Network Working Group R. Enns, Editor
Internet-Draft Juniper Networks
Expires: December 28, 2003 June 29, 2003

XMLCONF Configuration Protocol
draft-enns-xmlconf-spec-01
Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 28, 2003.
Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract

There is a need for standardized mechanisms to manipulate, install,
edit, and delete the configuration of a network device. In addition,
there is a need to retrieve device state information and receive
asynchronous device state messages in a manner consistent with the
configuration mechanisms. There is great interest in using an
XML-based data encoding because a significant set of tools for
manipulating ASCII text and XML encoded data already exists.

Enns, Editor Expires December 28, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XMLCONF Protocol June 2003

Table of Contents

1. Introduction

1.1 Protocol Overview

1.1.1 Capabilities . . .
1.2 Separation of Conflguratlon and State Data
1.3 Executive Commands

1.4 Terminology

1.4.1 Configuration Session .
2. Transport Protocol Requ1rements
2.1 Connection-oriented operation
2.2 Security and Privacy

2.3 Authentication

2.4 Channels .

2.4.1 Management Channel

2.4.2 Operation Channel

2.4.3 Notification Channel

3. RPC Model

3.1 Namespace

3.2 <rpc> Element

3.3 <rpc-reply> Element

3.4 <rpc-abort> Element

3.5 <rpc-abort-reply> Element

<rpc-error> Element

<ok> Element .
<rpc-progress> Element
Pipelining

Configuration Model
Configuration Datastores
Protocol Operations
<get-config>
<edit-config>

‘U‘I ‘U‘l lon ‘-b [‘00 ‘00 ‘(JO ‘OO‘
N = = © [0 N[O

)]
w

W W (W (W W [W W W [W W [W[WININININNERREREFRERRERRRERRRERR R R R
‘b‘w‘w‘w‘N‘M‘M‘N‘N‘N‘H‘H‘O‘m‘ﬂ‘m‘H‘m‘m‘ﬂ‘ﬂ‘@‘m‘m‘b‘b‘w‘w‘N‘N‘N‘H‘H‘O‘O\@\@\@\@\m\m\m\ﬂ\ﬂ\@\m

5.3 <copy-config>

5.4 <delete-config>

5.5 <get-state>

5.6 <kill-session>

6. Capabilities ..

6.1 Capabilities Exchange

6.2 Writable-Running Capability

6.2.1 Description

6.2.2 Dependencies e

6.2.3 Capability and Namespace

6.2.4 New Operations e e
6.2.5 Modifications to Existing Operations
6.3 Candidate Configuration Capability
6.3.1 Description

6.3.2 Dependencies

6.3.3 Capability and Namespace

Enns, Editor Expires December 28, 2003 [Page 2]

Internet-Draft XMLCONF Protocol

6.3.4 New Operations

6.3.5 Modifications to Ex1st1ng Operatlons
6.4 Validate Capability

6.4.1 Description

6.4.2 Dependencies

6.4.3 Capability and Namespace

6.4.4 New Operations

6.5 Distinct Startup Capablllty

6.5.1 Description

6.5.2 Dependencies o

6.5.3 Capability and Namespace

6.5.4 New Operations .

6.5.5 Modifications to Ex1st1ng Operatlons
6.6 Lock Capability

6.6.1 Description

6.6.2 Dependencies

6.6.3 Capability and Namespace

6.6.4 New Operations

6.7 Notifications Capablllty

6.7.1 Description

6.7.2 Dependencies .

6.7.3 Capability and Namespace

6.7.4 New Operations

6.8 URL Capability

6.8.1 Description

6.8.2 Dependencies e

6.8.3 Capability and Namespace

6.8.4 New Operations e e
6.8.5 Modifications to Existing Operations
7. XML Usage Guidelines for XMLCONF

7.1 No DTDs .

7.2 Avoid Mixed Content .o .
7.3 No Attributes in the Default Namespace
7.4 Use Container Elements for Lists

7.5 Elements and Attributes .

7.5.1 Consider Attributes as Metadata

7.5.2 Consider the Lack of Extensibility of Attrlbutes
7.6 Proper Tag Names

7.7 Namespaces

8. BEEP Mapping oo

8.1 XMLCONF Session Initiation

8.2 XMLCONF RPC Execution e
8.3 XMLCONF <rpc-abort> and <rpc-progress>
8.4 XMLCONF Session Teardown

8.5 BEEP Profiles for XMLCONF Channels
8.5.1 Management Channel Profile

8.5.2 Operations Channel Profile

Notification Channel Profile

[ee]
o1
w

June 2003

ajonjoomomoaooah|hAbbAibibrBIBIPPIRAIABDIMIBPIBDIPIBDIDIDIBDIBDBDOIWIWI[WI[WI[WI[W[W[WWIWIWI[WI[WI|W
‘Oﬁ ‘-b ‘T\J ‘I\.) ‘I\) ‘l\.) ‘H ‘H ‘H ‘@ ‘00 ‘00 ‘00 ‘00 ‘OO ‘\l ‘\l ‘\I ‘\l ‘U‘I ‘(ﬁ ‘O'I ‘U‘I ‘U‘I ‘()‘1 ‘OO ‘00 ‘(.}0 ‘OO ‘l\) ‘O ‘(D ‘O ‘LO ‘QO ‘@ ‘@ ‘00 ‘OO ‘OO ‘00 ‘\l ‘\l ‘\l ‘\l ‘\l ‘UT ‘-b

Enns, Editor Expires December 28, 2003 [Page 3]

Internet-Draft XMLCONF Protocol June 2003

9. XML Schema for XMLCONF RPC and Protocol Operations . 57
10. XML Schema for XMLCONF State Data . 63
11. Security Considerations . 66
12. Authors and Acknowledgements . 67

Normative References . 68

Informative References . 69

Author's Address . 69
A. Capability Template . 70
A.1 capability-name (template) . 70
A.1.1 Overview . 70
A.1.2 Dependencies . 70
A.1.3 Capability and Namespace . 70
A.1.4 New Operations . .o . 70
A.1.5 Modifications to Ex1st1ng Operatlons . 70
A.1.6 Interactions with Other Capabilities . 70
B. Configuring Multiple Devices with XMLCONF .71
B.1 Operations on Individual Devices 71
B.1.1 Acquiring the Configuration Lock 71
B.1.2 Loading the Update . 72
B.1.3 Validating the Incoming Conflguratlon 73
B.1.4 Checkpointing the Running Configuration 74
B.1.5 Changing the Running Configuration 74
B.1.6 Testing the New Configuration 75
B.1.7 Making the Change Permanent 75
B.1.8 Releasing the Configuration Lock 76
B.2 Operations on Multiple Devices 76

