Ethernet/1 is outside range 256..9192</message>
 </rpc-error>

3.7 <ok> Element

 The <ok> element is sent in <rpc-reply> messages if no error occurred
 during the processing of an <rpc> request. For example:

 <rpc-reply message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

3.8 <rpc-progress> Element

 Some operations might take a long time to process before an
 <rpc-reply> can be generated or might generate an <rpc-reply> that
 takes a long time to transmit. If the recipient of an <rpc>
 determines that the <rpc-reply> will not be generated and transmitted
 in less than N seconds, it can send a progress report with the
 <rpc-progress> message. The number of seconds, N, is implementation
 dependent.

 The <rpc-progress> element is sent on the management channel. It has
 a mandatory attribute "message-id", which is equal to the
 "message-id" attribute of the associated <rpc> on which progress is

Enns, Editor Expires December 28, 2003 [Page 15]

Internet-Draft XMLCONF Protocol June 2003

 being reported.

 The <rpc-progress> element contains one or more of the optional
 elements <percent-done>, <amount>, and <message>.

 The <percent-done> element contains an estimate of the percentage of
 the operation that is complete in terms of real time (i.e., wall
 clock time). For example:

 <rpc-progress message-id="103">
 <percent-done>45</percent-done>
 </rpc-progress>

 The <amount> element contains an absolute quantity indicating an
 amount of work completed. For example:

 <rpc-progress message-id="103">
 <amount>45KB</amount>
 </rpc-progress>

 The <message> element contains a text message indicating progress on
 the associated <rpc>. For example:

 <rpc-progress message-id="103">
 <message>Connecting...</message>
 </rpc-progress>
 <rpc-progress message-id="103">
 <message>Connected.</message>
 </rpc-progress>

 Multiple <rpc-progress> messages can be sent for a particular <rpc>.

3.9 Pipelining

 The operations channel is processed serially by the managed device.
 Additional <rpc> requests may be sent before previous ones have been
 completed, but they are added to the queue for that channel. On any
 given operations channel, the managed device may send responses only
 in the order the requests were received.

 Messages may be received asynchronously on the notification channel.

Enns, Editor Expires December 28, 2003 [Page 16]

Internet-Draft XMLCONF Protocol June 2003

4. Configuration Model

 XMLCONF provides an initial set of operations and a number of
 capabilities that can be used to extend the base. XMLCONF peers
 exchange device capabilities when the session is initiated as
 described in Section 6.1.

4.1 Configuration Datastores

 XMLCONF defines the existence of one or more configuration datastores
 and allows configuration operations on them. A configuration
 datastore is defined as the complete set of configuration data that
 is required to get a device from its initial default state into a
 desired operational state. The configuration datastore does not
 include state data or executive commands.

 The following configuration datastores are present in the base model.
 Capabilities may define additional configuration datastores, which
 then are available only on devices that advertise the capabilities.

 o Running: The complete configuration currently active on the
 network device. Only one configuration datastore of this type
 exists on the device, and it is always present. XMLCONF protocol
 operations refer to this datastore using the <running> element.

Enns, Editor Expires December 28, 2003 [Page 17]

Internet-Draft XMLCONF Protocol June 2003

5. Protocol Operations

 The XMLCONF protocol provides a small set of low-level operations to
 manage device configurations and retrieve device state information.
 The base protocol provides operations to retrieve, configure, copy,
 and delete configuration datastores. Additional operations are
 provided, based on the capabilities advertised by the device.

 The base protocol includes the following protocol operations:

 o get-config

 o edit-config

 o copy-config

 o delete-config

 o get-state

 o kill-session

 A protocol operation may fail for various reasons, including
 "operation not supported". An initiator should not assume that any
 operation will always succeed. The return values in any RPC reply
 should be checked for error responses.

 The syntax and XML encoding of the protocol operations are formally
 defined in the XML schema in Section 9. The following sections
 describe the semantics of each protocol operation.

5.1 <get-config>

 Description:

 Retrieve all or part of a specified configuration.

 Parameters:

 source: @config-name

 Name of the configuration datastore being queried, such as
 <running> or <startup>.

 config: @element-subtree

 Portions of the configuration command subtree to retrieve.
 The namespace of this configuration should be specified as

Enns, Editor Expires December 28, 2003 [Page 18]

Internet-Draft XMLCONF Protocol June 2003

 an attribute of this parameter. If this parameter is empty,
 the entire configuration is returned. If the format
 parameter is equal to "text", the contents of this parameter
 are proprietary.

 format: (xml | text)

 Format of the return text, either "xml" or "text". If this
 parameter contains the value "xml", the contents of the
 "config" parameter are expected to conform to the XML
 Namespace specified in that parameter. If the value is
 "text", the contents of the "config" parameter are
 proprietary.

 Positive Response:

 If the device can satisfy the request, the server sends an
 <rpc-reply> element containing a <config> element with the
 results of the query.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

Enns, Editor Expires December 28, 2003 [Page 19]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">
 <get-config>
 <source>
 <running/>
 </source>
 <config xmlns="http://example.com/schema/1.2/config">
 <users/>
 </config>
 <format>xml</format>
 </get-config>
 </rpc>

 <rpc-reply message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">
 <config xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full-name>Charlie Root</full-name>
 </user>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 </user>
 <user>
 <name>barney</name>
 <type>admin</type>
 <full-name>Barney Rubble</full-name>
 </user>
 </users>
 </config>
 </rpc-reply>

 The following example shows how additional nesting within the
 <config> parameter can be used to filter more of the output in the
 response:

Enns, Editor Expires December 28, 2003 [Page 20]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="106" xmlns="http://ietf.org/xmlconf/1.0/base">
 <get-config>
 <source>
 <running/>
 </source>
 <config xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </config>
 <format>xml</format>
 </get-config>
 </rpc>

 <rpc-reply message-id="106" xmlns="http://ietf.org/xmlconf/1.0/base">
 <config xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 </user>
 </users>
 </config>
 </rpc-reply>

5.2 <edit-config>

 Description:

 Load all or part of a specified configuration to the specified
 target configuration. This operation allows the new
 configuration to be expressed in several ways, such as using a
 local file, a remote file, or inline. If the target
 configuration does not exist, it is created.

 The device analyzes the source and target configurations and
 performs the requested changes. The target configuration is
 not simply replaced, as with the <copy-config> command.

 Attributes:

 operation: (merge | replace | delete) [default: merge]

Enns, Editor Expires December 28, 2003 [Page 21]

Internet-Draft XMLCONF Protocol June 2003

 Elements in the <config> subtree may contain an operation
 attribute. The attribute identifies the point in the
 configuration to perform the operation.

 In the interest of simplicity, all operation attributes
 appearing within the <config> subtree MUST have the same value.

 If the operation attribute is not specified, the configuration
 is merged into the configuration datastore.

 The operation attribute has one of the following values:

 merge: The configuration data identified by the element
 containing this attribute is merged with the configuration
 at the corresponding level in the configuration datastore
 identified by the target parameter.

 replace: The configuration data identified by the element
 containing this attribute replaces any related configuration
 in the configuration datastore identified by the target
 parameter. Unlike a <copy-config> operation, which replaces
 the entire target configuration, only the configuration
 actually present in the config parameter is affected.

 delete: The configuration data identified by the element
 containing this attribute is deleted in the configuration
 datastore identified by the target parameter.

 [ed. The operation attribute needs to be added to the XML
 schema in Section 9.]

 Parameters:

 target: @config-name

 Configuration datastore being edited, such as <running>.

 test-option: (test-then-set | set) [default: set]

 test-then-set: Perform a validation test before attempting
 to set; skip set if any errors.

 set: Perform a set without a validation test first.

 The test-option element may be specified only if the device
 advertises the #validate capability (Section 6.4).

Enns, Editor Expires December 28, 2003 [Page 22]

Internet-Draft XMLCONF Protocol June 2003

 error-option: (stop-on-error | ignore-error) [default:
 stop-on-error]

 stop-on-error: Abort the rpc request on first error.

 ignore-error: Continue to process configuration data on
 error; error is recorded and negative response is generated
 if any errors occur.

 config: @element-tree

 Portion of the configuration subtree to set. The namespace
 of this configuration should be specified as an attribute of
 this parameter.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent containing an <ok> element.

 Negative Response:

 An <rpc-error> response is sent if the request cannot be
 completed for any reason.

