
Routing Area Working Group A. Atlas
Internet-Draft Juniper Networks
Intended status: Informational G. Enyedi
Expires: April 24, 2013 A. Csaszar
 Ericsson
 A. Gopalan
 University of Arizona
 October 21, 2012

Algorithms for computing Maximally Redundant Trees for IP/LDP Fast-
Reroute

draft-enyedi-rtgwg-mrt-frr-algorithm-02

Abstract

 A complete solution for IP and LDP Fast-Reroute using Maximally
 Redundant Trees is presented in [I-D.ietf-rtgwg-mrt-frr-
 architecture]. This document describes an algorithm that can be used
 to compute the necessary Maximally Redundant Trees and the associated
 next-hops.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Atlas, et al. Expires April 24, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MRT FRR Algorithm October 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology and Definitions 4
3. Algorithm Key Concepts . 6
3.1. Partial Ordering for Disjoint Paths 6
3.2. Finding an Ear and the Correct Direction 8
3.3. Low-Point Values and Their Uses 10
3.4. Blocks in a Graph . 14
3.5. Determining Local-Root and Assigning Block-ID 15

4. Algorithm Sections . 17
4.1. Root Selection . 18
4.2. Initialization . 19
4.3. Option 1: Computing GADAG using lowpoint inheritance . . . 19
4.4. Option 2: Computing GADAG using SPFs 21
4.5. Option 3: Computing GADAG using a hybrid method 27
4.6. Augmenting the GADAG by directing all links 30
4.7. Compute MRT next-hops 32

 4.7.1. MRT next-hops to all nodes partially ordered with
 respect to the computing node 33
 4.7.2. MRT next-hops to all nodes not partially ordered
 with respect to the computing node 33
 4.7.3. Computing Redundant Tree next-hops in a
 2-connected Graph 34

4.7.4. Generalizing for graph that isn't 2-connected 36
4.7.5. Complete Algorithm to Compute MRT Next-Hops 37

4.8. Identify MRT alternates 39
5. Algorithm Alternatives and Evaluation 42
5.1. Algorithm Evaluation 43

6. Algorithm Work to Be Done 44
7. IANA Considerations . 44
8. Security Considerations 44
9. References . 45
9.1. Normative References 45
9.2. Informative References 45

 Authors' Addresses . 46

Atlas, et al. Expires April 24, 2013 [Page 2]

Internet-Draft MRT FRR Algorithm October 2012

1. Introduction

 MRT Fast-Reroute requires that packets can be forwarded not only on
 the shortest-path tree, but also on two Maximally Redundant Trees
 (MRTs), referred to as the Blue MRT and the Red MRT. A router which
 experiences a local failure must also have pre-determined which
 alternate to use. This document describes how to compute these three
 things and the algorithm design decisions and rationale. The
 algorithms are based on those presented in [MRTLinear] and expanded
 in [EnyediThesis].

 Just as packets routed on a hop-by-hop basis require that each router
 compute a shortest-path tree which is consistent, it is necessary for
 each router to compute the Blue MRT and Red MRT in a consistent
 fashion. This is the motivation for the detail in this document.

 As now, a router's FIB will contain primary next-hops for the current
 shortest-path tree for forwarding traffic. In addition, a router's
 FIB will contain primary next-hops for the Blue MRT for forwarding
 received traffic on the Blue MRT and primary next-hops for the Red
 MRT for forwarding received traffic on the Red MRT.

 What alternate next-hops a point-of-local-repair (PLR) selects need
 not be consistent - but loops must be prevented. To reduce
 congestion, it is possible for multiple alternate next-hops to be
 selected; in the context of MRT alternates, each of those alternate
 next-hops would be equal-cost paths.

 This document provides an algorithm for selecting an appropriate MRT
 alternate for consideration. Other alternates, e.g. LFAs that are
 downstream paths, may be prefered when available and that decision-
 making is not captured in this document.

 [E]---[D]---| [E]<--[D]<--| [E]-->[D]
 | | | | ^ | |
 | | | V | | V
 [R] [F] [C] [R] [F] [C] [R] [F] [C]
 | | | ^ ^ | |
 | | | | | V |
 [A]---[B]---| [A]-->[B] [A]---[B]<--|

 (a) (b) (c)
 a 2-connected graph Blue MRT towards R Red MRT towards R

 Figure 1

 Algorithms for computing MRTs can handle arbitrary network topologies
 where the whole network graph is not 2-connected, as in Figure 2, as

Atlas, et al. Expires April 24, 2013 [Page 3]

Internet-Draft MRT FRR Algorithm October 2012

 well as the easier case where the network graph is 2-connected
 (Figure 1). Each MRT is a spanning tree. The pair of MRTs provide
 two paths from every node X to the root of the MRTs. Those paths
 share the minimum number of nodes and the minimum number of links.
 Each such shared node is a cut-vertex. Any shared links are cut-
 links.

 [E]---[D]---| |---[J]
 | | | | |
 | | | | |
 [R] [F] [C]---[G] |
 | | | | |
 | | | | |
 [A]---[B]---| |---[H]

 (a) a graph that isn't 2-connected

 [E]<--[D]<--| |---[J] [E]-->[D] [J]
 | ^ | | ^ | |
 V | | V | V |
 [R] [F] [C]<--[G] | [R] [F] [C]<--[G] |
 ^ | ^ | | ^ |
 | | | V | | V
 [A]-->[B] [H] [A]<--[B]<--| |---[H]

 (b) Blue MRT towards R (c) Red MRT towards R

 Figure 2

2. Terminology and Definitions

 Redundant Trees (RT): A pair of trees where the path from any node X
 to the root R on the first tree is node-disjoint with the path
 from the same node X to the root along the second tree. These can
 be computed in 2-connected graphs.

 Maximally Redundant Trees (MRT): A pair of trees where the path
 from any node X to the root R along the first tree and the path
 from the same node X to the root along the second tree share the
 minimum number of nodes and the minimum number of links. Each
 such shared node is a cut-vertex. Any shared links are cut-links.
 Any RT is an MRT but many MRTs are not RTs.

 network graph: A graph that reflects the network topology where all
 links connect exactly two nodes and broadcast links have been
 transformed into the standard pseudo-node representation.

Atlas, et al. Expires April 24, 2013 [Page 4]

Internet-Draft MRT FRR Algorithm October 2012

 cut-vertex: A vertex whose removal partitions the network.

 cut-link: A link whose removal partitions the network. A cut-link
 by definition must be connected between two cut-vertices. If
 there are multiple parallel links, then they are referred to as
 cut-links in this document if removing the set of parallel links
 would partition the network.

 2-connected: A graph that has no cut-vertices. This is a graph
 that requires two nodes to be removed before the network is
 partitioned.

 spanning tree: A tree containing links that connects all nodes in
 the network graph.

 back-edge: In the context of a spanning tree computed via a depth-
 first search, a back-edge is a link that connects a descendant of
 a node x with an ancestor of x.

 2-connected cluster: A maximal set of nodes that are 2-connected.
 In a network graph with at least one cut-vertex, there will be
 multiple 2-connected clusters.

 block: Either a 2-connected cluster, a cut-edge, or an isolated
 vertex.

 DAG: Directed Acyclic Graph - a digraph containing no directed
 cycle.

 ADAG: Almost Directed Acyclic Graph - a digraph that can be
 transformed into a DAG whith removing a single node (the root
 node).

 GADAG: Generalized ADAG - a digraph, which has only ADAGs as all of
 its blocks. The root of such a block is the node closest to the
 global root (e.g. with uniform link costs).

 DFS: Depth-First Search

 DFS ancestor: A node n is a DFS ancestor of x if n is on the DFS-
 tree path from the DFS root to x.

 DFS descendant: A node n is a DFS descendant of x if x is on the
 DFS-tree path from the DFS root to n.

Atlas, et al. Expires April 24, 2013 [Page 5]

Internet-Draft MRT FRR Algorithm October 2012

 ear: A path along not-yet-included-in-the-GADAG nodes that starts
 at a node that is already-included-in-the-GADAG and that ends at a
 node that is already-included-in-the-GADAG. The starting and
 ending nodes may be the same node if it is a cut-vertex.

 X >> Y or Y << X: Indicates the relationship between X and Y in a
 partial order, such as found in a GADAG. X >> Y means that X is
 higher in the partial order than Y. Y << X means that Y is lower
 in the partial order than X.

 X > Y or Y < X: Indicates the relationship between X and Y in the
 total order, such as found via a topological sort. X > Y means
 that X is higher in the total order than Y. Y < X means that Y is
 lower in the total order than X.

 proxy-node: A node added to the network graph to represent a multi-
 homed prefix or routers outside the local MRT-fast-reroute-
 supporting island of routers. The key property of proxy-nodes is
 that traffic cannot transit them.

3. Algorithm Key Concepts

 There are five key concepts that are critical for understanding the
 algorithms for computing MRTs. The first is the idea of partially
 ordering the nodes in a network graph with regard to each other and
 to the GADAG root. The second is the idea of finding an ear of nodes
 and adding them in the correct direction. The third is the idea of a
 Low-Point value and how it can be used to identify cut-vertices and
 to find a second path towards the root. The fourth is the idea that
 a non-2-connected graph is made up of blocks, where a block is a
 2-connected cluster, a cut-edge or an isolated node. The fifth is
 the idea of a local-root for each node; this is used to compute ADAGs
 in each block.

3.1. Partial Ordering for Disjoint Paths

 Given any two nodes X and Y in a graph, a particular total order
 means that either X < Y or X > Y in that total order. An example
 would be a graph where the nodes are ranked based upon their IP
 loopback addresses. In a partial order, there may be some nodes for
 which it can't be determined whether X << Y or X >> Y. A partial
 order can be captured in a directed graph, as shown in Figure 3. In
 a graphical representation, a link directed from X to Y indicates
 that X is a neighbor of Y in the network graph and X << Y.