Intellectual Property and Copyright Statements 78

Enns, Editor Expires December 28, 2003 [Page 4]

Internet-Draft XMLCONF Protocol June 2003

=

Introduction

The XMLCONF protocol defines a simple mechanism through which a
network device can be managed. Configuration data, state
information, and system notifications can be retrieved. New
configuration data can be uploaded and manipulated. The protocol
allows the device to expose a full, formal, application programming
interface (API). Applications can use this straight-forward API to
send and receive full and partial configuration data sets.

XMLCONF uses a remote procedure call (RPC) paradigm to define a
formal API for the network device. A client encodes an RPC in XML
[1] and sends it to a server using secure, connection-oriented
session. The server responds with a reply encoded in XML. The
contents of both the request and the response are fully described in
XML DTDs or XML schemas, or both, allowing both parties to recognize
the syntax constraints imposed on the exchange.

A key aspect of XMLCONF is an attempt to allow the functionality of
the API to closely mirror the native functionality of the device.
This reduces implementation costs and allows timely access to new
features. 1In addition, applications can access both the syntactic
and semantic content of the device's native user interface.

XMLCONF allows a client to discover the set of protocol extensions
supported by the server. These "capabilities" permit the client to
adjust its behavior to take advantage of the features exposed by the
device. The capability definitions can be easily extended in a
noncentralized manner. Standard and vendor-specific capabilities can
be defined with semantic and syntactic rigor.

The XMLCONF protocol is a building block in a system of automated
configuration. XML is the lingua franca of interchange, providing a
flexible but fully specified encoding mechanism for hierarchical
content. XMLCONF can be used in concert with XML-based
transformation technologies such as XSLT to provide a system for
automated generation of full and partial configurations. The system
can query one or more databases for data about networking topologies,
links, policies, customers, and services. This data can be
transformed using one or more XSLT [8] scripts from a
vendor-independent data schema into a form that is specific to the
vendor, product, operating system, and software release. The
resulting data can be passed to the device using the XMLCONF
protocol.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

https://datatracker.ietf.org/doc/html/rfc2119

Enns, Editor Expires December 28, 2003 [Page 5]

Internet-Draft XMLCONF Protocol June 2003

1.1 Protocol Overview

XMLCONF uses a simple RPC-based mechanism to facilitate communication
between a client and a server. The client is a script or application
typically running as part of a network manager. The server is a
network device. The terms "device" and "server" are used
interchangeably in this document, as are '"client" and "application".

XMLCONF can be conceptually partitioned into four layers:

Layer Example
S —— + oo e e e oo oo - +
| Content | Configuration data
R + eSS +

I I
Y —— + oo e e e oo oo - +
| Operations | | <get-config>, <edit-config> |
Fommmme e e aaa + Y +
I I
S + S +
RPC <rpc>, <rpc-reply>
Fomm e e e oo oo + o e e oo +
I I
S + oo e e e e oo oo - +
| Transport | | BEEP, SSH, SSL, console |
Fomm e e e oo oo + o e e e e e oaooo-- +

1. The transport layer provides a communication path between the
client and server. XMLCONF can be layered over any transport
that provides a set of basic requirements. Section 2 discusses
these requirements.

2. The RPC layer provides a simple, transport-independent framing
mechanism for encoding RPCs. Section 3 documents this protocol.

3. The operations layer defines a set of base operations invoked as
RPC methods with XML-encoded parameters. Section 5 details the
list of base operations.

4. The content layer is outside the scope of this document. Given
the current proprietary nature of the configuration data being
manipulated, the specification of this content depends on the
device vendor. It is expected that a separate effort to specify
a standard data definition language and standard content will be
undertaken.

Enns, Editor Expires December 28, 2003 [Page 6]

Internet-Draft XMLCONF Protocol June 2003

1.1.1 Capabilities

An XMLCONF capability is a set of functionality that supplements the
base XMLCONF specification. The capability is identified by a
uniform resource identifier (URI). These URIs should follow the
guidelines as described in Section 6.

Capabilities augment the base operations of the device, describing
both additional operations and the content allowed inside operations.
The client can discover the server's capabilities and use any
additional operations, parameters, and content defined by those
capabilities.

The capability definition may name one or more dependent
capabilities. These capabilities must be implemented before the
first capability can function properly. To support a capability, the
server MUST support any capabilities upon which it depends.

Section 6 defines the capabilities exchange that allows the client to
discover the server's capabilities. Section 6 also lists the set of
capabilities defined in this document.

Additional capabilities can be defined at any time in external
documents, allowing the set of capabilities to expand over time.
Standards bodies may define standardized capabilities and vendors may
define proprietary ones. The URI MUST sufficiently distinguish the
naming authority to avoid naming collisions.

1.2 Separation of Configuration and State Data

The information that can be retrieved from a running system is
separated into two classes, configuration data and state data.
Configuration data is the set of writable data that is required to
transform a system from its initial default state into its current
state. State data is the additional data on a system that is not
configuration data such as read-only status information and collected
statistics. When a devices is performing configuration operations a
number of problems would arise if state data were included:

0o Comparisons of configuration files would be dominated by
irrelevant entries such as different statistics.

o A command to load the file would contain nonsensical commands such
as commands to write read-only data.

o The configuration file would be too large.

To account for these issues, the XMLCONF protocol recognizes the

Enns, Editor Expires December 28, 2003 [Page 7]

Internet-Draft XMLCONF Protocol June 2003

difference between configuration data and state data and provides
commands that operate on each independently. For example, the
<get-config> command retrieves configuration data only while the
<get-state> command retrieves state data.

Note that the XMLCONF protocol is concerned only with information
required to get the system software into its desired running state.
Other important persistent data such as user files and databases are
not treated as configuration data by the XMLCONF protocol.
Similarly, the collection of configuration files stored on a system
(for example, the configuration files themselves) is not itself
included in configuration data.