 Example: Set the MTU to 1500 on an interface named "Ethernet0/0" in
 the running configuration:

 <rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 23]

Internet-Draft XMLCONF Protocol June 2003

 Add an interface named "Ethernet0/0" to the running configuration,
 replacing any previous interface with that name:

 <rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns="http://example.com/schema/1.2/config"
 xmlns:xc="http://ietf.org/xmlconf/1.0/base">
 <interface xc:operation="replace">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 <address>
 <name>1.2.3.4</name>
 <mask>255.0.0.0</mask>
 </address>
 </interface>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

 Delete the interface named "Ethernet0/0" from the running
 configuration:

 <rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns="http://example.com/schema/1.2/config"
 xmlns:xc="http://ietf.org/xmlconf/1.0/base">
 <interface xc:operation="delete">
 <name>Ethernet0/0</name>
 </interface>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 24]

Internet-Draft XMLCONF Protocol June 2003

 Delete interface 192.168.0.1 from an OSPF area (other interfaces
 configured in the same area are unaffected):

 <rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns="http://example.com/schema/1.2/config"
 xmlns:xc="http://ietf.org/xmlconf/1.0/base">
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interfaces>
 <interface xc:operation="delete">
 <name>192.168.0.1</name>
 </interface>
 </interfaces>
 </area>
 </ospf>
 </protocols>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

5.3 <copy-config>

 Description:

 Create or replace an entire configuration file with the
 contents of another complete configuration file. If the target
 file exists, it is overwritten; otherwise, a new file is
 created.

 A device may choose not to support the <running> configuration
 datastore as the <target> parameter of a <copy-config>
 operation. A device may choose not to support remote to remote
 copy operations. The source and target parameters cannot
 identify the same file.

 The device may choose not to support format conversions with
 this operation. The running and startup configurations are

Enns, Editor Expires December 28, 2003 [Page 25]

Internet-Draft XMLCONF Protocol June 2003

 considered to be format neutral, but all other configuration
 files are created in a specific format (text or XML). A copy
 operation on any of these format-specific files may fail if the
 format parameter specifies a value different than the source
 file format. It is suggested that the format parameter be
 omitted in this type of operation, to select the source file
 format.

 Parameters:

 source: @config-name | config

 Name of the configuration datastore to use as the source of
 the copy operation or the <config> element containing the
 configuration subtree to copy.

 target: @config-name

 Name of the configuration datastore to use as the
 destination of the copy operation.

 format: (xml | text) [Default: xml]

 Format of the configuration file, either "xml" or "text".
 The format of the source and target configurations must
 match. Configuration datastores (such as <running>) match
 either format.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if
 the request cannot be completed for any reason.

 Example:

Enns, Editor Expires December 28, 2003 [Page 26]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <url>ftp://example.com/configs/testbed-dec10.txt</url>
 </target>
 <format>text</format>
 </copy-config>
 </rpc>

 <rpc-reply message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

5.4 <delete-config>

 Description:

 Delete a configuration datastore. The <running> configuration
 file cannot be deleted.

 Parameters:

 target: @config-name

 Name of the configuration datastore to delete.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if
 the request cannot be completed for any reason.

 Example:

Enns, Editor Expires December 28, 2003 [Page 27]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
 <delete-config>
 <target>
 <startup/>
 </target>
 </delete-config>
 </rpc>

 <rpc-reply message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

5.5 <get-state>

 Description:

 Retrieve device state information. Section 10 describes the
 XML schema for XMLCONF state data.

 Parameters:

 state: (@element-subtree | text)

 If the <format> parameter is equal to "xml", this parameter
 specifies the portion of the system state subtree to
 retrieve. The namespace of this configuration should be
 specified as an attribute of this parameter. If the
 <format> parameter is equal to "text", the contents of this
 parameter are proprietary. If this parameter is empty, all
 the device state information are returned.

 format: (xml | text)

 Format of the <state> parameter and the return text, either
 "xml" or "text".

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent. The <state> section contains the appropriate subset.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

Enns, Editor Expires December 28, 2003 [Page 28]

Internet-Draft XMLCONF Protocol June 2003

 Example:

 <rpc message-id="109" xmlns="http://ietf.org/xmlconf/1.0/base">
 <get-state>
 <state xmlns="http://example.com/schema/1.2/int-stats">
 <interface name="ethernet0/1">
 <intstats></intstats>
 </interface>
 </state>
 <format>xml</format>
 </get-state>
 </rpc>

 <rpc-reply message-id="109" xmlns="http://ietf.org/xmlconf/1.0/base">
 <state xmlns="http://example.com/schema/1.2/int-stats">
 <interface name="ethernet0/1">
 <intstats>
 <inPkts>9456823</inPkts>
 <inOctets>1228484566</inOctets>
 <inErrors>4326</inErrors>
 <outPkts>4821050</outPkts>
 <outOctets>634712154</outOctets>
 <outErrors>2096</outErrors>
 </intstats>
 </interface>
 </state>
 </rpc-reply>

5.6 <kill-session>

 Description:

 Force the termination of an XMLCONF session.

 Parameters:

 session-id: (Positive Integer)

 Session identifier of the XMLCONF session to be terminated.
 If this value is equal to the current session ID, a 'Bad
 Value' error is sent.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that includes an <ok> element.

Enns, Editor Expires December 28, 2003 [Page 29]

Internet-Draft XMLCONF Protocol June 2003

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="110" xmlns="http://ietf.org/xmlconf/1.0/base">
 <kill-session>
 <session-id>4</session-id>
 </kill-session>
 </rpc>

 <rpc-reply message-id="110" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 30]

Internet-Draft XMLCONF Protocol June 2003

6. Capabilities

 This section defines a set of capabilities that a client or a server
 MAY implement. Each peer advertises its capabilities by sending them
 during an initial capabilities exchange. Each peer needs to
 understand only those capabilities that it might use and must be able
 to process and ignore any capability received from the other peer
 that it does not require or does not understand.

 Additional capabilities can be defined using the template in Appendix
A. Future capability definitions may be published as standards by

 standards bodies or published as propriety by vendors.

 A capability is identified with a URI, in the form:

 http://{naming authority}/{protocol}/{version}/{category}#{name}

 Capabilities defined in this document have the following format:

http://ietf.org/xmlconf/1.0/base#{name}

 where {name} is the name of the capability. Capabilities are often
 referenced in discussions and email using the shorthand #{name}. For
 example, the foo capability would have the formal name "http://
 ietf.org/xmlconf/1.0/base#foo" and be called "#foo". The shorthand
 form MUST NOT be used inside the protocol.

6.1 Capabilities Exchange

 An XMLCONF capability is a set of additional functionality
 implemented on top of the base XMLCONF specification. The capability
 is distinguished by a URI. These URIs should follow the guidelines
 as described in Section 7.7.

 Capabilities are advertised in messages sent on the management
 channel when each peer starts operation. When the management channel
 is pened, each peer sends a <hello> element containing a list of that
 peer's capabilities.

 In the following example, the peer advertises the base XMLCONF
 capability, one XMLCONF capability defined in the base XMLCONF
 document, and one vendor-specific capability.

http://ietf.org/xmlconf/1

Enns, Editor Expires December 28, 2003 [Page 31]

Internet-Draft XMLCONF Protocol June 2003

 <hello>
 <capabilities>
 <capability>http://ietf.org/xmlconf/1.0/base</capability>
 <capability>http://ietf.org/xmlconf/1.0/base#lock</capability>
 <capability>http:/example.net/router/2.3/core#cool-feature</capability>
 </capabilities>
 </hello>

 Each peer sends its <hello> element simultaneously as soon as the
 connection is open. A peer MUST NOT wait to receive the capability
 set from the other side before sending its own set.

6.2 Writable-Running Capability

6.2.1 Description

 The #writable-running capability indicates that the device supports
 writes directly to the <running> configuration datastore. In other
 words, the device supports edit-config and copy-config operations
 where the <running> configuration is the target.

6.2.2 Dependencies

 None.

6.2.3 Capability and Namespace

 The #writable-running capability is identified by the following
 capability string:

http://ietf.org/xmlconf/1.0/base#writable-running

 The #writable-running capability uses the base XMLCONF namespace URI.

6.2.4 New Operations

 None.