Atlas, et al. Expires April 24, 2013 [Page 6]

Internet-Draft MRT FRR Algorithm October 2012

 [A]<---[R] [E] R << A << B << C << D << E
 | ^ R << A << B << F << G << H << D << E
 | |
 V | Unspecified Relationships:
 [B]--->[C]--->[D] C and F
 | ^ C and G
 | | C and H
 V |
 [F]--->[G]--->[H]

 Figure 3: Directed Graph showing a Partial Order

 To compute MRTs, it is very useful to have the root of the MRTs be at
 the very bottom and the very top of the partial ordering. This means
 that from any node X, one can pick nodes higher in the order until
 the root is reached. Similarly, from any node X, one can pick nodes
 lower in the order until the root is reached. For instance, in
 Figure 4, from G the higher nodes picked can be traced by following
 the directed links and are H, D, E and R. Similarly, from G the lower
 nodes picked can be traced by reversing the directed links and are F,
 B, A, and R. A graph that represents this modified partial order is
 no longer a DAG; it is termed an Almost DAG (ADAG) because if the
 links directed to the root were removed, it would be a DAG.

 [A]<---[R]<---[E] R << A << B << C << R
 | ^ ^ R << A << B << C << D << E << R
 | | | R << A << B << F << G << H << D << E << R
 V | |
 [B]--->[C]--->[D] Unspecified Relationships:
 | ^ C and F
 | | C and G
 V | C and H
 [F]--->[G]--->[H]

 Figure 4: ADAG showing a Partial Order with R lowest and highest

 Most importantly, if a node Y >> X, then Y can only appear on the
 increasing path from X to the root and never on the decreasing path.
 Similarly, if a node Z << X, then Z can only appear on the decreasing
 path from X to the root and never on the inceasing path.

 Additionally, when following the increasing paths, it is possible to
 pick multiple higher nodes and still have the certainty that those
 paths will be disjoint from the decreasing paths. E.g. in the
 previous example node B has multiple possibilities to forward packets

Atlas, et al. Expires April 24, 2013 [Page 7]

Internet-Draft MRT FRR Algorithm October 2012

 along an increasing path: it can either forward packets to C or F.

3.2. Finding an Ear and the Correct Direction

 For simplicity, the basic idea of creating a GADAG by adding ears is
 described assuming that the network graph is a single 2-connected
 cluster so that an ADAG is sufficient. Generalizing to multiple
 blocks is done by considering the block-roots instead of the GADAG
 root - and the actual algorithms given in Section 4.3 and

Section 4.4.

 In order to understand the basic idea of finding an ADAG, first
 suppose that we have already a partial ADAG, which doesn't contain
 all the nodes in the block yet, and we want to extend it to cover all
 the nodes. Suppose that we find a path from a node X to Y such that
 X and Y are already contained by our partial ADAG, but all the
 remaining nodes along the path are not added to the ADAG yet. We
 refer to such a path as an ear.

 Recall that our ADAG is closely related to a partial order, more
 precisely, if we remove root R, the remaining DAG describes a partial
 order of the nodes. If we suppose that neither X nor Y is the root,
 we may be able to compare them. If one of them is definitely lesser
 with respect to our partial order (say X<<Y), we can add the new path
 to the ADAG in a direction from X to Y. As an example consider
 Figure 5.

 E---D---| E<--D---| E<--D<--|
 | | | | ^ | | ^ |
 | | | V | | V | |
 R F C R F C R F C
 | | | | ^ | | ^ ^
 | | | V | | V | |
 A---B---| A-->B---| A-->B---|

 (a) (b) (c)

 (a) A 2-connected graph
 (b) Partial ADAG (C is not included)
 (c) Resulting ADAG after adding path (or ear) B-C-D

 Figure 5

 In this partial ADAG, node C is not yet included. However, we can
 find path B-C-D, where both endpoints are contained by this partial
 ADAG (we say those nodes are *ready* in the sequel), and the
 remaining node (node C) is not contained yet. If we remove R, the
 remaining DAG defines a partial order, and with respect to this

Atlas, et al. Expires April 24, 2013 [Page 8]

Internet-Draft MRT FRR Algorithm October 2012

 partial order we can say that B<<D, so we can add the path to the
 ADAG in the direction from B to D (arcs B->C and C->D are added). If
 B were strictly greater than D, we would add the same path in reverse
 direction.

 If in the partial order where an ear's two ends are X and Y, X << Y,
 then there must already be a directed path from X to Y already in the
 ADAG. The ear must be added in a direction such that it doesn't
 create a cycle; therefore the ear must go from X to Y.

 In the case, when X and Y are not ordered with each other, we can
 select either direction for the ear. We have no restriction since
 neither of the directions can result in a cycle. In the corner case
 when one of the endpoints of an ear, say X, is the root (recall that
 the two endpoints must be different), we could use both directions
 again for the ear because the root can be considered both as smaller
 and as greater than Y. However, we strictly pick that direction in
 which the root is lower than Y. The logic for this decision is
 explained in Section 4.7

 A partial ADAG is started by finding a cycle from the root R back to
 itself. This can be done by selecting a non-ready neighbor N of R
 and then finding a path from N to R that doesn't use any links
 between R and N. The direction of the cycle can be assigned either
 way since it is starting the ordering.

 Once a partial ADAG is already present, we can always add ears to it:
 just select a non-ready neighbor N of a ready node Q, such that Q is
 not the root, find a path from N to the root in the graph with Q
 removed. This path is an ear where the first node of the ear is Q,
 the next is N, then the path until the first ready node the path
 reached (that second ready node is the other endpoint of the path).
 Since the graph is 2-connected, there must be a path from N to R
 without Q.

 It is always possible to select a non-ready neighbor N of a ready
 node Q so that Q is not the root R. Because the network is
 2-connected, N must be connected to two different nodes and only one
 can be R. Because the initial cycle has already been added to the
 ADAG, there are ready nodes that are not R. Since the graph is
 2-connected, while there are non-ready nodes, there must be a non-
 ready neighbor N of a ready node that is not R.

Atlas, et al. Expires April 24, 2013 [Page 9]

Internet-Draft MRT FRR Algorithm October 2012

 Generic_Find_Ears_ADAG(root)
 Create an empty ADAG. Add root to the ADAG.
 Mark root as IN_GADAG.
 Select an arbitrary cycle containing root.
 Add the arbitrary cycle to the ADAG.
 Mark cycle's nodes as IN_GADAG.
 Add cycle's non-root nodes to process_list.
 while there exists connected nodes in graph that are not IN_GADAG
 Select a new ear. Let its endpoints be X and Y.
 if Y is root or (Y << X)
 add the ear towards X to the ADAG
 else // (a) X is root or (b)X << Y or (c) X, Y not ordered
 Add the ear towards Y to the ADAG

 Figure 6: Generic Algorithm to find ears and their direction in
 2-connected graph

 Algorithm Figure 6 merely requires that a cycle or ear be selected
 without specifying how. Regardless of the way of selecting the path,
 we will get an ADAG. The method used for finding and selecting the
 ears is important; shorter ears result in shorter paths along the
 MRTs. There are three options being considered. The Low-Point
 Inheritance option is described in Section 4.3. The SPF-based option
 is described in Section 4.4 and the hybrid option is described in

Section 4.5.

 As an example, consider Figure 5 again. First, we select the
 shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
 costs were assumed), so we get to the situation depicted in Figure 5
 (b). Finally, we find a node next to a ready node; that must be node
 C and assume we reached it from ready node B. We search a path from C
 to R without B in the original graph. The first ready node along
 this is node D, so the open ear is B-C-D. Since B<<D, we add arc
 B->C and C->D to the ADAG. Since all the nodes are ready, we stop at
 this point.

3.3. Low-Point Values and Their Uses

 A basic way of computing a spanning tree on a network graph is to run
 a depth-first-search, such as given in Figure 7. This tree has the
 important property that if there is a link (x, n), then either n is a
 DFS ancestor of x or n is a DFS descendant of x. In other words,
 either n is on the path from the root to x or x is on the path from
 the root to n.

Atlas, et al. Expires April 24, 2013 [Page 10]

Internet-Draft MRT FRR Algorithm October 2012

 global_variable: dfs_number

 DFS_Visit(node x, node parent)
 D(x) = dfs_number
 dfs_number += 1
 x.dfs_parent = parent
 for each link (x, w)
 if D(w) is not set
 DFS_Visit(w, x)

 Run_DFS(node root)
 dfs_number = 0
 DFS_Visit(root, NONE)

 Figure 7: Basic Depth-First Search algorithm

 Given a node x, one can compute the minimal DFS number of the
 neighbours of x, i.e. min(D(w) if (x,w) is a link). This gives the
 highest attachment point neighbouring x. What is interesting,
 though, is what is the highest attachment point from x and x's
 descendants. This is what is determined by computing the Low-Point
 value, as given in Algorithm Figure 9 and illustrated on a graph in
 Figure 8.

Atlas, et al. Expires April 24, 2013 [Page 11]

Internet-Draft MRT FRR Algorithm October 2012

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) a non-2-connected graph

 [E]----| [J]---------[I] [P]------[O]
 (5,) | (10,) (9,) (16,) (15,)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,) (4,) (3,) (6,) (8,) (11,) (14,)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,) (2,) (7,) (12,) (13,)

 (b) with DFS values assigned (D(x), L(x))

 [E]----| [J]---------[I] [P]------[O]
 (5,0) | (10,3) (9,3) (16,11) (15,11)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,0) (2,0) (7,3) (12,11) (13,11)

 (c) with low-point values assigned (D(x), L(x))

 Figure 8

Atlas, et al. Expires April 24, 2013 [Page 12]

Internet-Draft MRT FRR Algorithm October 2012

 global_variable: dfs_number

 Lowpoint_Visit(node x, node parent, interface p_to_x)
 D(x) = dfs_number
 L(x) = D(x)
 dfs_number += 1
 x.dfs_parent = parent
 x.dfs_parent_intf = p_to_x
 x.lowpoint_parent = NONE
 for each interface intf of x:
 if D(intf.remote_node) is not set
 Lowpoint_Visit(intf.remote_node, x, intf)
 if L(intf.remote_node) < L(x)
 L(x) = L(intf.remote_node)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf
 else if intf.remote_node is not parent
 if D(intf.remote_node) < L(x)
 L(x) = D(intf.remote)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf

 Run_Lowpoint(node root)
 dfs_number = 0
 Lowpoint_Visit(root, NONE, NONE)

 Figure 9: Computing Low-Point value

 From the low-point value and lowpoint parent, there are two very
 useful things which motivate our computation.