If a local database of user authentication data is stored on the
device, whether it is included in configuration data is an
implementation dependent matter.

1.3 Executive Commands

The XMLCONF protocol provides for executive commands to perform other
functions on the system that ease the process of configuring the
system. Examples include resetting a line card, issuing ping and
traceroute commands, and debugging.

1.4 Terminology
1.4.1 Configuration Session

A configuration session is the logical connection between a network
administrator or network configuration application and a network
device. A device MUST support one or more concurrent sessions.
Global configuration attributes can be changed during any session,
and the affects are visible in all sessions. Session-specific
attributes affect only the session in which they are changed.

Enns, Editor Expires December 28, 2003 [Page 8]

Internet-Draft XMLCONF Protocol June 2003

2. Transport Protocol Requirements

XMLCONF uses an RPC-based communication paradigm. A client sends a
series of zero or more RPC request operations, which cause the server
to respond with a corresponding series of RPC replies.

The XMLCONF protocol can be layered on any transport that provides
the required set of functionality. It is not bound to any particular
transport protocol, but allows a mapping to define how it can be
implemented over any specific protocol.

This section details the characteristics that XMLCONF requires from
the underlying transport protocol.

2.1 Connection-oriented operation

XMLCONF is connection-oriented, requiring a persistent connection
between peers. This connection must provide reliable, sequenced data
delivery.

XMLCONF connections are long-lived, persisting between protocol
operations. This allows the client to make changes to the state of
the connection that will persist for the lifetime of the connection.
For example, authentication information specified for a connection
remains in effect until the connection is closed.

In addition, resources requested from the server for a particular
connection MUST be automatically released when the connection closes,
making failure recovery simpler and more robust. For example, when a
lock is acquired by a peer, the lock persists until either explicitly
released or the server is informed that the connection has been
terminated. If a connection is terminated while the client holds a
lock, the server can perform any appropriate recovery.

2.2 Security and Privacy

XMLCONF connections must provide security and privacy. XMLCONF
depends on the underlying protocol for this capability. An XMLCONF
peer assumes that an appropriate level of security and privacy are
provided independent of this document. For example, connections may
be encrypted in TLS [4] (or SSH [11]), depending on the underlying
protocol.

2.3 Authentication
XMLCONF connections must be authenticated. The underlying protocol

is responsible for authentication. The peer assumes that the
connection's authentication information has been validated by the

Enns, Editor Expires December 28, 2003 [Page 9]

Internet-Draft XMLCONF Protocol June 2003

underlying protocol using sufficiently trustworthy mechanisms and
that the peer's entity can be trusted.

One goal of XMLCONF is to provide a programmatic interface to the
device that closely follows the functionality of the device's native
interface. Therefore, it is expected that the underlying protocol
uses existing authentication mechanisms defined by the device. For
example, a device that supports RADIUS [5] should use RADIUS to
authenticate XMLCONF sessions.

The authentication process should result in an entity whose
permissions and capabilities are known to the device. These
permissions must be enforced during the XMLCONF session. For
example, if the native user interface restricts users from changing
the network interface configuration, the user should not be able to
change this configuration data using XMLCONF.

2.4 Channels

XMLCONF requires two distinct communication channels and an optional
third channel.

One channel, called the "management channel", carries information for
managing the XMLCONF session.

A second channel, called the "operation channel", carries a series of
RPCs that constitute the real content of the XMLCONF session.

A third optional channel, called the "notification channel", carries
asynchronous notifications. This channel is established only if both
parties request it during the initial capabilities exchange. (See
Section 6 for more information.)

2.4.1 Management Channel

The XMLCONF session is considered to start when the management
channel is opened and ends when this channel is closed. If the
operation channel is open when the management channel is closed, it
should be closed immediately. Only one management channel can exist
within a particular session, although multiple sessions can be opened
simultaneously.

The management channel serves three main purposes:
0 Advertise the capabilities supported by each peer.

0 Manage outstanding RPCs on operation channels (that is, aborting
them).

Enns, Editor Expires December 28, 2003 [Page 10]

Internet-Draft XMLCONF Protocol June 2003
0 Send progress reports.

2.4.1.1 Managing Operation Channel
Creation of the operation channel is transport-specific.
2.4.1.2 Managing Outstanding RPCs

XML data streams by their nature prohibit unrelated data from being
intermingled with normal content. This implies that an operation
must be managed by an external data path to avoid intermixing the
true content data with the management data. This is the origin of
the requirement for multiple channels.

2.4.2 Operation Channel

The operation channel is used to perform XMLCONF protocol operations

using the <rpc> and <rpc-reply> tags. The RPC model is discussed in
Section 3.

Most of the XMLCONF operations are performed as RPCs over the
operation channel.

2.4.3 Notification Channel
The XMLCONF protocol allows for different notification profiles. A
specific profile must be supported by both peers for the notification

mechanism defined in that profile to be used. This document
specifies a mapping to the Reliable Delivery for Syslog messages.

Notifications are discussed in Section 6 and RFC 3195 [7].

https://datatracker.ietf.org/doc/html/rfc3195

Enns, Editor Expires December 28, 2003 [Page 11]

Internet-Draft XMLCONF Protocol June 2003

3. RPC Model

The XMLCONF protocol uses an RPC-based communication model. XMLCONF
peers use <rpc> and <rpc-reply> elements to provide
transport-independent framing of protocol requests and responses.

3.1 Namespace

The <rpc>, <rpc-reply>, and <rpc-progress> elements are defined in
the following namespace:

http://ietf.org/xmlconf/1.0/base

3.2 <rpc> Element

The <rpc> element is used in both the management and operation
channels.

The <rpc> element has a mandatory attribute "message-id", which is an
arbitrary string chosen by the sender of the RPC that will commonly
encode a monotonically increasing integer. The receiver of the RPC
does not decode or interpret this string but simply saves it to use
as an "message-id" attribute in any resulting <rpc-reply>,
<rpc-abort-reply> or <rpc-progress> messages. For example:

<rpc message-id="101" xmlns="http://ietf.org/xmlconf/1.0/base">
<some-method>

</some-method>
</rpc>

The name and parameters of an RPC are encoded as the contents of the
<rpc> element. The name of the RPC is an element directly inside the
<rpc> element, and any parameters are encoded inside this element.