6.2.5 Modifications to Existing Operations

6.2.5.1 <edit-config>

 The #writable-running capability modifies the <edit-config> operation
 to accept the <running> element as a <target>.

6.2.5.2 <copy-config>

 The #writable-running capability modifies the <copy-config> operation

http://ietf.org/xmlconf/1.0/base#writable-running

Enns, Editor Expires December 28, 2003 [Page 32]

Internet-Draft XMLCONF Protocol June 2003

 to accept the <running> element as a <target>.

6.3 Candidate Configuration Capability

6.3.1 Description

 The candidate configuration capability, #candidate, indicates that
 the device supports a candidate configuration datastore, which is
 used to hold configuration data that can manipulated without
 impacting the device's current configuration. The candidate
 configuration is a full configuration data set that serves as a work
 place for creating a manipulating configuration data. Additions,
 deletions, and changes may be made to this data to construct the
 desired configuration data. A <commit> operation may be performed at
 any time that causes the device's running configuration to be set to
 the value of the candidate configuration.

 The candidate configuration can be used as a source or target of any
 operation with a <source> or <target> parameter. The <candidate>
 element is used to indicate the candidate configuration:

 <rpc message-id="112" xmlns="http://ietf.org/xmlconf/1.0/base">
 <operation>
 <source>
 <candidate/>
 </source>
 </operation>
 </rpc>

 The candidate configuration may be shared among multiple sessions.
 Unless a client has specific information that the candidate
 configuration is not shared (for example, through another
 capability), it must assume that other sessions may be able to modify
 the candidate configuration at the same time. It is therefore
 prudent for a client to lock the candidate configuration before
 modifying it.

 The client can discard any changes since the last <commit> operation
 by executing the <discard-changes> operation. The candidate
 configuration's content then reverts to the current committed
 configuration.

6.3.2 Dependencies

 The #candidate capability requires that the #lock capability be
 implemented. Manipulation of a candidate configuration without a
 locking mechanism is not advised.

Enns, Editor Expires December 28, 2003 [Page 33]

Internet-Draft XMLCONF Protocol June 2003

6.3.3 Capability and Namespace

 The #candidate capability is identified by the following capability
 string:

http://ietf.org/xmlconf/1.0/base#candidate

 The #candidate capability uses the base XMLCONF namespace URI.

6.3.4 New Operations

6.3.4.1 <commit>

 Description:

 When a candidate configuration's content is complete, the
 configuration data can be committed, publishing the data set to
 the rest of the device and requesting the device to conform to
 the behavior described in the new configuration.

 To commit the candidate configuration as the device's new
 current configuration, use the <commit> operation.

 The <commit> operation instructs the device to implement the
 configuration data contained in the candidate configuration.

 If the system does not have the #candidate capability, the
 <commit> operation is not available.

 Parameters:

 confirmed:

 The <confirmed> element indicates that the <commit>
 operation MUST be reverted if a confirming commit is not
 issued within ten (10) minutes. The timeout period can be
 adjusted with the <confirm-timeout> element.

 confirmed-timeout: Timeout period for confirmed commit, in
 minutes.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

http://ietf.org/xmlconf/1.0/base#candidate

Enns, Editor Expires December 28, 2003 [Page 34]

Internet-Draft XMLCONF Protocol June 2003

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="113" xmlns="http://ietf.org/xmlconf/1.0/base">
 <commit/>
 </rpc>

 <rpc-reply message-id="113" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

 <rpc message-id="114" xmlns="http://ietf.org/xmlconf/1.0/base">
 <commit>
 <confirmed/>
 <confirm-timeout>20</confirmed-timeout>
 </commit>
 </rpc>

 <rpc-reply message-id="114" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

6.3.4.2 <discard-changes>

 If the client decides that the candidate configuration should not be
 committed, the <discard-changes> operation can be used to revert the
 candidate configuration to the current committed configuration.

 <rpc xmlns="http://ietf.org/xmlconf/1.0/base">
 <discard-changes/>
 </rpc>

 This operation discards any uncommitted changes.

6.3.5 Modifications to Existing Operations

6.3.5.1 <lock> and <unlock>

 The candidate configuration can be locked using the <lock> operation
 with the <candidate> element at the <source> parameter:

Enns, Editor Expires December 28, 2003 [Page 35]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="115" xmlns="http://ietf.org/xmlconf/1.0/base">
 <lock>
 <source>
 <candidate/>
 </source>
 </lock>
 </rpc>

 Devices implementing the #candidate capability WILL NOT allow a
 configuration lock to be acquired when there are outstanding changes
 to the candidate configuration. An error WILL be returned and the
 status of the lock will remain unchanged.

 When a client fails with outstanding changes to the candidate
 configuration, recovery can be difficult. To facilitate easy
 recovery, the #candidate capability adds a <discard-changes> element
 to the <lock> operation. If this element contains the value
 "automatic", any outstanding changes are discarded when the lock is
 released, whether explicitly with the <unlock> operation or
 implicitly from session failure.

 <rpc message-id="116" xmlns="http://ietf.org/xmlconf/1.0/base">
 <lock>
 <source>
 <candidate/>
 </source>
 <discard-changes>automatic</discard-changes>
 </lock>
 </rpc>

6.3.5.2 <get-config> and <edit-config>

 The candidate configuration is the default target for the
 <edit-config> and <get-config> operations. It may be explicitly
 named using the <candidate> element:

 <rpc message-id="117" xmlns="http://ietf.org/xmlconf/1.0/base">
 <get-config>
 <source>
 <candidate/>
 </source>
 </get-config>
 </rpc>

Enns, Editor Expires December 28, 2003 [Page 36]

Internet-Draft XMLCONF Protocol June 2003

6.4 Validate Capability

6.4.1 Description

 Validation consists of checking a candidate configuration for
 syntactical and semantic errors before applying the configuration to
 the device.

 If this capability is advertised, the device supports the <validate>
 protocol operation and checks at least for syntax errors. In
 addition, this capability supports the validate parameter to the
 <edit-config> operation and, when it is provided, checks at least for
 syntax errors.

6.4.2 Dependencies

 None.

6.4.3 Capability and Namespace

 The #validate capability is identified by the following capability
 string:

http://ietf.org/xmlconf/1.0/base#validate

 The #validate capability uses the base XMLCONF namespace URI.

6.4.4 New Operations

6.4.4.1 <validate>

 Description:

 This protocol operation validates the contents of the specified
 configuration.

 Parameters:

 source: @config-name

 Name of the configuration datastore being validated, such as
 <candidate>.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

http://ietf.org/xmlconf/1.0/base#validate

Enns, Editor Expires December 28, 2003 [Page 37]

Internet-Draft XMLCONF Protocol June 2003

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 A validate operation can fail for any of the following reasons:

 + Syntax errors

 + Missing parameters

 + References to undefined configuration data

 Example:

 <rpc message-id="118" xmlns="http://ietf.org/xmlconf/1.0/base">
 <validate>
 <candidate/>
 </validate>
 </rpc>

 <rpc-reply message-id="118" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

6.5 Distinct Startup Capability

6.5.1 Description

 The device supports separate running and startup configuration
 datastores. Operations which affect the running configuration will
 not be automatically copied to the startup configuration. An
 explicit <copy-config> operation from the <running> to the <startup>
 must be invoked to update the startup configuration to the current
 contents of the running configuration. XMLCONF protocol operations
 refer to the startup datastore using the <startup> element.

6.5.2 Dependencies

 None.

6.5.3 Capability and Namespace

 The #startup capability is identified by the following capability
 string:

http://ietf.org/xmlconf/1.0/base#startup

http://ietf.org/xmlconf/1.0/base#startup

Enns, Editor Expires December 28, 2003 [Page 38]

Internet-Draft XMLCONF Protocol June 2003

 The #startup capability uses the base XMLCONF namespace URI.

6.5.4 New Operations

 None.

6.5.5 Modifications to Existing Operations

6.5.5.1 <copy-config>

 To save the startup configuration, use the copy-config command to
 copy the <running> configuration datastore to the <startup>
 configuration datastore.

 <rpc message-id="119" xmlns="http://ietf.org/xmlconf/1.0/base">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 <format>text</format>
 </copy-config>
 </rpc>

6.6 Lock Capability

6.6.1 Description

 The #lock capability allows the client to lock the configuration
 system of a device. Such locks are intended to be short-lived and
 allow a client to make a change without fear of interaction with
 other XMLCONF clients, non-XMLCONF clients (SNMP and Expect scripts)
 and human users.