 First, if there is a child c of x such that L(c) >= D(x), then there
 are no paths in the network graph that go from c or its descendants
 to an ancestor of x - and therefore x is a cut-vertex. This is
 useful because it allows identification of the cut-vertices and thus
 the blocks. As seen in Figure 8, even if L(x) < D(x), there may be a
 block that contains both the root and a DFS-child of a node while
 other DFS-children might be in different blocks. In this example,
 C's child D is in the same block as R while F is not.

 Second, by repeatedly following the path given by lowpoint_parent,
 there is a path from x back to an ancestor of x that does not use the
 link [x, x.dfs_parent] in either direction. The full path need not
 be taken, but this gives a way of finding an initial cycle and then
 ears.

Atlas, et al. Expires April 24, 2013 [Page 13]

Internet-Draft MRT FRR Algorithm October 2012

3.4. Blocks in a Graph

 A key idea for the MRT algorithm is that any non-2-connected graph is
 made up by blocks (e.g. 2-connected clusters, cut-links, and/or
 isolated nodes). To compute GADAGs and thus MRTs, computation is
 done in each block to compute ADAGs or Redundant Trees and then those
 ADAGs or Redundant Trees are combined into a GADAG or MRT.

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) A graph with four blocks that are:
 3 2-connected clusters and a cut-link

 [E]<--| [J]<------[I] [P]<--[O]
 | | | ^ | ^
 V | V | V |
 [R] [D]<--[C] [F] [H]<---[K] [N]
 ^ | ^ ^
 | V | |
 [A]------->[B] [G]---| [L]-->[M]

 (b) Blue MRT

 [E]---| [J]-------->[I] [P]-->[O]
 | | |
 V V V
 [R] [D]-->[C]<---[F] [H]<---[K] [N]
 ^ | ^ | ^ |
 | V | | | V
 [A]<-------[B] [G]<--| [L]<--[M]

 (c) Red MRT

 Figure 10

 Consider the example depicted in Figure 10 (a). In this figure, a
 special graph is presented, showing us all the ways 2-connected
 clusters can be connected. It has four blocks: block 1 contains R,
 A, B, C, D, E, block 2 contains C, F, G, H, I, J, block 3 contains K,

Atlas, et al. Expires April 24, 2013 [Page 14]

Internet-Draft MRT FRR Algorithm October 2012

 L, M, N, O, P, and block 4 is a cut-edge containing H and K. As can
 be observed, the first two blocks have one common node (node C) and
 blocks 2 and 3 do not have any common node, but they are connected
 through a cut-edge that is block 4. No two blocks can have more than
 one common node, since two blocks with at least 2 common nodes would
 qualify as a single 2-connected cluster.

 Moreover, observe that if we want to get from one block to another,
 we must use a cut-vertex (the cut-vertices in this graph are C, H,
 K), regardless of the path selected, so we can say that all the paths
 from block 3 along the MRTs rooted at R will cross K first. This
 observation means that if we want to find a pair of MRTs rooted at R,
 then we need to build up a pair of RTs in block 3 with K as a root.
 Similarly, we need to find another one in block 2 with C as a root,
 and finally, we need the last one in block 1 with R as a root. When
 all the trees are selected, we can simply combine them; when a block
 is a cut-edge (as in block 4), that cut-edge is added in the same
 direction to both of the trees. The resulting trees are depicted in
 Figure 10 (b) and (c).

 Similarly, to create a GADAG it is sufficient to compute ADAGs in
 each block and connect them.

 It is necessary, therefore, to identify the cut-vertices, the blocks
 and identify the appropriate local-root to use for each block.

3.5. Determining Local-Root and Assigning Block-ID

 Each node in a network graph has a local-root, which is the cut-
 vertex (or root) in the same block that is closest to the root. The
 local-root is used to determine whether two nodes share a common
 block.

 Compute_Localroot(node x, node localroot)
 x.localroot = localroot
 for each DFS child c
 if L(c) < D(x) //x is not a cut-vertex
 Compute_Localroot(c, x.localroot)
 else
 mark x as cut-vertex
 Compute_Localroot(c, x)

 Compute_Localroot(root, root)

 Figure 11: A method for computing local-roots

 There are two different ways of computing the local-root for each
 node. The stand-alone method is given in Figure 11 and better

Atlas, et al. Expires April 24, 2013 [Page 15]

Internet-Draft MRT FRR Algorithm October 2012

 illustrates the concept. It is used in the second and third options
 for computing a GADAG using SPFs and the hybrid versions
 respectively. The other method for local-root computation is used in
 the first option for computing a GADAG using Low-Point inheritance
 and the essence of it is given in Figure 12.

 Get the current node, s.
 Compute an ear(either through lowpoint inheritance
 or by following dfs parents) from s to a ready node e.
 (Thus, s is not e, if there is such ear.)
 if s is e
 for each node x in the ear that is not s
 x.localroot = s
 else
 for each node x in the ear that is not s or e
 x.localroot = e.localroot

 Figure 12: Ear-based method for computing local-roots

 Once the local-roots are known, two nodes X and Y are in a common
 block if and only if one of the following three conditions apply.

 o Y's local-root is X's local-root : They are in the same block and
 neither is the cut-vertex closest to the root.

 o Y's local-root is X: X is the cut-vertex closest to the root for
 Y's block

 o Y is X's local-root: Y is the cut-vertex closest to the root for
 X's block

 Once we have computed the local-root for each node in the network
 graph, we can assign for each node, a block id that represents the
 block in which the node is present. This computation is shown in
 Figure 13. The block id is useful in the ear computations involved
 in the SPF and hybrid based GADAG's as will be seen later.

Atlas, et al. Expires April 24, 2013 [Page 16]

Internet-Draft MRT FRR Algorithm October 2012

 global_var: max_block_id

 Assign_Block_ID(x, cur_block_id)
 x.block_id = cur_block_id
 foreach DFS child c of x
 if (c.local_root is x)
 max_block_id += 1
 Assign_Block_ID(c, max_block_id)
 else
 Assign_Block_ID(c, cur_block_id)

 max_block_id = 0
 Assign_Block_ID(root, max_block_id)

 Figure 13: Assigning block id to identify blocks

4. Algorithm Sections

 This algorithm computes one GADAG that is then used by a router to
 determine its blue MRT and red MRT next-hops to all destinations.
 Finally, based upon that information, alternates are selected for
 each next-hop to each destination. The different parts of this
 algorithm are described below. These work on a network graph after,
 for instance, its interfaces are ordered as per Figure 14.

 1. Select the root to use for the GADAG. [See Section 4.1.]

 2. Initialize all interfaces to UNDIRECTED. [See Section 4.2.]

 3. Compute the DFS value,e.g. D(x), and lowpoint value, L(x). [See
 Figure 9.]

 4. Construct the GADAG. [See Section 4.3 for Option 1 using
 Lowpoint Inheritance, Section 4.4 for Option 2 using SPFs and

Section 4.5 for Option 3 using a hybrid method.]

 5. Assign directions to all interfaces that are still UNDIRECTED.
 [See Section 4.6.]

 6. From the computing router x, compute the next-hops for the blue
 MRT and red MRT. [See Section 4.7.]

 7. Identify alternates for each next-hop to each destination by
 determining which one of the blue MRT and the red MRT the
 computing router x should select. [See Section 4.8.]

 To ensure consistency in computation, it is necessary that all

Atlas, et al. Expires April 24, 2013 [Page 17]

Internet-Draft MRT FRR Algorithm October 2012

 routers order interfaces identically. This is necessary for the DFS,
 where the selection order of the interfaces to explore results in
 different trees, and for computing the GADAG, where the selection
 order of the interfaces to use to form ears can result in different
 GADAGs. The recommended ordering between two interfaces from the
 same router x is given in Figure 14.

 Interface_Compare(interface a, interface b)
 if a.metric < b.metric
 return A_LESS_THAN_B
 if b.metric < a.metric
 return B_LESS_THAN_A
 if a.neighbor.loopback_addr < b.neighbor.loopback_addr
 return A_LESS_THAN_B
 if b.neighbor.loopback_addr < a.neighbor.loopback_addr
 return B_LESS_THAN_A
 // Same metric to same node, so the order doesn't matter anymore.
 // To have a unique, consistent total order,
 // tie-break based on ifindex.
 if a.ifindex < b.ifindex
 return A_LESS_THAN_B
 return B_LESS_THAN_A

 Figure 14: Rules for ranking multiple interfaces. Order is from low
 to high.

4.1. Root Selection

 The precise mechanism by which routers advertise a priority for the
 GADAG root is not described in this document. Nor is the algorithm
 for selecting routers based upon priority described in this document.

 A network may be partitioned or there may be islands of routers that
 support MRT fast-reroute. Therefore, the root selected for use in a
 GADAG must be consistent only across each connected island of MRT
 fast-reroute support. Before beginning computation, the network
 graph is reduced to contain only the set of routers that support a
 compatible MRT fast-reroute.

 The selection of a GADAG root is done among only those routers in the
 same MRT fast-reroute island as the computing router x.
 Additionally, only routers that are not marked as unusable or
 overloaded (e.g. ISIS overload or [RFC3137]) are eligible for
 selection as root.

https://datatracker.ietf.org/doc/html/rfc3137

Atlas, et al. Expires April 24, 2013 [Page 18]

Internet-Draft MRT FRR Algorithm October 2012

4.2. Initialization

 Before running the algorithm, there is the standard type of
 initialization to be done, such as clearing any computed DFS-values,
 lowpoint-values, DFS-parents, lowpoint-parents, any MRT-computed
 next-hops, and flags associated with algorithm.