The following example invokes a method called "my-own-method" which
has two parameters, "my-first-parameter", with a value of "14", and
"another-parameter", with a value of "fred":

<rpc message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
<my-own-method xmlns="http://example.net/me/1.0/my-own">
<my-first-parameter>14</my-first-parameter>
<another-parameter>fred</another-parameter>
</my-own-method>
</rpc>

The following example invokes a "rock-the-house" method with a

http://ietf.org/xmlconf/1.0/base

Enns, Editor Expires December 28, 2003 [Page 12]

Internet-Draft XMLCONF Protocol June 2003

"zip-code" parameter of "27606-0100":

<rpc message-id="103" xmlns="http://ietf.org/xmlconf/1.0/base">
<rock-the-house xmlns="http://example.net/house/1.0/rock">
<zip-code>27606-0100</zip-code>
</rock-the-house>
</rpc>

The following example invokes the "rock-the-world" method with no
parameters:

<rpc message-id="104" xmlns="http://ietf.org/xmlconf/1.0/base">
<rock-the-world xmlns="http://example.net/house/1.0/rock"/>
</rpc>

3.3 <rpc-reply> Element

The <rpc-reply> message is sent on the operations channel in response
to a <rpc> operation.

The <rpc-reply> element has a mandatory attribute "message-id", which
is equal to the "message-id" attribute of the <rpc> for which this is
a response.

The response name and response data are encoded as the contents of
the <rpc-reply> element. The name of the reply is an element
directly inside the <rpc-reply> element, and any data is encoded
inside this element.

For example:

<rpc-reply message-id="101" xmlns="http://ietf.org/xmlconf/1.0/base">
<some-content>

</some-content>
</rpc-reply>

3.4 <rpc-abort> Element

The <rpc-abort> element is sent on the management channel by the
sender of an <rpc> who desires to terminate an operation before it
completes. The <rpc-abort> element includes a mandatory attribute
"message-id", which is equal to the "message-id" attribute of the
<rpc> to be terminated.

The <rpc-abort> operation is encoded as an element with no

Enns, Editor Expires December 28, 2003 [Page 13]

Internet-Draft XMLCONF Protocol June 2003

subelements or data. For example:
<rpc-abort message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base"/>

An <rpc-abort-reply> element is sent immediately on the management
channel. If the indicated <rpc-reply> is in progress on the
operations channel, it shall be terminated cleanly by closing all
open elements. An <rpc-error> element (see Section 3.6) should be
added to the <rpc-reply> indicating the operation being aborted. If
the <rpc-reply> has not yet begun, it should be sent containing an
<rpc-error> element. If multiple <rpc> requests are pending, the
<rpc-error> and <rpc-reply> messages must be sent in the proper
order.

If no pending operation matches the "message-id" attribute, then the
abort operation completes without error. The <rpc-abort> message can
be generated only for <rpc> requests that contain an "message-id"
attribute. If multiple <rpc> requests with the same "message-id"
exist, then only the request that was received first by the peer is
aborted.

3.5 <rpc-abort-reply> Element

The <rpc-abort-reply> message is sent on the management channel in
response to an <rpc-abort> operation.

The <rpc-abort-reply> message has a mandatory attribute "message-id",
which is equal to the "message-id" attribute of the <rpc-abort> for

which this is a response.

The <rpc-abort-reply> operation is encoded as an empty element. For
example:

<rpc-abort-reply message-id="102" xmlns="http://ietf.org/xmlconf/1.0/
base"/>
3.6 <rpc-error> Element

The <rpc-error> element is sent in <rpc-reply> messages if an error
occurs during the processing of an <rpc> request.

The <rpc-error> element includes the following information:
o tag: String identifying the error condition.
0 error-code: Integer identifying the error condition.

0 severity: String identifying the error severity, as determined by

Enns, Editor Expires December 28, 2003 [Page 14]

Internet-Draft XMLCONF Protocol June 2003

the device.

o edit-path: Configuration data that provides the context for the
command that caused the error. This can be the empty string if
the command causing the error is located at the top level of the
command hierarchy.

o statement: Configuration or command that caused the error.
0 message: String describing the error condition.
o action: Action taken by the device in response to this error.

[ed: A list of standard error codes is TBD. Both protocol error and
application error codes will be supported by <rpc-error>.]

<rpc-error message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
<tag>EXAMPLE_MTU_RANGE</tag>
<error-code>128</error-code>
<severity>error</severity>
<statement>mtu 21050;</statement>
<message>MTU 21050 on Ethernet/1 is outside range 256..9192</message>
</rpc-error>

3.7 <ok> Element

The <ok> element is sent in <rpc-reply> messages if no error occurred
during the processing of an <rpc> request. For example:

<rpc-reply message-id="102" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

3.8 <rpc-progress> Element

Some operations might take a long time to process before an
<rpc-reply> can be generated or might generate an <rpc-reply> that
takes a long time to transmit. If the recipient of an <rpc>
determines that the <rpc-reply> will not be generated and transmitted
in less than N seconds, it can send a progress report with the
<rpc-progress> message. The number of seconds, N, is implementation
dependent.

The <rpc-progress> element is sent on the management channel. It has
a mandatory attribute "message-id", which is equal to the
"message-id" attribute of the associated <rpc> on which progress is

Enns, Editor Expires December 28, 2003 [Page 15]

Internet-Draft XMLCONF Protocol June 2003

being reported.

The <rpc-progress> element contains one or more of the optional
elements <percent-done>, <amount>, and <message>.

The <percent-done> element contains an estimate of the percentage of
the operation that is complete in terms of real time (i.e., wall
clock time). For example:

<rpc-progress message-id="103">
<percent-done>45</percent-done>
</rpc-progress>

The <amount> element contains an absolute quantity indicating an
amount of work completed. For example:

<rpc-progress message-id="103">
<amount>45KB</amount>
</rpc-progress>

The <message> element contains a text message indicating progress on
the associated <rpc>. For example:

<rpc-progress message-id="103">
<message>Connecting...</message>

</rpc-progress>

<rpc-progress message-id="103">
<message>Connected.</message>

</rpc-progress>

Multiple <rpc-progress> messages can be sent for a particular <rpc>.
3.9 Pipelining

The operations channel is processed serially by the managed device.