 An attempt to lock the configuration MUST fail if an existing session
 currently holds the lock.

 When the lock is acquired, the server MUST prevent any changes to the
 locked resource other than those requested by this session. SNMP and
 CLI requests to modify the resource MUST fail with an appropriate
 error.

 The duration of the lock is defined as beginning when the lock is
 acquired and lasting until either the lock is released or the XMLCONF
 session closes. The session closure may be explicitly performed by

Enns, Editor Expires December 28, 2003 [Page 39]

Internet-Draft XMLCONF Protocol June 2003

 the client, or implicitly performed by the server based on criteria
 such as lack of network connectivity, failure of the underlying
 transport, or simple inactivity timeout. This criteria is dependent
 on the vendor's implementation and the underlying transport.

 The lock operation takes an optional parameter, target. If the
 target parameter is specified, it names the configuration that will
 be locked. If the target parameter is not specified, then all
 configurations will be locked. When a lock is active, <edit-config>
 and <copy-config> operations will be disallowed on the locked
 configuration(s) by any other session. Additionally, the system will
 ensure that these locked configuration resources will not be modified
 by other non-XMLCONF management operations such as SNMP and CLI. The
 <kill-session> command (at the RPC layer) can be used to force the
 release of a lock.

6.6.2 Dependencies

 None.

6.6.3 Capability and Namespace

 The #lock capability is identified by the following capability
 string:

http://ietf.org/xmlconf/1.0/base#lock

 The #lock capability uses the base XMLCONF namespace URI.

6.6.4 New Operations

6.6.4.1 <lock>

 Description:

 A configuration source can be locked by using the <lock>
 operation. A lock will not be granted if any of the following
 conditions are true:

 + a lock is already held by another session

 + the target configuration has already been modified and these
 changes have not been committed

 + lock capability not supported

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

http://ietf.org/xmlconf/1.0/base#lock

Enns, Editor Expires December 28, 2003 [Page 40]

Internet-Draft XMLCONF Protocol June 2003

 A lock will be released by the system if the session holding
 the lock is terminated for any reason.

 Parameters:

 target: @config-name [Optional]

 Name of the configuration datastore to lock. If this
 parameter is not present, than all configuration datastores
 will be locked.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason. This error
 response will include the session number of the lock owner (if
 failure due to lock already held).

 Example:

 <rpc message-id="120" xmlns="http://ietf.org/xmlconf/1.0/base">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc-reply message-id="120" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

6.6.4.2 <unlock>

 Description:

 The unlock operation is used to release a configuration lock,
 previously obtained with the <lock> operation.

 An unlock operation will not succeed if any of the following
 conditions are true:

Enns, Editor Expires December 28, 2003 [Page 41]

Internet-Draft XMLCONF Protocol June 2003

 + the specified lock is not currently active

 + the session issuing the <unlock> operation is not the same
 session that obtained the lock

 The server MUST respond with either an <ok> element or an
 <error>.

 Parameters:

 target: @config-name [Optional]

 Name of the configuration datastore to unlock. If this
 parameter is not present, than all configuration datastores
 will be unlocked.

 An XMLCONF client is not permitted to unlock a configuration
 datastore that it did not lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="121" xmlns="http://ietf.org/xmlconf/1.0/base">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
 </rpc>

 <rpc-reply message-id="121" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

6.7 Notifications Capability

Enns, Editor Expires December 28, 2003 [Page 42]

Internet-Draft XMLCONF Protocol June 2003

6.7.1 Description

 The #notifications capability indicates that the server supports the
 notification channel. This channel provides a mechanism for sending
 asynchronous notifications within the XMLCONF session. This channel
 can be used for events and system logging.

6.7.2 Dependencies

 None.

6.7.3 Capability and Namespace

 The #notifications capability is identified by the following
 capability string:

http://ietf.org/xmlconf/1.0/base#notifications

 The #notifications capability uses the base XMLCONF namespace URI.

6.7.4 New Operations

6.7.4.1 <open-notifications>

 Description:

 Use the <open-notifications> operation to request the
 notification channel with a specific set of parameters. If
 successful, the underlying protocol will open the notification
 channel with the appropriate parameters.

 Parameters:

 format: format

 Indicates the format of the notification channel. The only
 legal value is "rfc3195".

 matching: match-expression [Optional]

 An optional parameter that limits notifications sent on the
 channel to those matching the match-expression.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

http://ietf.org/xmlconf/1.0/base#notifications
https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 43]

Internet-Draft XMLCONF Protocol June 2003

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="122" xmlns="http://ietf.org/xmlconf/1.0/base">
 <open-notifications>
 <format>rfc3195</format>
 <matching>match-expression</matching>
 </open-notifications>
 </rpc>

 <rpc-reply message-id="122" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

6.7.4.2 <close-notifications>

 Description:

 Use the <close-notifications> operation to close the
 notification channel. If successful, the underlying protocol
 will close the notification channel.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="123" xmlns="http://ietf.org/xmlconf/1.0/base">
 <close-notifications/>
 </rpc>

 <rpc-reply message-id="123" xmlns="http://ietf.org/xmlconf/1.0/base">
 <ok/>
 </rpc-reply>

https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 44]

Internet-Draft XMLCONF Protocol June 2003

6.8 URL Capability

6.8.1 Description

 The XMLCONF peer has the ability to accept the <url> element in
 <source> and <target> parameters. The capability is further
 identified by URL arguments indicating the protocols supported.

6.8.2 Dependencies

 None.

6.8.3 Capability and Namespace

 The #url capability is identified by the following capability string:

http://ietf.org/xmlconf/1.0/base#url?protocol={protocol-name,...}

 The #url capability uses the base XMLCONF namespace URI.

 The #url capability URI MUST contain a "protocol" argument assigned a
 comma-separated list of protocol names indicating which protocols the
 XMLCONF peer supports. For example:

http://ietf.org/xmlconf/1.0/base#url?protocol=http,ftp,file

 The #url capability uses the base XMLCONF namespace URI.

6.8.4 New Operations

 None.

6.8.5 Modifications to Existing Operations

6.8.5.1 <edit-config>

 The #url capability modifies the <edit-config> operation to accept
 the <url> element as the <config> parameter.

6.8.5.2 <copy-config>

 The #url capability modifies the <copy-config> operation to accept
 the <url> element as the value of the the <source> and the <target>
 parameters.

6.8.5.3 <delete-config>

 The #url capability modifies the <delete-config> operation to accept

http://ietf.org/xmlconf/1
http://ietf.org/xmlconf/1.0/base#url?protocol=http

Enns, Editor Expires December 28, 2003 [Page 45]

Internet-Draft XMLCONF Protocol June 2003

 the <url> element as the value of the the <target> parameters. If
 this parameter contains a URL, then it should identify a local
 configuration file.

6.8.5.4 <validate>

 The #url capability modifies the <validate> operation to accept the
 <url> element as the value of the the <source> parameter.

Enns, Editor Expires December 28, 2003 [Page 46]

Internet-Draft XMLCONF Protocol June 2003

7. XML Usage Guidelines for XMLCONF

 XML serves as an encoding format for XMLCONF, allowing complex
 hierarchical data to be expressed in a text format that can be read,
 saved, and manipulated with both traditional text tools and tools
 specific to XML.

 To simplify manipulation of XMLCONF content, use of XML is restricted
 to a simple subset of XML, as described in this section.

7.1 No DTDs

 Document type declarations (DTDs) are not permitted to appear in
 XMLCONF content.

7.2 Avoid Mixed Content

 Mixed content is defined as elements that can contain both data and
 other elements. Elements in XMLCONF can contain either data or
 additional elements only.

 This greatly simplifies the complexity of parsing XML, especially in
 the area of significant whitespace. Whitespace inside data elements
 is significant. Whitespace outside data elements is not.

 <valid>
 <element>data</element>
 <more>data</more>
 </valid>

 <not-valid>
 <element>data<more>data</more>maybe some</element>
 </not-valid>

7.3 No Attributes in the Default Namespace

 Do not use attributes in the default namespace. All attributes
 should be qualified.

 Unqualified attributes belong to the default namespace, and their use
 pollutes the default namespace. Restricting them to the current
 namespace encourages meaningful definitions that are free of
 collisions.