 It is assumed that a regular SPF computation has been run so that the
 primary next-hops from the computing router to each destination are
 known. This is required for determining alternates at the last step.

 Initially, all interfaces must be initialized to UNDIRECTED. Whether
 they are OUTGOING, INCOMING or both is determined when the GADAG is
 constructed and augmented.

 It is possible that some links and nodes will be marked as unusable,
 whether because of configuration, overload, or due to a transient
 cause such as [RFC3137]. In the algorithm description, it is assumed
 that such links and nodes will not be explored or used and no more
 disussion is given of this restriction.

4.3. Option 1: Computing GADAG using lowpoint inheritance

 The basic idea of this is to find ears from a node x that is already
 in the GADAG (known as IN_GADAG). There are two methods to find
 ears; both are required. The first is by going to a not IN_GADAG
 DFS-child and then following the chain of low-point parents until an
 IN_GADAG node is found. The second is by going to a not IN_GADAG
 neighbor and then following the chain of DFS parents until an
 IN_GADAG node is found. As an ear is found, the associated
 interfaces are marked based on the direction taken. The nodes in the
 ear are marked as IN_GADAG. In the algorithm, first the ears via
 DFS-children are found and then the ears via DFS-neighbors are found.

 By adding both types of ears when an IN_GADAG node is processed, all
 ears that connect to that node are found. The order in which the
 IN_GADAG nodes is processed is, of course, key to the algorithm. The
 order is a stack of ears so the most recent ear is found at the top
 of the stack. Of course, the stack stores nodes and not ears, so an
 ordered list of nodes, from the first node in the ear to the last
 node in the ear, is created as the ear is explored and then that list
 is pushed onto the stack.

 Each ear represents a partial order (see Figure 4) and processing the
 nodes in order along each ear ensures that all ears connecting to a
 node are found before a node higher in the partial order has its ears
 explored. This means that the direction of the links in the ear is
 always from the node x being processed towards the other end of the

https://datatracker.ietf.org/doc/html/rfc3137

Atlas, et al. Expires April 24, 2013 [Page 19]

Internet-Draft MRT FRR Algorithm October 2012

 ear. Additionally, by using a stack of ears, this means that any
 unprocessed nodes in previous ears can only be ordered higher than
 nodes in the ears below it on the stack.

 In this algorithm that depends upon Low-Point inheritance, it is
 necessary that every node have a low-point parent that is not itself.
 If a node is a cut-vertex, that may not yet be the case. Therefore,
 any nodes without a low-point parent will have their low-point parent
 set to their DFS parent and their low-point value set to the DFS-
 value of their parent. This assignment also properly allows an ear
 between two cut-vertices.

 Finally, the algorithm simultaneously computes each node's local-
 root, as described in Figure 12. This is further elaborated as
 follows. The local-root can be inherited from the node at the end of
 the ear unless the end of the ear is x itself, in which case the
 local-root for all the nodes in the ear would be x. This is because
 whenever the first cycle is found in a block, or an ear involving a
 bridge is computed, the cut-vertex closest to the root would be x
 itself. In all other scenarios, the properties of lowpoint/dfs
 parents ensure that the end of the ear will be in the same block, and
 thus inheriting its local-root would be the correct local-root for
 all newly added nodes.

 The pseudo-code for the GADAG algorithm (assuming that the adjustment
 of lowpoint for cut-vertices has been made) is shown in Figure 15.

 Construct_Ear(x, Stack, intf, type)
 ear_list = empty
 cur_node = intf.remote_node
 cur_intf = intf
 not_done = true

 while not_done
 cur_intf.UNDIRECTED = false
 cur_intf.OUTGOING = true
 cur_intf.remote_intf.UNDIRECTED = false
 cur_intf.remote_intf.INCOMING = true

 if cur_node.IN_GADAG is false
 cur_node.IN_GADAG = true
 add_to_list_end(ear_list, cur_node)
 if type is CHILD
 cur_intf = cur_node.lowpoint_parent_intf
 else type must be NEIGHBOR
 cur_intf = cur_node.dfs_parent_intf
 cur_node = cur_intf.remote_node
 else

Atlas, et al. Expires April 24, 2013 [Page 20]

Internet-Draft MRT FRR Algorithm October 2012

 not_done = false

 if (cur_node is x) //x is a cut-vertex and the local root for
 //the block in which the ear is computed
 localroot = x
 else
 // Inherit local-root from the end of the ear
 localroot = cur_node.localroot
 while ear_list is not empty
 y = remove_end_item_from_list(ear_list)
 y.localroot = localroot
 push(Stack, y)

 Construct_GADAG_via_Lowpoint(topology, root)
 root.IN_GADAG = true
 root.localroot = root
 Initialize Stack to empty
 push root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 foreach interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is x))
 Construct_Ear(x, Stack, intf, CHILD)
 foreach interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is not x))
 Construct_Ear(x, Stack, intf, NEIGHBOR)

 Construct_GADAG_via_Lowpoint(topology, root)

 Figure 15: Low-point Inheritance GADAG algorithm

4.4. Option 2: Computing GADAG using SPFs

 The basic idea in this option is to use slightly-modified SPF
 computations to find ears. In every block, an SPF computation is
 first done to find a cycle from the local root and then SPF
 computations in that block find ears until there are no more
 interfaces to be explored. The used result from the SPF computation
 is the path of interfaces indicated by following the previous hops
 from the mininized IN_GADAG node back to the SPF root.

 To do this, first all cut-vertices must be identified and local-roots
 assigned as specified in Figure 12.

 The slight modifications to the SPF are as follows. The root of the
 block is referred to as the block-root; it is either the GADAG root

Atlas, et al. Expires April 24, 2013 [Page 21]

Internet-Draft MRT FRR Algorithm October 2012

 or a cut-vertex.

 a. The SPF is rooted at a neighbor x of an IN_GADAG node y. All
 links between y and x are marked as TEMP_UNUSABLE. They should
 not be used during the SPF computation.

 b. If y is not the block-root, then it is marked TEMP_UNUSABLE. It
 should not be used during the SPF computation. This prevents
 ears from starting and ending at the same node and avoids cycles;
 the exception is because cycles to/from the block-root are
 acceptable and expected.

 c. Do not explore links to nodes whose local-root is not the block-
 root. This keeps the SPF confined to the particular block.

 d. Terminate when the first IN_GADAG node z is minimized.

 e. Respect the existing directions (e.g. INCOMING, OUTGOING,
 UNDIRECTED) already specified for each interface.

Atlas, et al. Expires April 24, 2013 [Page 22]

Internet-Draft MRT FRR Algorithm October 2012

 Mod_SPF(spf_root, block_root)
 Initialize spf_heap to empty
 Initialize nodes' spf_metric to infinity
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 found_in_gadag = false
 while (spf_heap is not empty) and (found_in_gadag is false)
 min_node = remove_lowest(spf_heap)
 if min_node.IN_GADAG is true
 found_in_gadag = true
 else
 foreach interface intf of min_node
 if ((intf.OUTGOING or intf.UNDIRECTED) and
 ((intf.remote_node.localroot is block_root) or
 (intf.remote_node is block_root)) and
 (intf.remote_node is not TEMP_UNUSABLE) and
 (intf is not TEMP_UNUSABLE))
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 intf.remote_node.spf_prev_intf = intf
 insert_or_update(spf_heap, intf.remote_node)
 return min_node

 SPF_for_Ear(cand_intf.local_node,cand_intf.remote_node, block_root,
 method)
 Mark all interfaces between cand_intf.remote_node
 and cand_intf.local_node as TEMP_UNUSABLE
 if cand_intf.local_node is not block_root
 Mark cand_intf.local_node as TEMP_UNUSABLE
 Initialize ear_list to empty
 end_ear = Mod_SPF(spf_root, block_root)
 y = end_ear.spf_prev_hop
 while y.local_node is not spf_root
 add_to_list_start(ear_list, y)
 y.local_node.IN_GADAG = true
 y = y.local_node.spf_prev_intf
 if(method is not hybrid)
 Set_Ear_Direction(ear_list, cand_intf.local_node,
 end_ear,block_root)
 Clear TEMP_UNUSABLE from all interfaces between
 cand_intf.remote_node and cand_intf.local_node
 Clear TEMP_UNUSABLE from cand_intf.local_node
 return end_ear

Atlas, et al. Expires April 24, 2013 [Page 23]

Internet-Draft MRT FRR Algorithm October 2012

 Figure 16: Modified SPF for GADAG computation

 Assume that an ear is found by going from y to x and then running an
 SPF that terminates by minimizing z (e.g. y<->x...q<->z). Now it is
 necessary to determine the direction of the ear; if y << z, then the
 path should be y->x...q->z but if y >> z, then the path should be
 y<-x...q<-z. In Section 4.3, the same problem was handled by finding
 all ears that started at a node before looking at ears starting at
 nodes higher in the partial order. In this algorithm, using that
 approach could mean that new ears aren't added in order of their
 total cost since all ears connected to a node would need to be found
 before additional nodes could be found.

 The alternative is to track the order relationship of each node with
 respect to every other node. This can be accomplished by maintaining
 two sets of nodes at each node. The first set, Higher_Nodes,
 contains all nodes that are known to be ordered above the node. The
 second set, Lower_Nodes, contains all nodes that are known to be
 ordered below the node. This is the approach used in this algorithm.