Additional <rpc> requests may be sent before previous ones have been

completed, but they are added to the queue for that channel. On any

given operations channel, the managed device may send responses only
in the order the requests were received.

Messages may be received asynchronously on the notification channel.

Enns, Editor Expires December 28, 2003 [Page 16]

Internet-Draft XMLCONF Protocol June 2003

[

Configuration Model

XMLCONF provides an initial set of operations and a number of
capabilities that can be used to extend the base. XMLCONF peers
exchange device capabilities when the session is initiated as
described in Section 6.1.

4.1 Configuration Datastores

XMLCONF defines the existence of one or more configuration datastores
and allows configuration operations on them. A configuration
datastore is defined as the complete set of configuration data that
is required to get a device from its initial default state into a
desired operational state. The configuration datastore does not
include state data or executive commands.

The following configuration datastores are present in the base model.
Capabilities may define additional configuration datastores, which
then are available only on devices that advertise the capabilities.

0 Running: The complete configuration currently active on the
network device. Only one configuration datastore of this type
exists on the device, and it is always present. XMLCONF protocol
operations refer to this datastore using the <running> element.

Enns, Editor Expires December 28, 2003 [Page 17]

Internet-Draft XMLCONF Protocol June 2003

(S}

Protocol Operations

The XMLCONF protocol provides a small set of low-level operations to
manage device configurations and retrieve device state information.
The base protocol provides operations to retrieve, configure, copy,

and delete configuration datastores. Additional operations are
provided, based on the capabilities advertised by the device.

The base protocol includes the following protocol operations:
0 get-config
0o edit-config
o copy-config
o delete-config
0 get-state
0 kill-session
A protocol operation may fail for various reasons, including
"operation not supported". An initiator should not assume that any
operation will always succeed. The return values in any RPC reply
should be checked for error responses.
The syntax and XML encoding of the protocol operations are formally
defined in the XML schema in Section 9. The following sections
describe the semantics of each protocol operation.

5.1 <get-config>
Description:

Retrieve all or part of a specified configuration.

Parameters:

source: @config-name

Name of the configuration datastore being queried, such as
<running> or <startup>.

config: @element-subtree

Portions of the configuration command subtree to retrieve.
The namespace of this configuration should be specified as

Enns, Editor Expires December 28, 2003 [Page 18]

Internet-Draft XMLCONF Protocol June 2003

an attribute of this parameter. If this parameter is empty,
the entire configuration is returned. If the format
parameter is equal to "text", the contents of this parameter
are proprietary.

format: (xml | text)

Format of the return text, either "xml" or "text". If this
parameter contains the value "xml", the contents of the
"config" parameter are expected to conform to the XML
Namespace specified in that parameter. If the value is
"text", the contents of the "config" parameter are
proprietary.

Positive Response:
If the device can satisfy the request, the server sends an
<rpc-reply> element containing a <config> element with the
results of the query.

Negative Response:

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be completed for any reason.

Example:

Enns, Editor Expires December 28, 2003 [Page 19]

Internet-Draft XMLCONF Protocol June 2003

<rpc message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">
<get-config>
<source>
<running/>
</source>
<config xmlns="http://example.com/schema/1.2/config">
<users/>
</config>
<format>xml</format>
</get-config>
</rpc>

<rpc-reply message-id="105" xmlns="http://ietf.org/xmlconf/1.0/base">
<config xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
</user>
<user>
<name>fred</name>
<type>admin</type>
<full-name>Fred Flintstone</full-name>
</user>
<user>
<name>barney</name>
<type>admin</type>
<full-name>Barney Rubble</full-name>
</user>
</users>
</config>
</rpc-reply>

The following example shows how additional nesting within the
<config> parameter can be used to filter more of the output in the
response:

Enns, Editor Expires December 28, 2003 [Page 20]

Internet-Draft XMLCONF Protocol June 2003

<rpc message-id="106" xmlns="http://ietf.org/xmlconf/1.0/base">
<get-config>
<source>
<running/>
</source>
<config xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>fred</name>
</user>
</users>
</config>
<format>xml</format>
</get-config>
</rpc>

<rpc-reply message-id="106" xmlns="http://ietf.org/xmlconf/1.0/base">
<config xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>fred</name>
<type>admin</type>
<full-name>Fred Flintstone</full-name>
</user>
</users>
</config>
</rpc-reply>

5.2 <edit-config>

Description:

Load all or part of a specified configuration to the specified
target configuration. This operation allows the new
configuration to be expressed in several ways, such as using a
local file, a remote file, or inline. If the target
configuration does not exist, it is created.

The device analyzes the source and target configurations and
performs the requested changes. The target configuration is
not simply replaced, as with the <copy-config> command.

Attributes:

operation: (merge | replace | delete) [default: merge]

Enns, Editor Expires December 28, 2003 [Page 21]

Internet-Draft XMLCONF Protocol June 2003

Elements in the <config> subtree may contain an operation
attribute. The attribute identifies the point in the
configuration to perform the operation.

In the interest of simplicity, all operation attributes
appearing within the <config> subtree MUST have the same value.

If the operation attribute is not specified, the configuration
is merged into the configuration datastore.

The operation attribute has one of the following values:

merge: The configuration data identified by the element
containing this attribute is merged with the configuration
at the corresponding level in the configuration datastore
identified by the target parameter.

replace: The configuration data identified by the element
containing this attribute replaces any related configuration
in the configuration datastore identified by the target
parameter. Unlike a <copy-config> operation, which replaces
the entire target configuration, only the configuration
actually present in the config parameter is affected.

delete: The configuration data identified by the element
containing this attribute is deleted in the configuration
datastore identified by the target parameter.

[ed. The operation attribute needs to be added to the XML
schema in Section 9.]

Parameters:
target: @config-name
Configuration datastore being edited, such as <running>.
test-option: (test-then-set | set) [default: set]

test-then-set: Perform a validation test before attempting
to set; skip set if any errors.

set: Perform a set without a validation test first.

The test-option element may be specified only if the device
advertises the #validate capability (Section 6.4).