 <valid xmlns="http://valid/" xmlns:v="http://valid/" v:foo="cool"></valid>

 <not-valid xmlns="http://not-valid/" foo="not-cool"></not-valid>

Enns, Editor Expires December 28, 2003 [Page 47]

Internet-Draft XMLCONF Protocol June 2003

7.4 Use Container Elements for Lists

 When encoding lists with multiple instances, use a distinct container
 element, preferable the plural form of the instance element.

 In this example, the element 'grommet' is contained within the
 'grommets' element.

 <valid>
 <grommets>
 <grommet>....</grommet>
 <grommet>....</grommet>
 <grommet>....</grommet>
 </grommets>
 </valid>

 Use of container elements allows simpler manipulation of lists and
 list members.

7.5 Elements and Attributes

 The choice of elements and attributes has been widely discussed, but
 no absolute guidelines exist. When designing encoding rules for
 XMLCONF content, the following guidelines should be used:

7.5.1 Consider Attributes as Metadata

 Attributes should contain metadata about the element, not true data.
 By extension, vital information should not be encoded in attributes.

7.5.2 Consider the Lack of Extensibility of Attributes

 Attributes are unordered, can appear only once, and can have no
 children. Data scenarios which must leave room for future expansion
 (in future specifications or future software releases) should avoid
 attributes.

7.6 Proper Tag Names

 When choosing element names, consider the following guidelines:

 o Prefer ASCII (7-bit).

 o Prefer lowercase.

 o Prefer dashes to underscores.

 o Prefer full words. Note that "config" is considered a full word.

Enns, Editor Expires December 28, 2003 [Page 48]

Internet-Draft XMLCONF Protocol June 2003

 These are guidelines only and should be considered secondary to the
 need for consistency with existing vocabularies. For example, when
 encoding MIB variables names in XMLCONF, use the existing names
 (ifAddr) instead of shifting to these guidelines (if-address). These
 guidelines are valuable when no common vocabulary exists, because
 they help to avoid the scenario in which a dozen developers choose a
 dozen names that differ in ways that lead to frustrating
 inconsistencies, such as ifaddr, if-addr, if-address,
 interface-address, intf-addr, iaddr, and iface-addr.

7.7 Namespaces

 A namespace URI uniquely identifies the content and meaning of an XML
 element. When designing XML namespaces for XMLCONF content, the
 following guidelines should be used:

 o Prefer domain names in URIs. Use the domain name of the
 organization that controls the content of the scheme.

 o Prefer version numbers in namespaces. Use dates when version
 numbers are not appropriate. Versions should be formatted in
 strings that are consistent with the software being referenced.
 Dates should be formatted as "YYYY-MM-DD".

 o Prefer URLish URIs, but do not expect them all to be reachable or
 meaningful. While URIs are not URLs and are not required to
 reference any resource, using non-URL syntax is needlessly
 confusing. For example, the following URI looks like a programmer
 mistake:

 ietf.org:/rfc/rfc1234.txt

 The model namespace looks like:

 http://${naming-authority}/${topic}/${version}/${area}

 For example:

http://ietf.org/xmlconf/1.0/base-config

 In this usage, 'topic' might be the product name, 'version' might be
 the software version, and 'area' might be the portion of that
 software documented in this particular namespace.

 http://example.net/magic-os/84.1.3/bgp

 The ${topic} segment might contain a qualifying hierarchy. For
 example, if the Puff Router Company has a large set of operating

http://ietf.org/xmlconf/1.0/base-config

Enns, Editor Expires December 28, 2003 [Page 49]

Internet-Draft XMLCONF Protocol June 2003

 systems targeted at differing market segments, it may express this
 relationship in the ${topic}:

 http://example.net/embedded/magic-os/84.1.3/bgp

Enns, Editor Expires December 28, 2003 [Page 50]

Internet-Draft XMLCONF Protocol June 2003

8. BEEP Mapping

 All XMLCONF implementations MUST implement the profile and functional
 mapping between XMLCONF and BEEP as described below.

8.1 XMLCONF Session Initiation

 Managers may be either BEEP listeners or initiators. Similarly,
 agents may be either listeners or initiators. Thus the initial
 exchange takes place without regard to whether a manager or the agent
 is the initiator. After the transport connection is established, as
 greetings are exchanged, they should each announce their support for
 TLS [4] and optionally SASL [3] (see below), as well as for the
 SYSLOG profile [7]. Once greetings are exchanged, if TLS is to be
 used and available by both parties, the listener STARTs a channel
 with the TLS profile.

 Once TLS has been started, a new greeting is sent by both initiator
 and listener, as required by the BEEP RFC.

 At this point, if SASL is desired, the initiator starts BEEP channel
 1 to perform a SASL exchange to authenticate itself. When SASL is
 completed, the channel MUST be closed.

 Once authentication has occurred, there is no need to distinguish
 between initiator and listener. We now distinguish between manager
 and agent.

 The manager now establishes an XMLCONF management channel for the
 purpose of exchanging capabilities, monitoring progress, and aborting
 remote procedure calls. As initiators assign odd channels and
 listeners assign even channels, the management channel is BEEP
 channel 1 or 2, depending on whether the manager is the initiator or
 the listener.

 The manager next establishes the XMLCONF operational channel for the
 purpose of issuing RPC requests. This channel is BEEP channel 3 or
 4.

 Finally, if either manager or agent wishes to send or receive
 notifications, it may issue a start on the next available channel if
 the other side has sent the send or receive XMLCONF capability.

 At this point, the XMLCONF session is established.

8.2 XMLCONF RPC Execution

 To issue an RPC, the manager transmits on the operational channel a

Enns, Editor Expires December 28, 2003 [Page 51]

Internet-Draft XMLCONF Protocol June 2003

 BEEP MSG containing the RPC and its arguments. In accordance with
 the BEEP standard, RPC requests may be split across multiple BEEP
 frames.

 Once received and processed, the agent responds with BEEP RPYs on the
 same channel with the response to the RPC. In accordance with the
 BEEP standard, responses may be split across multiple BEEP frames.

8.3 XMLCONF <rpc-abort> and <rpc-progress>

 <rpc-abort> and <rpc-progress> requests are issued by the manager on
 the XMLCONF management channel, and the agent responds with BEEP RPYs
 on that same channel.

8.4 XMLCONF Session Teardown

 Either side may initiate the termination of an XMLCONF session. In
 This is done by issuing a BEEP close on the operational channel after
 the current RPC has completed. The same is done with any
 notification channels by the end that transmits notifications.
 Finally, BEEP channel 0 is closed.

8.5 BEEP Profiles for XMLCONF Channels

 There are two profiles, the management channel profile and the
 operations channel profile. These are not to be confused with the
 BEEP control channel.

 The operations channel will have two commands, <rpc> and <rpc-reply>.
 The management channel will have one additional operation with
 <rpc-progress>.

8.5.1 Management Channel Profile

 <!-- DTD for xmlconf management over BEEP

 Refer to this DTD as:

 <!ENTITY % XMLCONF PUBLIC "xmlconf/management/1.0" "">
 %XMLCONF;
 -->

 <!-- Contents

 Overview

 Includes
 Profile Summaries

Enns, Editor Expires December 28, 2003 [Page 52]

Internet-Draft XMLCONF Protocol June 2003

 Entity Definitions

 Operations
 rpc
 rpc-reply
 rpc-progress
 -->

 <!-- Overview XMLCONF Management channel -->

 <!-- Includes -->

 <!ENTITY % BEEP PUBLIC "-//Blocks//DTD BEEP//EN"
 "">
 %BEEP;

 <!-- Profile summaries

 BEEP profile XMLCONF-MANAGEMENT

 role MSG RPY ERR
 ==== === === ===
 I or L rpc ok error
 I or L rpc-reply ok error
 I or L rpc-progress ok error

 -->

 <!--
 Entity Definitions

 entity syntax/reference example
 ====== ================ =======

 a PRC
 RPC-DATA Alpha
 a RPC reply number
 RPC-REPLY 1*3DIGIT
 a RPC progress number
 RPC-PROGRESS 1*3DIGIT

 -->

 <!ENTITY % RPC-REPLY "CDATA">
 <!ENTITY % RPC-DATA "CDATA">
 <!ENTITY % RPC-PROGRESS "CDATA">
 -->

Enns, Editor Expires December 28, 2003 [Page 53]