Atlas, et al. Expires April 24, 2013 [Page 24]

Internet-Draft MRT FRR Algorithm October 2012

 Set_Ear_Direction(ear_list, end_a, end_b, block_root)
 // Default of A_TO_B for the following cases:
 // (a) end_a and end_b are the same (root)
 // or (b) end_a is in end_b's Lower Nodes
 // or (c) end_a and end_b were unordered with respect to each
 // other
 direction = A_TO_B
 if (end_b is block_root) and (end_a is not end_b)
 direction = B_TO_A
 else if end_a is in end_b.Higher_Nodes
 direction = B_TO_A
 if direction is B_TO_A
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 else
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.OUTGOING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.INCOMING = true
 if end_a is end_b
 return
 // Next, update all nodes' Lower_Nodes and Higher_Nodes
 if (end_a is in end_b.Higher_Nodes)
 foreach node x where x.localroot is block_root
 if end_a is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Lower_Nodes
 if end_b is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Higher_Nodes
 else
 foreach node x where x.localroot is block_root
 if end_b is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Lower_Nodes
 if end_a is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Higher_Nodes

 Figure 17: Algorithm to assign links of an ear direction

 A goal of the algorithm is to find the shortest cycles and ears. An
 ear is started by going to a neighbor x of an IN_GADAG node y. The
 path from x to an IN_GADAG node is minimal, since it is computed via

Atlas, et al. Expires April 24, 2013 [Page 25]

Internet-Draft MRT FRR Algorithm October 2012

 SPF. Since a shortest path is made of shortest paths, to find the
 shortest ears requires reaching from the set of IN_GADAG nodes to the
 closest node that isn't IN_GADAG. Therefore, an ordered tree is
 maintained of interfaces that could be explored from the IN_GADAG
 nodes. The interfaces are ordered by their characteristics of
 metric, local loopback address, remote loopback address, and ifindex,
 as in the algorithm previously described in Figure 14.

 The algorithm ignores interfaces picked from the ordered tree that
 belong to the block root if the block in which the interface is
 present already has an ear that has been computed. This is necessary
 since we allow at most one incoming interface to a block root in each
 block. This requirement stems from the way next-hops are computed as
 will be seen in Section 4.7. After any ear gets computed, we
 traverse the newly added nodes to the GADAG and insert interfaces
 whose far end is not yet on the GADAG to the ordered tree for later
 processing.

 Finally, cut-edges are a special case because there is no point in
 doing an SPF on a block of 2 nodes. The algorithm identifies cut-
 edges simply as links where both ends of the link are cut-vertices.
 Cut-edges can simply be added to the GADAG with both OUTGOING and
 INCOMING specified on their interfaces.

 add_eligible_interfaces_of_node(ordered_intfs_tree,node)
 for each interface of node
 if intf.remote_node.IN_GADAG is false
 insert(intf,ordered_intfs_tree)

 check_if_block_has_ear(x,block_id)
 block_has_ear = false
 for all interfaces of x
 if (intf.remote_node.block_id == block_id) &&
 (intf.remote_node.IN_GADAG is true)
 block_has_ear = true
 return block_has_ear

 Construct_GADAG_via_SPF(topology, root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)
 root.IN_GADAG = true
 add_eligible_interfaces_of_node(ordered_intfs_tree,root)
 while ordered_intfs_tree is not empty
 cand_intf = remove_lowest(ordered_intfs_tree)
 if cand_intf.remote_node.IN_GADAG is false
 if L(cand_intf.remote_node) == D(cand_intf.remote_node)
 // Special case for cut-edges
 cand_intf.UNDIRECTED = false

Atlas, et al. Expires April 24, 2013 [Page 26]

Internet-Draft MRT FRR Algorithm October 2012

 cand_intf.remote_intf.UNDIRECTED = false
 cand_intf.OUTGOING = true
 cand_intf.INCOMING = true
 cand_intf.remote_intf.OUTGOING = true
 cand_intf.remote_intf.INCOMING = true
 cand_intf.remote_node.IN_GADAG = true
 add_eligible_interfaces_of_node(
 ordered_intfs_tree,cand_intf.remote_node)
 else
 if (cand_intf.remote_node.local_root ==
 cand_intf.local_node) &&
 check_if_block_has_ear
 (cand_intf.local_node,
 cand_intf.remote_node.block_id))
 /* Skip the interface since the block root
 already has an incoming interface in the
 block */
 else
 ear_end = SPF_for_Ear(cand_intf.local_node,
 cand_intf.remote_node,
 cand_intf.remote_node.localroot,
 SPF method)
 y = ear_end.spf_prev_hop
 while y.local_node is not cand_intf.local_node
 add_eligible_interfaces_of_node(
 ordered_intfs_tree,
 y.local_node)
 y = y.local_node.spf_prev_intf

 Figure 18: SPF-based GADAG algorithm

4.5. Option 3: Computing GADAG using a hybrid method

 In this option, the idea is to combine the salient features of the
 above two options. To this end, we process nodes as they get added
 to the GADAG just like in the lowpoint inheritance by maintaining a
 stack of nodes. This ensures that we do not need to maintain lower
 and higher sets at each node to ascertain ear directions since the
 ears will always be directed from the node being processed towards
 the end of the ear. To compute the ear however, we resort to an SPF
 to have the possibility of better ears (path lentghs) thus giving
 more flexibility than the restricted use of lowpoint/dfs parents.

 Regarding ears involving a block root, unlike the SPF method which
 ignored interfaces of the block root after the first ear, in the
 hybrid method we would have to process all interfaces of the block
 root before moving on to other nodes in the block since the direction

Atlas, et al. Expires April 24, 2013 [Page 27]

Internet-Draft MRT FRR Algorithm October 2012

 of an ear is pre-determined. Thus, whenever the block already has an
 ear computed, and we are processing an interface of the block root,
 we mark the block root as unusable before the SPF run that computes
 the ear. This ensures that the SPF terminates at some node other
 than the block-root. This in turn guarantees that the block-root has
 only one incoming interface in each block, which is necessary for
 correctly computing the next-hops on the GADAG.

 As in the SPF gadag, bridge ears are handled as a special case.

 The entire algorithm is shown below in Figure 19

Atlas, et al. Expires April 24, 2013 [Page 28]

Internet-Draft MRT FRR Algorithm October 2012

 find_spf_stack_ear(stack, x, y, xy_intf, block_root)
 if L(y) == D(y)
 // Special case for cut-edges
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.INCOMING = true
 xy_intf.remote_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 xy_intf.remote_node.IN_GADAG = true
 push y onto stack
 return
 else
 if (y.local_root == x) &&
 check_if_block_has_ear(x,y.block_id)
 //Avoid the block root during the SPF
 Mark x as TEMP_UNUSABLE
 end_ear = SPF_for_Ear(x,y,block_root,hybrid)
 If x was set as TEMP_UNUSABLE, clear it
 cur = end_ear
 while (cur != y)
 intf = cur.spf_prev_hop
 prev = intf.local_node
 intf.UNDIRECTED = false
 intf.remote_intf.UNDIRECTED = false
 intf.OUTGOING = true
 intf.remote_intf.INCOMING = true
 push prev onto stack
 cur = prev
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 return

 Construct_GADAG_via_hybrid(topology,root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)
 root.IN_GADAG = true
 Initialize Stack to empty
 push root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 for each interface intf of x
 y = intf.remote_node
 if y.IN_GADAG is false
 find_spf_stack_ear(stack, x, y, intf, y.block_root)

Atlas, et al. Expires April 24, 2013 [Page 29]

Internet-Draft MRT FRR Algorithm October 2012

 Figure 19: Hybrid GADAG algorithm

4.6. Augmenting the GADAG by directing all links

 The GADAG, whether constructed via Low-Point Inheritance or with SPFs
 or the hybrid method, at this point could be used to find MRTs but
 the topology does not include all links in the network graph. That
 has two impacts. First, there might be shorter paths that respect
 the GADAG partial ordering and so the alternate paths would not be as
 short as possible. Second, there may be additional paths between a
 router x and the root that are not included in the GADAG. Including
 those provides potentially more bandwidth to traffic flowing on the
 alternates and may reduce congestion compared to just using the GADAG
 as currently constructed.

 The goal is thus to assign direction to every remaining link marked
 as UNDIRECTED to improve the paths and number of paths found when the
 MRTs are computed.

 To do this, we need to establish a total order that respects the
 partial order described by the GADAG. This can be done using Kahn's
 topological sort[Kahn_1962_topo_sort] which essentially assigns a
 number to a node x only after all nodes before it (e.g. with a link
 incoming to x) have had their numbers assigned. The only issue with
 the topological sort is that it works on DAGs and not ADAGs or
 GADAGs.

 To convert a GADAG to a DAG, it is necessary to remove all links that
 point to a root of block from within that block. That provides the
 necessary conversion to a DAG and then a topological sort can be
 done. Finally, all UNDIRECTED links are assigned a direction based
 upon the partial ordering. Any UNDIRECTED links that connect to a
 root of a block from within that block are assigned a direction
 INCOMING to that root. The exact details of this whole process are
 captured in Figure 20

 Set_Block_Root_Incoming_Links(topo, root, mark_or_clear)
 foreach node x in topo
 if node x is a cut-vertex or root
 foreach interface i of x
 if (i.remote_node.localroot is x)
 if i.UNDIRECTED
 i.OUTGOING = true
 i.remote_intf.INCOMING = true
 i.UNDIRECTED = false
 i.remote_intf.UNDIRECTED = false
 if i.INCOMING

Atlas, et al. Expires April 24, 2013 [Page 30]

Internet-Draft MRT FRR Algorithm October 2012

 if mark_or_clear is mark
 if i.OUTGOING // a cut-edge
 i.STORE_INCOMING = true
 i.INCOMING = false
 i.remote_intf.STORE_OUTGOING = true
 i.remote_intf.OUTGOING = false
 i.TEMP_UNUSABLE = true
 i.remote_intf.TEMP_UNUSABLE = true
 else
 i.TEMP_UNUSABLE = false
 i.remote_intf.TEMP_UNUSABLE = false
 if i.STORE_INCOMING and (mark_or_clear is clear)
 i.INCOMING = true
 i.STORE_INCOMING = false
 i.remote_intf.OUTGOING = true
 i.remote_intf.STORE_OUTGOING = false