Enns, Editor Expires December 28, 2003 [Page 22]

Internet-Draft XMLCONF Protocol June 2003

error-option: (stop-on-error | ignore-error) [default:
stop-on-error]

stop-on-error: Abort the rpc request on first error.

ignore-error: Continue to process configuration data on
error; error 1is recorded and negative response is generated
if any errors occur.

config: @element-tree

Portion of the configuration subtree to set. The namespace
of this configuration should be specified as an attribute of
this parameter.

Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent containing an <ok> element.

Negative Response:

An <rpc-error> response is sent if the request cannot be
completed for any reason.

Example: Set the MTU to 1500 on an interface named "Ethernet0/0" in
the running configuration:

<rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<edit-config>
<target>
<running/>
</target>
<config xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>1500</mtu>
</interface>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 23]

Internet-Draft XMLCONF Protocol June 2003

Add an interface named "Ethernet®/0" to the running configuration,
replacing any previous interface with that name:

<rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<edit-config>
<target>
<running/>
</target>
<config xmlns="http://example.com/schema/1.2/config"
xmlns:xc="http://ietf.org/xmlconf/1.0/base">
<interface xc:operation="replace'">
<name>Ethernet0/0</name>
<mtu>1500</mtu>
<address>
<name>1.2.3.4</name>
<mask>255.0.0.0</mask>
</address>
</interface>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

Delete the interface named "Ethernet®©/0" from the running
configuration:

<rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<edit-config>
<target>
<running/>
</target>
<config xmlns="http://example.com/schema/1.2/config"
xmlns:xc="http://ietf.org/xmlconf/1.0/base">
<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 24]

Internet-Draft XMLCONF Protocol June 2003

Delete interface 192.168.0.1 from an OSPF area (other interfaces
configured in the same area are unaffected):

<rpc message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<edit-config>
<target>
<running/>
</target>
<config xmlns="http://example.com/schema/1.2/config"
xmlns:xc="http://ietf.org/xmlconf/1.0/base">
<protocols>
<ospf>
<area>
<name>0.0.0.0</name>
<interfaces>
<interface xc:operation="delete">
<name>192.168.0.1</name>
</interface>
</interfaces>
</area>
</ospf>
</protocols>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="107" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

5.3 <copy-config>
Description:

Create or replace an entire configuration file with the
contents of another complete configuration file. If the target
file exists, it is overwritten; otherwise, a new file is
created.

A device may choose not to support the <running> configuration
datastore as the <target> parameter of a <copy-config>
operation. A device may choose not to support remote to remote
copy operations. The source and target parameters cannot
identify the same file.

The device may choose not to support format conversions with
this operation. The running and startup configurations are

Enns, Editor Expires December 28, 2003 [Page 25]

Internet-Draft XMLCONF Protocol June 2003

considered to be format neutral, but all other configuration
files are created in a specific format (text or XML). A copy
operation on any of these format-specific files may fail if the
format parameter specifies a value different than the source
file format. It is suggested that the format parameter be
omitted in this type of operation, to select the source file
format.

Parameters:
source: @config-name | config
Name of the configuration datastore to use as the source of
the copy operation or the <config> element containing the
configuration subtree to copy.

target: @config-name

Name of the configuration datastore to use as the
destination of the copy operation.

format: (xml | text) [Default: xml]

Format of the configuration file, either "xml" or "text".
The format of the source and target configurations must
match. Configuration datastores (such as <running>) match
either format.

Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent that includes an <ok> element.

Negative Response:

An <rpc-error> element is included within the <rpc-reply> if
the request cannot be completed for any reason.

Example:

Enns, Editor Expires December 28, 2003 [Page 26]

Internet-Draft XMLCONF Protocol June 2003

<rpc message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
<copy-config>
<source>
<running/>
</source>
<target>
<url>ftp://example.com/configs/testbed-dec10.txt</url>
</target>
<format>text</format>
</copy-config>
</rpc>

<rpc-reply message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>
5.4 <delete-config>

Description:

Delete a configuration datastore. The <running> configuration
file cannot be deleted.

Parameters:
target: @config-name
Name of the configuration datastore to delete.
Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent that includes an <ok> element.

Negative Response:

An <rpc-error> element is included within the <rpc-reply> if
the request cannot be completed for any reason.

Example:

Enns, Editor Expires December 28, 2003 [Page 27]

Internet-Draft XMLCONF Protocol June 2003

<rpc

message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">

<delete-config>
<target>

<startup/>

</target>
</delete-config>
</rpc>

<rpc-

reply message-id="108" xmlns="http://ietf.org/xmlconf/1.0/base">

<ok/>
</rpc-reply>

5.5 <get-state>

Description:

Retrieve device state information. Section 10 describes the
XML schema for XMLCONF state data.

Parameters:

state:

(@element-subtree | text)

If the <format> parameter is equal to "xml", this parameter
specifies the portion of the system state subtree to
retrieve. The namespace of this configuration should be
specified as an attribute of this parameter. If the
<format> parameter is equal to "text", the contents of this
parameter are proprietary. If this parameter is empty, all
the device state information are returned.

format: (xml | text)

Positive

If
is

Negative

An

Format of the <state> parameter and the return text, either
"xml" or "text".

Response:

the device was able to satisfy the request, an <rpc-reply>
sent. The <state> section contains the appropriate subset.

Response:

<rpc-error> element is included in the <rpc-reply> if the

request cannot be completed for any reason.

Enns, Editor Expires December 28, 2003 [Page 28]

Internet-Draft XMLCONF Protocol June 2003

Example:

<rpc message-id="109" xmlns="http://ietf.org/xmlconf/1.0/base">
<get-state>
<state xmlns="http://example.com/schema/1.2/int-stats">
<interface name="etherneto/1">
<intstats></intstats>
</interface>
</state>
<format>xml</format>
</get-state>
</rpc>

<rpc-reply message-id="109" xmlns="http://ietf.org/xmlconf/1.0/base">
<state xmlns="http://example.com/schema/1.2/int-stats">
<interface name="ethernet0/1">
<intstats>
<inPkts>9456823</inPkts>
<inOctets>1228484566</in0Octets>
<inErrors>4326</inErrors>
<outPkts>4821050</outPkts>
<outOctets>634712154</outOctets>
<outErrors>2096</outErrors>
</intstats>
</interface>
</state>
</rpc-reply>

5.6 <kill-session>
Description:
Force the termination of an XMLCONF session.
Parameters:
session-id: (Positive Integer)

Session identifier of the XMLCONF session to be terminated.
If this value is equal to the current session ID, a 'Bad
Value' error is sent.

Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent that includes an <ok> element.

Enns, Editor Expires December 28, 2003 [Page 29]

Internet-Draft XMLCONF Protocol June 2003

Negative Response:

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be completed for any reason.

Example:

<rpc message-id="110" xmlns="http://ietf.org/xmlconf/1.0/base">
<kill-session>
<session-id>4</session-id>
</kill-session>
</rpc>

<rpc-reply message-id="110" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

Enns, Editor Expires December 28, 2003 [Page 30]

Internet-Draft XMLCONF Protocol June 2003

6. Capabilities

This section defines a set of capabilities that a client or a server
MAY implement. Each peer advertises its capabilities by sending them
during an initial capabilities exchange. Each peer needs to
understand only those capabilities that it might use and must be able
to process and ignore any capability received from the other peer
that it does not require or does not understand.

Additional capabilities can be defined using the template in Appendix
A. Future capability definitions may be published as standards by
standards bodies or published as propriety by vendors.
A capability is identified with a URI, in the form:

http://{naming authority}/{protocol}/{version}/{category}#{name}

Capabilities defined in this document have the following format:

http://ietf.org/xmlconf/1.0/base#{name}

where {name} is the name of the capability. Capabilities are often
referenced in discussions and email using the shorthand #{name}. For
example, the foo capability would have the formal name "http://
ietf.org/xmlconf/1.0/base#foo" and be called "#foo". The shorthand
form MUST NOT be used inside the protocol.

6.1 Capabilities Exchange

An XMLCONF capability is a set of additional functionality
implemented on top of the base XMLCONF specification. The capability
is distinguished by a URI. These URIs should follow the guidelines
as described in Section 7.7.

Capabilities are advertised in messages sent on the management
channel when each peer starts operation. When the management channel
is pened, each peer sends a <hello> element containing a list of that
peer's capabilities.

In the following example, the peer advertises the base XMLCONF
capability, one XMLCONF capability defined in the base XMLCONF
document, and one vendor-specific capability.

http://ietf.org/xmlconf/1

Enns, Editor Expires December 28, 2003 [Page 31]

Internet-Draft XMLCONF Protocol June 2003

<hello>
<capabilities>
<capability>http://ietf.org/xmlconf/1.0/base</capability>
<capability>http://ietf.org/xmlconf/1.0/base#lock</capability>
<capability>http:/example.net/router/2.3/core#cool-feature</capability>
</capabilities>
</hello>

Each peer sends its <hello> element simultaneously as soon as the
connection is open. A peer MUST NOT wait to receive the capability
set from the other side before sending its own set.

6.2 Writable-Running Capability
6.2.1 Description

The #writable-running capability indicates that the device supports
writes directly to the <running> configuration datastore. In other
words, the device supports edit-config and copy-config operations
where the <running> configuration is the target.

6.2.2 Dependencies
None.
6.2.3 Capability and Namespace

The #writable-running capability is identified by the following
capability string:

http://ietf.org/xmlconf/1.0/base#writable-running

The #writable-running capability uses the base XMLCONF namespace URI.
6.2.4 New Operations

None.
6.2.5 Modifications to Existing Operations
6.2.5.1 <edit-config>

The #writable-running capability modifies the <edit-config> operation
to accept the <running> element as a <target>.

6.2.5.2 <copy-config>

The #writable-running capability modifies the <copy-config> operation

http://ietf.org/xmlconf/1.0/base#writable-running

Enns, Editor Expires December 28, 2003 [Page 32]

Internet-Draft XMLCONF Protocol June 2003

to accept the <running> element as a <target>.
6.3 Candidate Configuration Capability
6.3.1 Description

The candidate configuration capability, #candidate, indicates that
the device supports a candidate configuration datastore, which is
used to hold configuration data that can manipulated without
impacting the device's current configuration. The candidate
configuration is a full configuration data set that serves as a work
place for creating a manipulating configuration data. Additions,
deletions, and changes may be made to this data to construct the
desired configuration data. A <commit> operation may be performed at
any time that causes the device's running configuration to be set to
the value of the candidate configuration.

The candidate configuration can be used as a source or target of any
operation with a <source> or <target> parameter. The <candidate>
element is used to indicate the candidate configuration:

<rpc message-id="112" xmlns="http://ietf.org/xmlconf/1.0/base">
<operation>
<source>
<candidate/>
</source>
</operation>
</rpc>

The candidate configuration may be shared among multiple sessions.
Unless a client has specific information that the candidate
configuration is not shared (for example, through another
capability), it must assume that other sessions may be able to modify
the candidate configuration at the same time. It is therefore
prudent for a client to lock the candidate configuration before
modifying it.

The client can discard any changes since the last <commit> operation
by executing the <discard-changes> operation. The candidate
configuration's content then reverts to the current committed
configuration.

6.3.2 Dependencies
The #candidate capability requires that the #lock capability be

implemented. Manipulation of a candidate configuration without a
locking mechanism is not advised.

Enns, Editor Expires December 28, 2003 [Page 33]

Internet-Draft XMLCONF Protocol June 2003

6.3.3 Capability and Namespace

The #candidate capability is identified by the following capability
string:

http://ietf.org/xmlconf/1.0/base#candidate

The #candidate capability uses the base XMLCONF namespace URI.
6.3.4 New Operations
6.3.4.1 <commit>

Description:

When a candidate configuration's content is complete, the
configuration data can be committed, publishing the data set to
the rest of the device and requesting the device to conform to
the behavior described in the new configuration.

To commit the candidate configuration as the device's new
current configuration, use the <commit> operation.

The <commit> operation instructs the device to implement the
configuration data contained in the candidate configuration.

If the system does not have the #candidate capability, the
<commit> operation is not available.