Internet-Draft XMLCONF Protocol June 2003

 <!--
 RPC command
 -->

 <!ELEMENT rpc (#ELEMENTDATA)>
 <!ATTLIST rpc
 rpc-data %RPC_DATA; #REQUIRED>

 <!--
 Result of RPC.
 -->

 <!ELEMENT rpc-reply (#ELEMENTDATA)>
 <!ATTLIST rpc-reply
 rpc-reply %RPC-REPLY; #REQUIRED
 rpc-data %rpc-data #REQUIRED>

 <!--
 Progress of RPC operation.
 -->

 <!ELEMENT rpc-progress (#ELEMENTDATA)>
 <!ATTLIST rpc-progress
 rpc-progress %RPC-PROGRESS; #REQUIRED>

 <!-- End of DTD -->

8.5.2 Operations Channel Profile

 <!-- DTD for xmlconf operations over BEEP

 Refer to this DTD as:

 <!ENTITY % XMLCONF PUBLIC "xmlconf/Operation/1.0" "">
 %XMLCONF;
 -->

 <!-- Contents

 Overview

 Includes
 Profile Summaries
 Entity Definitions

 Operations

Enns, Editor Expires December 28, 2003 [Page 54]

Internet-Draft XMLCONF Protocol June 2003

 rpc
 rpc-reply
 -->

 <!-- Overview XMLCONF operation channel -->

 <!-- Includes -->

 <!ENTITY % BEEP PUBLIC "-//Blocks//DTD BEEP//EN"
 "">
 %BEEP;

 <!-- Profile summaries

 BEEP profile XMLCONF-MANAGEMENT

 role MSG RPY ERR
 ==== === === ===
 I or L rpc ok error
 I or L rpc-reply ok error

 -->

 <!--
 Entity Definitions

 entity syntax/reference example
 ====== ================ =======

 a PRC
 RPC-DATA Alpha
 a RPC reply number
 RPC-REPLY 1*3DIGIT

 -->

 <!ENTITY % RPC-REPLY "CDATA">
 <!ENTITY % RPC-DATA "CDATA">

 -->

 <!--
 RPC command
 -->

 <!ELEMENT RPC (#ELEMENTDATA)>
 <!ATTLIST RPC

Enns, Editor Expires December 28, 2003 [Page 55]

Internet-Draft XMLCONF Protocol June 2003

 RPC-DATA %RPC_DATA; #REQUIRED>

 <!--
 Result of RPC.
 -->

 <!ELEMENT RPC-REPLY (#ELEMENTDATA)>
 <!ATTLIST RPC-REPLY
 RPC-REPLY %RPC-REPLY; #REQUIRED
 RPC-DATA %RPC-DATA #REQUIRED>

 <!-- End of DTD -->

8.5.3 Notification Channel Profile

 The XMLCONF notification channel profile is defined in RFC 3195 [7].

https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 56]

Internet-Draft XMLCONF Protocol June 2003

9. XML Schema for XMLCONF RPC and Protocol Operations

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema targetNamespace="http://ietf.org/xmlconf/1.0/base"
 xmlns:xc="http://ietf.org/xmlconf/1.0/base"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified">
 <xsd:complexType name="rpcType">
 <xsd:sequence>
 <xsd:element ref="xc:rpcOperation"/>
 </xsd:sequence>
 <xsd:attribute name="message-id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:element name="rpc" type="xc:rpcType"/>
 <xsd:complexType name="rpc-errorType">
 <xsd:sequence>
 <xsd:element name="tag" type="xsd:string" minOccurs="0"/>
 <xsd:element name="error-code" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="severity" type="xsd:string" minOccurs="0"/>
 <xsd:element name="edit-path" type="xsd:string" minOccurs="0"/>
 <xsd:element name="statement" type="xsd:string" minOccurs="0"/>
 <xsd:element name="message" type="xsd:string" minOccurs="0"/>
 <xsd:element name="action" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rpc-replyType">
 <xsd:choice>
 <xsd:element name="ok" minOccurs="0"/>
 <xsd:element name="rpc-error"
 type="xc:rpc-errorType" minOccurs="0"/>
 <xsd:element ref="xc:config" minOccurs="0"/>
 <xsd:element ref="xc:state" minOccurs="0"/>
 </xsd:choice>
 <xsd:attribute name="message-id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:element name="rpc-reply" type="xc:rpc-replyType"/>
 <xsd:element name="percent-done" type="xsd:string"/>
 <xsd:element name="amount" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 <xsd:complexType name="rpc-progressType">
 <xsd:choice>
 <xsd:element ref="xc:percent-done"/>
 <xsd:element ref="xc:amount"/>
 <xsd:element ref="xc:message"/>
 </xsd:choice>
 <xsd:attribute name="message-id" type="xsd:string" use="required"/>
 </xsd:complexType>

Enns, Editor Expires December 28, 2003 [Page 57]

Internet-Draft XMLCONF Protocol June 2003

 <xsd:element name="rpc-progress" type="xc:rpc-progressType"/>
 <xsd:complexType name="rpc-abortType">
 <xsd:attribute name="message-id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:element name="rpc-abort" type="xc:rpc-abortType"/>
 <xsd:complexType name="rpc-abort-replyType">
 <xsd:attribute name="message-id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:element name="rpc-abort-reply" type="xc:rpc-abort-replyType"/>
 <xsd:simpleType name="responseAttributeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="terse"/>
 <xsd:enumeration value="full"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="test-optionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="test"/>
 <xsd:enumeration value="test-then-set"/>
 <xsd:enumeration value="set"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="test-option" type="xc:test-optionType"/>
 <xsd:simpleType name="error-optionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="stop-on-error"/>
 <xsd:enumeration value="ignore-error"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="error-option" type="xc:error-optionType"/>
 <xsd:complexType name="rpcOperationType">
 <xsd:attribute name="response" type="xc:responseAttributeType"
 default="terse"/>
 </xsd:complexType>
 <xsd:element name="rpcOperation" type="xc:rpcOperationType"
 abstract="true"/>
 <xsd:simpleType name="configFormatType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="xml"/>
 <xsd:enumeration value="text"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="format" type="xc:configFormatType"/>
 <xsd:complexType name="config-inlineType">
 <xsd:complexContent>
 <xsd:extension base="xsd:anyType">
 <xsd:attribute name="format" type="xc:configFormatType"/>
 </xsd:extension>

Enns, Editor Expires December 28, 2003 [Page 58]

Internet-Draft XMLCONF Protocol June 2003

 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="config" type="xc:config-inlineType"/>
 <xsd:element name="state" type="xc:config-inlineType"/>
 <xsd:complexType name="config-nameType"/>
 <xsd:element name="config-name" type="xc:config-nameType"
 abstract="true"/>
 <xsd:element name="startup" type="xc:config-nameType"
 substitutionGroup="xc:config-name"/>
 <xsd:element name="candidate" type="xc:config-nameType"
 substitutionGroup="xc:config-name"/>
 <xsd:element name="running" type="xc:config-nameType"
 substitutionGroup="xc:config-name"/>
 <xsd:complexType name="config-uriType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:anyURI">
 <xsd:attribute name="format" type="xc:configFormatType"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:element name="url" type="xc:config-uriType"/>
 <xsd:complexType name="rpcOperationSourceType">
 <xsd:choice>
 <xsd:element ref="xc:config"/>
 <xsd:element ref="xc:config-name"/>
 <xsd:element ref="xc:url"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:element name="source" type="xc:rpcOperationSourceType"/>
 <xsd:complexType name="rpcOperationTargetType">
 <xsd:choice>
 <xsd:element ref="xc:config-name"/>
 <xsd:element ref="xc:url"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:element name="target" type="xc:rpcOperationTargetType"/>
 <xsd:complexType name="get-configType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:source"/>
 <xsd:element ref="xc:config" minOccurs="0"/>
 <xsd:element ref="xc:format" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="get-config" type="xc:get-configType"

Enns, Editor Expires December 28, 2003 [Page 59]

Internet-Draft XMLCONF Protocol June 2003

 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="edit-configType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:source" minOccurs="0"/>
 <xsd:element ref="xc:target"/>
 <xsd:element ref="xc:test-option" minOccurs="0"/>
 <xsd:element ref="xc:write-option" minOccurs="0"/>
 <xsd:element ref="xc:error-option" minOccurs="0"/>
 <xsd:element ref="xc:config" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="edit-config" type="xc:edit-configType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="copy-configType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:source"/>
 <xsd:element ref="xc:target"/>
 <xsd:element ref="xc:format"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="copy-config" type="xc:copy-configType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="delete-configType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:target"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="delete-config" type="xc:delete-configType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="get-stateType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:state"/>
 <xsd:element ref="xc:format" minOccurs="0"/>
 </xsd:sequence>