 Run_Topological_Sort_GADAG(topo, root)
 Set_Block_Root_Incoming_Links(topo, root, MARK)
 foreach node x
 set x.unvisited to the count of x's incoming interfaces
 that aren't marked TEMP_UNUSABLE
 Initialize working_list to empty
 Initialize topo_order_list to empty
 add_to_list_end(working_list, root)
 while working_list is not empty
 y = remove_start_item_from_list(working_list)
 add_to_list_end(topo_order_list, y)
 foreach interface i of y
 if (i.OUTGOING) and (not i.TEMP_UNUSABLE)
 i.remote_node.unvisited -= 1
 if i.remote_node.unvisited is 0
 add_to_list_end(working_list, i.remote_node)
 next_topo_order = 1
 while topo_order_list is not empty
 y = remove_start_item_from_list(topo_order_list)
 y.topo_order = next_topo_order
 next_topo_order += 1
 Set_Block_Root_Incoming_Links(topo, root, CLEAR)

 Add_Undirected_Links(topo, root)
 Run_Topological_Sort_GADAG(topo, root)
 foreach node x in topo
 foreach interface i of x
 if i.UNDIRECTED
 if x.topo_order < i.remote_node.topo_order
 i.OUTGOING = true
 i.UNDIRECTED = false

Atlas, et al. Expires April 24, 2013 [Page 31]

Internet-Draft MRT FRR Algorithm October 2012

 i.remote_intf.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 else
 i.INCOMING = true
 i.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 i.remote_intf.UNDIRECTED = false

 Add_Undirected_Links(topo, root)

 Figure 20: Assigning direction to UNDIRECTED links

 Proxy-nodes are used to represent multi-homed prefixes and routers
 that do not support MRT Fast-Reroute. Until now, the network graph
 has not included proxy-nodes because the computation for a GADAG
 assumes that the nodes can be transited.

 To handle destinations that can only be reached via proxy-nodes, each
 proxy-node should be added into the network graph after
 Add_Directed_Links() has beeen run once. A proxy-node P is connected
 to two routers, X and Y, which have been found to offer the best
 cost. If X.topo_order < Y.topo_order, then the proxy-node P is added
 along with a link X->P and a link P->Y. Once all the proxy-nodes have
 been added in this fashion, Run_Topological_Sort_GADAG() should be
 rerun so that the topological order includes the proxy-nodes as well.
 This is needed for determining which MRT can offer alternates, as is
 explained in Section 4.8.

4.7. Compute MRT next-hops

 As was discussed in Section 3.1, once a ADAG is found, it is
 straightforward to find the next-hops from any node X to the ADAG
 root. However, in this algorithm, we want to reuse the common GADAG
 and find not only one pair of redundant trees with it, but a pair
 rooted at each node. This is ideal, since it is faster and it
 results packet forwarding easier to trace and/or debug. The method
 for doing that is based on two basic ideas. First, if two nodes X
 and Y are ordered with respect to each other in the partial order,
 then the same SPF and reverse-SPF can be used to find the increasing
 and decreasing paths. Second, if two nodes X and Y aren't ordered
 with respect to each other in the partial order, then intermediary
 nodes can be used to create the paths by increasing/decreasing to the
 intermediary and then decreasing/increasing to reach Y.

 As usual, the two basic ideas will be discussed assuming the network
 is two-connected. The generalization to multiple blocks is discussed
 in Section 4.7.4. The full algorithm is given in Section 4.7.5.

Atlas, et al. Expires April 24, 2013 [Page 32]

Internet-Draft MRT FRR Algorithm October 2012

4.7.1. MRT next-hops to all nodes partially ordered with respect to the
 computing node

 To find two node-disjoint paths from the computing router X to any
 node Y, depends upon whether Y >> X or Y << X. As shown in Figure 21,
 if Y >> X, then there is an increasing path that goes from X to Y
 without crossing R; this contains nodes in the interval [X,Y]. There
 is also a decreasing path that decreases towards R and then decreases
 from R to Y; this contains nodes in the interval [X,R-small] or
 [R-great,Y]. The two paths cannot have common nodes other than X and
 Y.

 [Y]<---(Cloud 2)<--- [X]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 Blue MRT path: X->Cloud 2->Y
 Red MRT path: X->Cloud 1->R->Cloud 3->Y

 Figure 21: Y >> X

 Similar logic applies if Y << X, as shown in Figure 22. In this
 case, the increasing path from X increases to R and then increases
 from R to Y to use nodes in the intervals [X,R-great] and [R-small,
 Y]. The decreasing path from X reaches Y without crossing R and uses
 nodes in the interval [Y,X].

 [X]<---(Cloud 2)<--- [Y]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 Blue MRT path: X->Cloud 3->R->Cloud 1->Y
 Red MRT path: X->Cloud 2->Y

 Figure 22: Y << X

4.7.2. MRT next-hops to all nodes not partially ordered with respect to
 the computing node

 When X and Y are not ordered, the first path should increase until we
 get to a node G, where G >> Y. At G, we need to decrease to Y. The
 other path should be just the opposite: we must decrease until we get

Atlas, et al. Expires April 24, 2013 [Page 33]

Internet-Draft MRT FRR Algorithm October 2012

 to a node H, where H << Y, and then increase. Since R is smaller and
 greater than Y, such G and H must exist. It is also easy to see that
 these two paths must be node disjoint: the first path contains nodes
 in interval [X,G] and [Y,G], while the second path contains nodes in
 interval [H,X] and [H,Y]. This is illustrated in Figure 23. It is
 necessary to decrease and then increase for the Blue MRT and increase
 and then decrease for the Red MRT; if one simply increased for one
 and decreased for the other, then both paths would go through the
 root R.

 (Cloud 6)<---[Y]<---(Cloud 5)<------------|
 | |
 | |
 V |
 [G]--->(Cloud 4)--->[R]--->(Cloud 1)--->[H]
 ^ |
 | |
 | |
 (Cloud 3)<---[X]<---(Cloud 2)<-----------|

 Blue MRT path: decrease to H and increase to Y
 X->Cloud 2->H->Cloud 5->Y
 Red MRT path: increase to G and decrease to Y
 X->Cloud 3->G->Cloud 6->Y

 Figure 23: X and Y unordered

 This gives disjoint paths as long as G and H are not the same node.
 Since G >> Y and H << Y, if G and H could be the same node, that
 would have to be the root R. This is not possible because there is
 only one incoming interface to the root R which is created when the
 initial cycle is found. Recall from Figure 6 that whenever an ear
 was found to have an end that was the root R, the ear was directed
 from R so that the associated interface on R is outgoing and not
 incoming. Therefore, there must be exactly one node M which is the
 largest one before R, so the Red MRT path will never reach R; it will
 turn at M and decrease to Y.

4.7.3. Computing Redundant Tree next-hops in a 2-connected Graph

 The basic ideas for computing RT next-hops in a 2-connected graph
 were given in Section 4.7.1 and Section 4.7.2. Given these two
 ideas, how can we find the trees?

 If some node X only wants to find the next-hops (which is usually the
 case for IP networks), it is enough to find which nodes are greater
 and less than X, and which are not ordered; this can be done by

Atlas, et al. Expires April 24, 2013 [Page 34]

Internet-Draft MRT FRR Algorithm October 2012

 running an SPF and a reverse-SPF rooted at X and not exploring any
 links from the ADAG root. (Other traversal algorithms could safely
 be used instead where one traversal takes the links in their given
 directions and the other reverses the links' directions.)

 An SPF rooted at X and not exploring links from the root will find
 the increasing next-hops to all Y >> X. Those increasing next-hops
 are X's next-hops on the Blue MRT to reach Y. A reverse-SPF rooted at
 X and not exploring links from the root will find the decreasing
 next-hops to all Z << X. Those decreasing next-hops are X's next-hops
 on the Red MRT to reach Z. Since the root R is both greater than and
 less than X, after this SPF and reverse-SPF, X's next-hops on the
 Blue MRT and on the Red MRT to reach R are known. For every node Y
 >> X, X's next-hops on the Red MRT to reach Y are set to those on the
 Red MRT to reach R. For every node Z << X, X's next-hops on the Blue
 MRT to reach Z are set to those on the Blue MRT to reach R.

 For those nodes, which were not reached, we have the next-hops as
 well. The increasing Blue MRT next-hop for a node, which is not
 ordered, is the next-hop along the decreasing Red MRT towards R and
 the decreasing Red MRT next-hop is the next-hop along the increasing
 Blue MRT towards R. Naturally, since R is ordered with respect to all
 the nodes, there will always be an increasing and a decreasing path
 towards it. This algorithm does not provide the specific path taken
 but only the appropriate next-hops to use. The identity of G and H
 is not determined.

 The final case to considered is when the root R computes its own
 next-hops. Since the root R is << all other nodes, running an SPF
 rooted at R will reach all other nodes; the Blue MRT next-hops are
 those found with this SPF. Similarly, since the root R is >> all
 other nodes, running a reverse-SPF rooted at R will reach all other
 nodes; the Red MRT next-hops are those found with this reverse-SPF.

 E---D---| E<--D<--|
 | | | | ^ |
 | | | V | |
 R F C R F C
 | | | | ^ ^
 | | | V | |
 A---B---| A-->B---|

 (a) (b)
 A 2-connected graph A spanning ADAG rooted at R

 Figure 24

 As an example consider the situation depicted in Figure 24. There

Atlas, et al. Expires April 24, 2013 [Page 35]

Internet-Draft MRT FRR Algorithm October 2012

 node C runs an SPF and a reverse-SPF The SPF reaches D, E and R and
 the reverse SPF reaches B, A and R. So we immediately get that e.g.
 towards E the increasing next-hop is D (it was reached though D), and
 the decreasing next-hop is B (since R was reached though B). Since
 both D and B, A and R will compute the next hops similarly, the
 packets will reach E.