Parameters:
confirmed:
The <confirmed> element indicates that the <commit>
operation MUST be reverted if a confirming commit is not

issued within ten (10) minutes. The timeout period can be
adjusted with the <confirm-timeout> element.

confirmed-timeout: Timeout period for confirmed commit, in
minutes.

Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent that contains an <ok> element.

http://ietf.org/xmlconf/1.0/base#candidate

Enns, Editor Expires December 28, 2003 [Page 34]

Internet-Draft XMLCONF Protocol June 2003

Negative Response:

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be completed for any reason.

Example:

<rpc message-id="113" xmlns="http://ietf.org/xmlconf/1.0/base">
<commit/>
</rpc>

<rpc-reply message-id="113" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

<rpc message-id="114" xmlns="http://ietf.org/xmlconf/1.0/base">
<commit>
<confirmed/>
<confirm-timeout>20</confirmed-timeout>
</commit>
</rpc>

<rpc-reply message-id="114" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>
6.3.4.2 <discard-changes>
If the client decides that the candidate configuration should not be
committed, the <discard-changes> operation can be used to revert the
candidate configuration to the current committed configuration.
<rpc xmlns="http://ietf.org/xmlconf/1.0/base">
<discard-changes/>
</rpc>
This operation discards any uncommitted changes.
6.3.5 Modifications to Existing Operations

6.3.5.1 <lock> and <unlock>

The candidate configuration can be locked using the <lock> operation
with the <candidate> element at the <source> parameter:

Enns, Editor Expires December 28, 2003 [Page 35]

Internet-Draft XMLCONF Protocol June 2003

<rpc message-id="115" xmlns="http://ietf.org/xmlconf/1.0/base">
<lock>
<source>
<candidate/>
</source>
</lock>
</rpc>

Devices implementing the #candidate capability WILL NOT allow a
configuration lock to be acquired when there are outstanding changes
to the candidate configuration. An error WILL be returned and the
status of the lock will remain unchanged.

When a client fails with outstanding changes to the candidate
configuration, recovery can be difficult. To facilitate easy
recovery, the #candidate capability adds a <discard-changes> element
to the <lock> operation. If this element contains the value
"automatic", any outstanding changes are discarded when the lock is
released, whether explicitly with the <unlock> operation or
implicitly from session failure.

<rpc message-id="116" xmlns="http://ietf.org/xmlconf/1.0/base">
<lock>
<source>
<candidate/>
</source>
<discard-changes>automatic</discard-changes>
</lock>
</rpc>

6.3.5.2 <get-config> and <edit-config>

The candidate configuration is the default target for the
<edit-config> and <get-config> operations. It may be explicitly
named using the <candidate> element:

<rpc message-id="117" xmlns="http://ietf.org/xmlconf/1.0/base">
<get-config>
<source>
<candidate/>
</source>
</get-config>
</rpc>

Enns, Editor Expires December 28, 2003 [Page 36]

Internet-Draft XMLCONF Protocol June 2003

6.4 Validate Capability
6.4.1 Description

Validation consists of checking a candidate configuration for
syntactical and semantic errors before applying the configuration to
the device.

If this capability is advertised, the device supports the <validate>
protocol operation and checks at least for syntax errors. In
addition, this capability supports the validate parameter to the
<edit-config> operation and, when it is provided, checks at least for
syntax errors.

6.4.2 Dependencies
None.
6.4.3 Capability and Namespace

The #validate capability is identified by the following capability
string:

http://ietf.org/xmlconf/1.0/base#validate

The #validate capability uses the base XMLCONF namespace URI.
6.4.4 New Operations
6.4.4.1 <validate>

Description:

This protocol operation validates the contents of the specified
configuration.

Parameters:
source: @config-name

Name of the configuration datastore being validated, such as
<candidate>.

Positive Response:

If the device was able to satisfy the request, an <rpc-reply>
is sent that contains an <ok> element.

http://ietf.org/xmlconf/1.0/base#validate

Enns, Editor Expires December 28, 2003 [Page 37]

Internet-Draft XMLCONF Protocol June 2003

Negative Response:

An <rpc-error> element is included in the <rpc-reply> if the
request cannot be completed for any reason.

A validate operation can fail for any of the following reasons:

+ Syntax errors

+

Missing parameters
+ References to undefined configuration data
Example:

<rpc message-id="118" xmlns="http://ietf.org/xmlconf/1.0/base">
<validate>
<candidate/>
</validate>
</rpc>

<rpc-reply message-id="118" xmlns="http://ietf.org/xmlconf/1.0/base">
<ok/>
</rpc-reply>

6.5 Distinct Startup Capability

6.5.1 Description

The device supports separate running and startup configuration
datastores. Operations which affect the running configuration will
not be automatically copied to the startup configuration. An
explicit <copy-config> operation from the <running> to the <startup>
must be invoked to update the startup configuration to the current
contents of the running configuration. XMLCONF protocol operations
refer to the startup datastore using the <startup> element.

6.5.2 Dependencies
None.
6.5.3 Capability and Namespace

The #startup capability is identified by the following capability
string:

http://ietf.org/xmlconf/1.0/base#startup

http://ietf.org/xmlconf/1.0/base#startup

Enns, Editor Expires December 28, 2003 [Page 38]

Internet-Draft XMLCONF Protocol June 2003

The #startup capability uses the base XMLCONF namespace URI.
6.5.4 New Operations

None.
6.5.5 Modifications to Existing Operations
6.5.5.1 <copy-config>

To save the startup configuration, use the copy-config command to
copy the <running> configuration datastore to the <startup>
configuration datastore.

<rpc message-id="119" xmlns="http://ietf.org/xmlconf/1.0/base">
<copy-config>
<source>
<running/>
</source>
<target>
<startup/>
</target>
<format>text</format>
</copy-config>
</rpc>

6.6 Lock Capability
6.6.1 Description

The #lock capability allows the client to lock the configuration
system of a device. Such locks are intended to be short-lived and
allow a client to make a change without fear of interaction with
other XMLCONF clients, non-XMLCONF clients (SNMP and Expect scripts)
and human users.

An attempt to lock the configuration MUST fail if an existing session
currently holds the lock.

When the lock is acquired, the server MUST prevent any changes to the
locked resource other than those requested by this session. SNMP and
CLI requests to modify the resource MUST fail with an appropriate
error.

The duration of the lock is de