Enns, Editor Expires December 28, 2003 [Page 60]

Internet-Draft XMLCONF Protocol June 2003

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="get-state" type="xc:get-stateType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="lockType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:target"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="lock" type="xc:lockType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="unlockType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:target"/>
 <xsd:element name="discard-changes" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="unlock" type="xc:unlockType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="validateType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element ref="xc:source"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="validate" type="xc:validateType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="commitType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element name="confirmed" minOccurs="0"/>
 <xsd:element name="confirmed-timeout" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

Enns, Editor Expires December 28, 2003 [Page 61]

Internet-Draft XMLCONF Protocol June 2003

 </xsd:complexType>
 <xsd:element name="commit" type="xc:commitType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="discard-changesType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="discard-changes" type="xc:discard-changesType"
 substitutionGroup="xc:rpcOperation"/>
 <xsd:complexType name="kill-sessionType">
 <xsd:complexContent>
 <xsd:extension base="xc:rpcOperationType">
 <xsd:sequence>
 <xsd:element name="session-id" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="kill-session" type="xc:kill-sessionType"
 substitutionGroup="xc:rpcOperation"/>
 </xsd:schema>

Enns, Editor Expires December 28, 2003 [Page 62]

Internet-Draft XMLCONF Protocol June 2003

10. XML Schema for XMLCONF State Data

 <schema
 targetNamespace="http://ietf.org/xmlconf/1.0/state"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xc="http://ietf.org/xmlconf/1.0/state"
 elementFormDefault="unqualified">

 <annotation>
 <documentation xml:lang="en">
 Initial schema for XMLCONF state information.
 </documentation>
 </annotation>

 <element name="xmlconf-state">
 <complexType>
 <sequence>

 <element name="capabilities">
 <annotation>
 <documentation xml:lang="en">
 List of XMLCONF capabilities supported by this device.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="capability" type="anyURI"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <element name="sessions">
 <annotation>
 <documentation xml:lang="en">
 List of XMLCONF sessions currently active on this device.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="my-session-id" type="positiveInteger"/>
 <element name="session" type="xc:XmlconfSessionInfo"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

Enns, Editor Expires December 28, 2003 [Page 63]

Internet-Draft XMLCONF Protocol June 2003

 <element name="configs">
 <annotation>
 <documentation xml:lang="en">
 List of XMLCONF configuration databases supported on this device.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="config" type="xc:XmlconfConfigInfo"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 </sequence>
 </complexType>
 </element>

 <complexType name="XmlconfSessionInfo">
 <sequence>
 <element name="session-id" type="positiveInteger"/>
 <element name="username" type="string"/>
 <element name="login-time" type="dateTime"/>
 </sequence>
 </complexType>

 <complexType name="XmlconfConfigInfo">
 <sequence>
 <element name="config-name" type="xc:ConfigName"/>
 <element name="lock-status" type="xc:LockStatus"/>
 </sequence>
 </complexType>

 <complexType name="ConfigName">
 <choice>
 <element name="candidate"/>
 <element name="running"/>
 <element name="startup"/>
 </choice>
 </complexType>

 <complexType name="LockStatus">
 <sequence>
 <element name="lock-state">
 <simpleType>
 <restriction base="string">
 <enumeration value="locked"/>
 <enumeration value="unlocked"/>

Enns, Editor Expires December 28, 2003 [Page 64]

Internet-Draft XMLCONF Protocol June 2003

 </restriction>
 </simpleType>
 </element>
 <element name="locked-by" type="positiveInteger"
 minOccurs="0"/>
 </sequence>
 </complexType>

 </schema>

Enns, Editor Expires December 28, 2003 [Page 65]

Internet-Draft XMLCONF Protocol June 2003

11. Security Considerations

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic so-called "person in the middle" attacks.
 Configuration information often times contains passwords, user names,
 service descriptions, and topological information, all of which are
 sensitive.

 The protocol, therefore, must minimally support options for both
 confidentiality and authentication. The initial transport mapping
 makes use of BEEP. BEEP itself makes use of both transport layer
 security and SASL. We require that TLS be used in BEEP as described
 by the BEEP standard. Client-side certificates are strongly
 desirable, but an SASL authentication is the bare minimum. SASL
 allows for the use of protocols such as radius, so that
 authentication can occur off the box.

 SASL authentication will occur on the first channel creation. No
 further authentication may occur during the same session. This
 avoids a situation where rights are different between different
 channels. If an implementation wishes to support multiple accesses
 by different individuals with different rights, then multiple
 sessions are required.

 Different environments may well allow different rights prior to and
 then after authentication. Thus, an authorization model is not
 specified in this document. When an operation is not properly
 authorized then a simple "permission denied" is sufficient. Note
 that authorization information may be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

Enns, Editor Expires December 28, 2003 [Page 66]

Internet-Draft XMLCONF Protocol June 2003

12. Authors and Acknowledgements

 This document was written by:

 Andy Bierman, Cisco Systems

 Ken Crozier, Cisco Systems

 Rob Enns, Juniper Networks

 Ted Goddard, Wind River

 Eliot Lear, Cisco Systems

 David Perkins, Riverstone Networks

 Phil Shafer, Juniper Networks

 Steve Waldbusser

 Margaret Wasserman, Wind River

Enns, Editor Expires December 28, 2003 [Page 67]

Internet-Draft XMLCONF Protocol June 2003

Normative References

 [1] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C REC
 REC-xml-20001006, October 2000.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [4] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

 [5] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

 [6] Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
3080, March 2001.

 [7] New, D. and M. Rose, "Reliable Delivery for syslog", RFC 3195,
 November 2001.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 68]

Internet-Draft XMLCONF Protocol June 2003

Informative References

 [8] Clark, J., "XSL Transformations (XSLT) Version 1.0", W3C REC
 REC-xslt-19991116, November 1999.

 [9] Hollenbeck, S., Rose, M. and L. Masinter, "Guidelines for the
 Use of Extensible Markup Language (XML) within IETF Protocols",

BCP 70, RFC 3470, January 2003.

 [10] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March 2001.

 [11] Rinne, T., Ylonen, T., Kivinen, T. and S. Lehtinen, "SSH
 Protocol Architecture", draft-ietf-secsh-architecture-13 (work
 in progress), September 2002.

Author's Address

 Rob Enns
 Juniper Networks
 1194 North Mathilda Ave
 Sunnyvale, CA 94089
 US

 EMail: rpe@juniper.net

https://datatracker.ietf.org/doc/html/bcp70
https://datatracker.ietf.org/doc/html/rfc3470
https://datatracker.ietf.org/doc/html/rfc3076
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-13

Enns, Editor Expires December 28, 2003 [Page 69]

Internet-Draft XMLCONF Protocol June 2003

Appendix A. Capability Template

A.1 capability-name (template)

A.1.1 Overview

A.1.2 Dependencies

A.1.3 Capability and Namespace

 The {name} is identified by following capability string:

http://ietf.org/xmlconf/1.0/base#{name}

 The {name} capability uses the base XMLCONF namespace URI.

A.1.4 New Operations

A.1.4.1 <op-name>

A.1.5 Modifications to Existing Operations

A.1.5.1 <op-name>

 If existing operations are not modified by this capability, this
 section may be omitted.

A.1.6 Interactions with Other Capabilities

 If this capability does not interact with other capabilities, this
 section may be omitted.

http://ietf.org/xmlconf/1

Enns, Editor Expires December 28, 2003 [Page 70]

Internet-Draft XMLCONF Protocol June 2003

Appendix B. Configuring Multiple Devices with XMLCONF

B.1 Operations on Individual Devices

 Consider the work involved in performing a configuration update
 against a single individual device. In making a change to the
 configuration, the application needs to build trust that its change
 has been made correctly and that it has not impacted the operation of
 the device. The application (and the application user) should feel
 confident that their change has not damaged the network.