 We have the next-hops towards F as well: since F is not ordered with
 respect to C, the increasing next-hop is the decreasing one towards R
 (which is B) and the decreasing next-hop is the increasing one
 towards R (which is D). Since B is ordered with F, it will find a
 real increasing next-hop, so packet forwarded to B will get to F on
 path C-B-F. Similarly, D will have a real decreasing next-hop, and
 packet will use path C-D-F.

4.7.4. Generalizing for graph that isn't 2-connected

 If a graph isn't 2-connected, then the basic approach given in
Section 4.7.3 needs some extensions to determine the appropriate MRT

 next-hops to use for destinations outside the computing router X's
 blocks. In order to find a pair of maximally redundant trees in that
 graph we need to find a pair of RTs in each of the blocks (the root
 of these trees will be discussed later), and combine them.

 When computing the MRT next-hops from a router X, there are three
 basic differences:

 1. Only nodes in a common block with X should be explored in the SPF
 and reverse-SPF.

 2. Instead of using the GADAG root, X's local-root should be used.
 This has the following implications:

 A. The links from X's local-root should not be explored.

 B. If a node is explored in the increasing SPF so Y >> X, then
 X's Red MRT next-hops to reach Y uses X's Red MRT next-hops
 to reach X's local-root and if Z <<, then X's Blue MRT next-
 hops to reach Z uses X's Blue MRT next-hops to reach X's
 local-root.

 C. If a node W in a common block with X was not reached in the
 SPF or reverse-SPF, then W is unordered with respect to X.
 X's Blue MRT next-hops to W are X's decreasing aka Red MRT
 next-hops to X's local-root. X's Red MRT next-hops to W are
 X's increasing aka Blue MRT next-hops to X's local-root.

Atlas, et al. Expires April 24, 2013 [Page 36]

Internet-Draft MRT FRR Algorithm October 2012

 3. For nodes in different blocks, the next-hops must be inherited
 via the relevant cut-vertex.

 These are all captured in the detailed algorithm given in
Section 4.7.5.

4.7.5. Complete Algorithm to Compute MRT Next-Hops

 The complete algorithm to compute MRT Next-Hops for a particular
 router X is given in Figure 25. In addition to computing the Blue
 MRT next-hops and Red MRT next-hops used by X to reach each node Y,
 the algorithm also stores an "order_proxy", which is the proper cut-
 vertex to reach Y if it is outside the block, and which is used later
 in deciding whether the Blue MRT or the Red MRT can provide an
 acceptable alternate for a particular primary next-hop.

 In_Common_Block(x, y)
 if ((x.localroot is y.localroot) or (x is y.localroot) or
 (y is x.localroot))
 return true
 return false

 Store_Results(y, direction, spf_root, store_nhs)
 if direction is FORWARD
 y.higher = true
 if store_nhs
 y.blue_next_hops = y.next_hops
 if direction is REVERSE
 y.lower = true
 if store_nhs
 y.red_next_hops = y.next_hops

 SPF_No_Traverse_Root(spf_root, block_root, direction, store_nhs)
 Initialize spf_heap to empty
 Initialize nodes' spf_metric to infinity and next_hops to empty
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 while (spf_heap is not empty)
 min_node = remove_lowest(spf_heap)
 Store_Results(min_node, direction, spf_root, store_nhs)
 if ((min_node is spf_root) or
 ((min_node is not block_root) and
 (min_node is not a proxy_node)))
 foreach interface intf of min_node
 if (((direction is FORWARD) and intf.OUTGOING) or
 ((direction is REVERSE) and intf.INCOMING) and
 In_Common_Block(spf_root, intf.remote_node))
 if direction is FORWARD

Atlas, et al. Expires April 24, 2013 [Page 37]

Internet-Draft MRT FRR Algorithm October 2012

 path_metric = min_node.spf_metric + intf.metric
 else
 path_metric = min_node.spf_metric +
 intf.remote_intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root
 intf.remote_node.next_hops = make_list(intf)
 else
 intf.remote_node.next_hops = min_node.next_hops
 insert_or_update(spf_heap, intf.remote_node)
 else if path_metric is intf.remote_node.spf_metric
 if min_node is spf_root
 add_to_list(intf.remote_node.next_hops, intf)
 else
 add_list_to_list(intf.remote_node.next_hops,
 min_node.next_hops)

 SetEdge(y)
 if y.blue_next_hops is empty and y.red_next_hops is empty
 SetEdge(y.localroot)
 y.blue_next_hops = y.localroot.blue_next_hops
 y.red_next_hops = y.localroot.red_next_hops
 y.order_proxy = y.localroot.order_proxy

 Compute_MRT_NextHops(x, root)
 foreach node y
 y.higher = y.lower = false
 clear y.red_next_hops and y.blue_next_hops
 y.order_proxy = y
 SPF_No_Traverse_Root(x, x.localroot, FORWARD, TRUE)
 SPF_No_Traverse_Root(x, x.localroot, REVERSE, TRUE)

 // red and blue next-hops are stored to x.localroot as different
 // paths are found via the SPF and reverse-SPF.
 // Similarly any nodes whose local-root is x will have their
 // red_next_hops and blue_next_hops already set.

 // Handle nodes in the same block that aren't the local-root
 foreach node y
 if ((y is not x) and (y.localroot is x.localroot) and
 ((y is x.localroot) or (y.block_id is x.block_id))
 if y.higher
 y.red_next_hops = x.localroot.red_next_hops
 else if y.lower
 y.blue_next_hops = x.localroot.blue_next_hops
 else
 y.blue_next_hops = x.localroot.red_next_hops

Atlas, et al. Expires April 24, 2013 [Page 38]

Internet-Draft MRT FRR Algorithm October 2012

 y.red_next_hops = x.localroot.blue_next_hops

 // Inherit next-hops and order_proxies to other components
 if x is not root
 root.blue_next_hops = x.localroot.blue_next_hops
 root.red_next_hops = x.localroot.red_next_hops
 root.order_proxy = x.localroot
 foreach node y
 if (y is not root) and (y is not x)
 SetEdge(y)

 max_block_id = 0
 Assign_Block_ID(root, max_block_id)
 Compute_MRT_NextHops(x, root)

 Figure 25

4.8. Identify MRT alternates

 At this point, a computing router S knows its Blue MRT next-hops and
 Red MRT next-hops for each destination. The primary next-hops along
 the SPT are also known. It remains to determine for each primary
 next-hop to a destination D, which of the MRTs avoids the primary
 next-hop node F. This computation depends upon data set in
 Compute_MRT_NextHops such as each node y's y.blue_next_hops,
 y.red_next_hops, y.order_proxy, y.higher, y.lower and topo_orders.
 Recall that any router knows only which are the nodes greater and
 lesser than itself, but it cannot decide the relation between any two
 given nodes easily; that is why we need topological ordering.

 For each primary next-hop node F to each destination D, S can call
 Select_Alternates(S, D, F, primary_intf) to determine whether to use
 the Blue MRT next-hops as the alternate next-hop(s) for that primary
 next hop or to use the Red MRT next-hops. The algorithm is given in
 Figure 26 and discussed afterwards.

 Select_Alternates(S, D, F, primary_intf)
 if D.order_proxy is not D
 D_lower = D.order_proxy.lower
 D_higher = D.order_proxy.higher
 D_topo_order = D.order_proxy.topo_order
 else
 D_lower = D.lower
 D_higher = D.higher
 D_topo_order = D.topo_order

 //When D==F, we can do only link protection
 if ((D is F) or (D.order_proxy is F))

Atlas, et al. Expires April 24, 2013 [Page 39]

Internet-Draft MRT FRR Algorithm October 2012

 if an MRT doesn't use primary_intf
 indicate alternate is not node-protecting
 return that MRT color
 else // parallel links are cut-edge
 return AVOID_LINK_ON_BLUE

 if (D_lower and D_higher and F.lower and F.higher)
 if F.topo_order < D_topo_order
 return USE_RED
 else
 return USE_BLUE

 if (D_lower and D_higher)
 if F.higher
 return USE_RED
 else
 return USE_BLUE

 if (F.lower and F.higher)
 if D_lower
 return USE_RED
 else if D_higher
 return USE_BLUE
 else
 if primary_intf.OUTGOING and primary_intf.INCOMING
 return AVOID_LINK_ON_BLUE
 if primary_intf.OUTGOING is true
 return USE_BLUE
 if primary_intf.INCOMING is true
 return USE_RED

 if D_higher
 if F.higher
 if F.topo_order < D_topo_order
 return USE_RED
 else
 return USE_BLUE
 else if F.lower
 return USE_BLUE
 else
 // F and S are neighbors so either F << S or F >> S
 else if D_lower
 if F.higher
 return USE_RED
 else if F.lower
 if F.topo_order < D_topo_order
 return USE_RED
 else

Atlas, et al. Expires April 24, 2013 [Page 40]

Internet-Draft MRT FRR Algorithm October 2012

 return USE_BLUE
 else
 // F and S are neighbors so either F << S or F >> S
 else // D and S not ordered
 if F.lower
 return USE_RED
 else if F.higher
 return USE_BLUE
 else
 // F and S are neighbors so either F << S or F >> S

 Figure 26

 If either D>>S>>F or D<<S<<F holds true, the situation is simple: in
 the first case we should choose the increasing Blue next-hop, in the
 second case, the decreasing Red next-hop is the right choice.

 However, when both D and F are greater than S the situation is not so
 simple, there can be three possibilities: (i) F>>D (ii) F<<D or (iii)
 F and D are not ordered. In the first case, we should choose the
 path towards D along the Blue tree. In contrast, in case (ii) the
 Red path towards the root and then to D would be the solution.
 Finally, in case (iii) both paths would be acceptable. However,
 observe that if e.g. F.topo_order>D.topo_order, either case (i) or
 case (iii) holds true, which means that selecting the Blue next-hop
 is safe. Similarly, if F.topo_order<D.topo_order, we should select
 the Red next-hop. The situation is almost the same if both F and D
 are less than S.