 Protecting each individual device consists of a number of steps:

 o Acquiring the configuration lock.

 o Loading the update.

 o Validating the incoming configuration.

 o Checkpointing the running configuration.

 o Changing the running configuration.

 o Testing the new configuration.

 o Making the change permanent (if desired).

 o Releasing the configuration lock.

 Let's look at the details of each step.

B.1.1 Acquiring the Configuration Lock

 A lock should be acquired to prevent simultaneous updates from
 multiple sources. If multiple sources are affecting the device, the
 application is hampered in both testing of its change to the
 configuration and in recovery should the update fail. Acquiring a
 short-lived lock is a simple defense to prevent other parties from
 introducing unrelated changes while.

 The lock can be acquired only if the device supports the #lock
 capability. The lock can be acquired using the <lock> operation.

Enns, Editor Expires December 28, 2003 [Page 71]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="201" xmlns="http://ietf.org/xmlconf/1.0/base">
 <lock>
 <source>
 <running/>
 </source>
 </lock>
 </rpc>

 If the #candidate capability is also supported, failure recovery can
 be simplified by using the <discard-changes> parameter.

 <rpc message-id="202" xmlns="http://ietf.org/xmlconf/1.0/base">
 <lock>
 <discard-changes>automatic</discard-changes>
 <source>
 <candidate/>
 </source>
 </lock>
 </rpc>

B.1.2 Loading the Update

 The configuration can be loaded onto the device without impacting the
 running system. If the #url capability is supported, incoming
 changes can be placed in a local file.

 <rpc message-id="203" xmlns="http://ietf.org/xmlconf/1.0/base">
 <copy-config>
 <source>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </source>
 <target>
 <url>file://incoming.conf</url>
 </target>
 <format>text</format>
 </copy-config>
 </rpc>

 If the #candidate capability is supported, the candidate
 configuration can be used.

Enns, Editor Expires December 28, 2003 [Page 72]

Internet-Draft XMLCONF Protocol June 2003

 <rpc message-id="204" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <source>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </source>
 <target>
 <candidate/>
 </target>
 </edit-config>
 </rpc>

 If the update fails, the user file can be deleted using the
 <delete-config> operation or the candidate configuration reverted
 using the <discard-changes> operation.

B.1.3 Validating the Incoming Configuration

 Before applying the incoming configuration, it is often useful to
 validate it. Validation allows the application to gain confidence
 that the change will succeed and simplifies recovery if it does not.

 If the device supports the #url capability, use the <validate>
 operation with the <source> parameter set to the proper user file:

 <rpc message-id="205" xmlns="http://ietf.org/xmlconf/1.0/base">
 <validate>
 <source>
 <url>file://incoming.conf</url>
 </source>
 </validate>
 </rpc>

 If the device supports the #candidate capability, some validation
 will be performed as part of loading the incoming configuration into
 the candidate. For full validation, either pass the <validate>
 parameter during the <edit-config> step given above, or use the
 <validate> operation with the <source> parameter set to <candidate>.

 <rpc message-id="206" xmlns="http://ietf.org/xmlconf/1.0/base">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
 </rpc>

Enns, Editor Expires December 28, 2003 [Page 73]

Internet-Draft XMLCONF Protocol June 2003

B.1.4 Checkpointing the Running Configuration

 The running configuration can be saved into a local file as a
 checkpoint before loading the new configuration. If the update
 fails, the configuration can be restored by reloading the checkpoint
 file.

 The checkpoint file can be created using the <copy-config> operation.

 <rpc message-id="207" xmlns="http://ietf.org/xmlconf/1.0/base">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <url>file://checkpoint.conf</url>
 </target>
 <format>text</format>
 </copy-config>
 </rpc>

 To restore the checkpoint file, reverse the source and target
 parameters.

B.1.5 Changing the Running Configuration

 When the incoming configuration has been safely loaded onto the
 device and validated, it is ready to impact the running system.

 If the device supports the #url capability, use the <edit-config>
 operation to merge the incoming configuration into the running
 configuration.

 <rpc message-id="208" xmlns="http://ietf.org/xmlconf/1.0/base">
 <edit-config>
 <source>
 <url>file://incoming.conf</url>
 </source>
 <target>
 <running/>
 </target>
 </edit-config>
 </rpc>

 If the device supports the #candidate capability, use the <commit>
 operation to set the running configuration to the candidate
 configuration. Use the <confirm> parameter to allow automatic
 reverting to the original configuration if connectivity to the device

Enns, Editor Expires December 28, 2003 [Page 74]

Internet-Draft XMLCONF Protocol June 2003

 fails.

 <rpc message-id="209" xmlns="http://ietf.org/xmlconf/1.0/base">
 <commit>
 <confirmed/>
 <confirm-timeout>15</confirm-timeout>
 </commit>
 </rpc>

B.1.6 Testing the New Configuration

 Now that the incoming configuration has been integrated into the
 running configuration, the application needs to gain trust that the
 change has affected the device in the way intended without affecting
 it negatively.

 To gain this confidence, the application can run tests of the
 operational state of the device. The nature of the test is dependent
 on the nature of the change and is outside the scope of this
 document. Such tests may include reachability from the system
 running the application (using ping), changes in reachability to the
 rest of the network (by comparing the device's routing table), or
 inspection of the particular change (looking for operational evidence
 of the BGP peer that was just added).

B.1.7 Making the Change Permanent

 When the configuration change is in place and the application has
 sufficient faith in the proper function of this change, the
 application should make the change permanent.

 If the device supports the #startup capability, the current
 configuration can be saved to the startup configuration by using the
 startup configuration as the target of the <copy-config> operation.

 <rpc message-id="210" xmlns="http://ietf.org/xmlconf/1.0/base">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 <format>text</format>
 </copy-config>
 </rpc>

Enns, Editor Expires December 28, 2003 [Page 75]

Internet-Draft XMLCONF Protocol June 2003

 If the device supports the #candidate capability and a confirmed
 commit was requested, the confirming commit must be send before the
 timeout expires.

 <rpc message-id="211" xmlns="http://ietf.org/xmlconf/1.0/base">
 <commit/>
 </rpc>

B.1.8 Releasing the Configuration Lock

 When the configuration update is complete, the lock must be released,
 allowing other applications access to the configuration.

 Use the <unlock> operation to release the configuration lock.

 <rpc message-id="212" xmlns="http://ietf.org/xmlconf/1.0/base">
 <unlock/>
 </rpc>

B.2 Operations on Multiple Devices

 When a configuration change requires updates across a number of
 devices, care should be taken to provide the required transaction
 semantics. The XMLCONF protocol contains sufficient primitives upon
 which transaction-oriented operations can be built. Providing
 complete transactional semantics across multiple devices is
 prohibitively expensive, but the size and number of windows for
 failure scenarios can be reduced.

 There are two classes of multidevice operations. The first class of
 allows the operation to fail on individual devices without requiring
 all devices to revert to their original state. The operation can be
 retried at a later time, or its failure simply reported to the user.
 A example of this class might be adding an NTP server. For this
 class of operations, failure avoidance and recovery are focused on
 the individual device. This means recovery of the device, reporting
 the failure, and perhaps scheduling another attempt.

 The second class is more interesting, requiring that the operation
 should complete on all devices or be fully reversed. The network
 should either be transformed into a new state or be reset to its
 original state. For example, a change to a VPN may require updates
 to a number of devices. Another example of this might be adding a
 class-of-service definition. Leaving the network in a state where
 only a portion of the devices have been updated with the new
 definition will lead to future failures when the definition is

Enns, Editor Expires December 28, 2003 [Page 76]

Internet-Draft XMLCONF Protocol June 2003

 referenced.

 To give transactional semantics, the same steps used in single device
 operations listed above are used, but are performed in parallel
 across all devices. Configuration locks should be acquired on all
 target devices and kept until all devices are updated and the changes
 made permanent. Configuration changes should be uploaded and
 validation performed across all devices. Checkpoints should be made
 on each device. Then the running configuration can be changed,
 tested, and made permanent. If any of these steps fail, the previous
 configurations can be restored on any devices upon which it was
 changed. After the changes have been completely implemented or
 completely discarded, the locks on each device can be released.

Enns, Editor Expires December 28, 2003 [Page 77]

Internet-Draft XMLCONF Protocol June 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Enns, Editor Expires December 28, 2003 [Page 78]

Internet-Draft XMLCONF Protocol June 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Enns, Editor Expires December 28, 2003 [Page 79]