 Recall that we have added each link to the GADAG in some direction,
 so it is impossible that S and F are not ordered. But it is possible
 that S and D are not ordered, so we need to deal with this case as
 well. If F<<S, we can use the Red next-hop, because that path is
 first increasing until a node definitely greater than D is reached,
 than decreasing; this path must avoid using F. Similarly, if F>>S, we
 should use the Blue next-hop.

 Additionally, the cases where either F or D is ordered both higher
 and lower must be considered; this can happen when one is a block-
 root or inherits its order_proxy is. If D is both higher and lower
 than S, then the MRT to use is the one that avoids F so if F is
 higher, then the Red MRT should be used and if F is lower, then the
 Blue MRT should be used; F and S must be ordered because they are
 neighbors. If F is both higher and lower, then if D is lower, using
 the Red MRT to decrease reaches D and if D is higher, using the Blue
 MRT to increase reaches D; if D is unordered compared to S, then the
 situation is a bit more complicated.

Atlas, et al. Expires April 24, 2013 [Page 41]

Internet-Draft MRT FRR Algorithm October 2012

 In the case where F<<S<<F and D and S are unordered, the direction of
 the link in the GADAG between S and F should be examined. If the
 link is directed S --> F, then use the Blue MRT (decrease to avoid
 that link and then increase). If the link is directed S <-- F, then
 use the Red MRT (increase to avoid that link and then decrease). If
 the link is S <----> F, then the link must be a cut-link and there is
 no node-protecting alternate. If there are multiple links between S
 and F, then they can protect against each other; of course, in this
 situation, they are probably already ECMP.

 Finally, there is the case where D is also F. In this case, only link
 protection is possible. The MRT that doesn't use the indicated
 primary next-hop is used. If both MRTs use the primary next-hop,
 then the primary next-hop must be a cut-edge so either MRT could be
 used but the set of MRT next-hops must be pruned to avoid that
 primary next-hop. To indicate this case, Select_Alternates returns
 AVOID_LINK_ON_BLUE.

 As an example, consider the ADAG depicted in Figure 27 and first
 suppose that G is the source, D is the destination and H is the
 failed next-hop. Since D>>G, we need to compare H.topo_order and
 D.topo_order. Since D.topo_order>H.topo_order, D must be not smaller
 than H, so we should select the decreasing path towards the root.
 If, however, the destination were instead J, we must find that
 H.topo_order>J.topo_order, so we must choose the increasing Blue
 next-hop to J, which is I. In the case, when instead the destination
 is C, we find that we need to first decrease to avoid using H, so the
 Blue, first decreasing then increasing, path is selected.

 [E]<-[D]<-[H]<-[J]
 | ^ ^ ^
 V | | |
 [R] [C] [G]->[I]
 | ^ ^ ^
 V | | |
 [A]->[B]->[F]---|

 (a)
 a 2-connected graph

 Figure 27

5. Algorithm Alternatives and Evaluation

 This description of the algorithm assumes a particular approach that
 is believed to be a reasonable compromise between complexity and
 computation. There are two options given for constructing the GADAG

Atlas, et al. Expires April 24, 2013 [Page 42]

Internet-Draft MRT FRR Algorithm October 2012

 as both are reasonable and promising.

 SPF-based GADAG Compute the common GADAG using Option 2 of SPF-based
 inheritance. This considers metrics when constructing the GADAG,
 which is important for path length and operational control. It
 has higher computational complexity than the Low-Point Inheritance
 GADAG.

 Low-Point Inheritance GADAG Compute the common GADAG using Option 1
 of Low-Point Inheritance. This ignores metrics when constructing
 the GADAG, but its computational complexity is O(links) which is
 attractive. It is possible that augmenting the GADAG by assigning
 directions to all links in the network graph and adding them to
 the GADAG will make the difference between this and the SPF-based
 GADAG minimal.

 In addition, it is possible to calculate Destination-Rooted GADAG,
 where for each destination, a GADAG rooted at that destination is
 computed. The GADAG can be computed using either Low-Point
 Inheritance or SPF-based. Then a router would need to compute the
 blue MRT and red MRT next-hops to that destination. Building GADAGs
 per destination is computationally more expensive, but may give
 somewhat shorter alternate paths. It may be useful for live-live
 multicast along MRTs.

5.1. Algorithm Evaluation

 When evaluating different algorithms and methods for IP Fast Reroute
 [RFC5714], there are three critical points to consider.

 o Coverage: For every Point of Local Repair (PLR) and local failure,
 is there an alternate to reach every destination? Those
 destinations include not only routers in the IGP area, but also
 prefixes outside the IGP area.

 o Alternate Length: What is the length of the alternate path offered
 compared to the optimal alternate route in the network? This is
 computed as the total length of the alternate path divided by the
 length of an optimal alternate path. The optimal alternate path
 is computed by removing the failed node and running an SPF to find
 the shortest path from the PLR to the destination.

 o Alternate Bandwidth: What percentage of the traffic sent to the
 failed point can be sent on the alternates? This is computed as
 the sum of the bandwidths along the alternate paths divided by the
 bandwidth of the primary paths that go through the failure point.

 Simulation and modeling to evalute the MRT algorithms is underway.

https://datatracker.ietf.org/doc/html/rfc5714

Atlas, et al. Expires April 24, 2013 [Page 43]

Internet-Draft MRT FRR Algorithm October 2012

 The algorithms being compared are:

 o SPF-based GADAG

 o Low-Point Inheritance GADAG

 o Destination-Rooted SPF-based GADAG

 o Destination-Rooted Low-Point Inheritance GADAG

 o Not-Via to Next-Next Hop[I-D.ietf-rtgwg-ipfrr-notvia-addresses]

 o Loop-Free Alternates[RFC5286]

 o Remote LFAs[I-D.shand-remote-lfa]

6. Algorithm Work to Be Done

 Broadcast Interfaces: The algorithm assumes that broadcast
 interfaces are already represented as pseudo-nodes in the network
 graph. The exact rules for extending the set of next-hops and
 ensuring that the neighboring node is avoided need to be fully
 specified.

 Local SRLG Protection: The algorithmic extensions to handle local
 SRLGs, where each member of the SRLG shares a common router end,
 need to be fully specified.

 General SRLG Protection: Creating MRTs that consider general SRLGs
 is still a challenging open research problem.

7. IANA Considerations

 This doument includes no request to IANA.

8. Security Considerations

 This architecture is not currently believed to introduce new security
 concerns.

9. References

Atlas, et al. Expires April 24, 2013 [Page 44]

Internet-Draft MRT FRR Algorithm October 2012

9.1. Normative References

 [I-D.ietf-rtgwg-mrt-frr-architecture]
 Atlas, A., Kebler, R., Envedi, G., Csaszar, A.,
 Konstantynowicz, M., White, R., and M. Shand, "An
 Architecture for IP/LDP Fast-Reroute Using Maximally
 Redundant Trees", draft-ietf-rtgwg-mrt-frr-architecture-01
 (work in progress), March 2012.

9.2. Informative References

 [EnyediThesis]
 Enyedi, G., "Novel Algorithms for IP Fast Reroute",
 Department of Telecommunications and Media Informatics,
 Budapest University of Technology and Economics Ph.D.
 Thesis, February 2011, <http://www.omikk.bme.hu/

collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/
Enyedi_Gabor/ertekezes.pdf>.

 [I-D.ietf-rtgwg-ipfrr-notvia-addresses]
 Bryant, S., Previdi, S., and M. Shand, "IP Fast Reroute
 Using Not-via Addresses",

draft-ietf-rtgwg-ipfrr-notvia-addresses-09 (work in
 progress), June 2012.

 [I-D.ietf-rtgwg-lfa-applicability]
 Filsfils, C. and P. Francois, "LFA applicability in SP
 networks", draft-ietf-rtgwg-lfa-applicability-06 (work in
 progress), January 2012.

 [I-D.shand-remote-lfa]
 Bryant, S., Filsfils, C., Shand, M., and N. So, "Remote
 LFA FRR", draft-shand-remote-lfa-01 (work in progress),
 June 2012.

 [Kahn_1962_topo_sort]
 Kahn, A., "Topological sorting of large networks",
 Communications of the ACM, Volume 5, Issue 11 , Nov 1962,
 <http://dl.acm.org/citation.cfm?doid=368996.369025>.

 [LFARevisited]
 Retvari, G., Tapolcai, J., Enyedi, G., and A. Csaszar, "IP
 Fast ReRoute: Loop Free Alternates Revisited", Proceedings
 of IEEE INFOCOM , 2011, <http://opti.tmit.bme.hu/

~tapolcai/papers/retvari2011lfa_infocom.pdf>.

 [LightweightNotVia]
 Enyedi, G., Retvari, G., Szilagyi, P., and A. Csaszar, "IP

https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-mrt-frr-architecture-01
http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-lfa-applicability-06
https://datatracker.ietf.org/doc/html/draft-shand-remote-lfa-01
http://dl.acm.org/citation.cfm?doid=368996.369025
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf

Atlas, et al. Expires April 24, 2013 [Page 45]

Internet-Draft MRT FRR Algorithm October 2012

 Fast ReRoute: Lightweight Not-Via without Additional
 Addresses", Proceedings of IEEE INFOCOM , 2009,
 <http://mycite.omikk.bme.hu/doc/71691.pdf>.

 [MRTLinear]
 Enyedi, G., Retvari, G., and A. Csaszar, "On Finding
 Maximally Redundant Trees in Strictly Linear Time", IEEE
 Symposium on Computers and Comunications (ISCC) , 2009,
 <http://opti.tmit.bme.hu/~enyedi/ipfrr/

distMaxRedTree.pdf>.

 [RFC3137] Retana, A., Nguyen, L., White, R., Zinin, A., and D.
 McPherson, "OSPF Stub Router Advertisement", RFC 3137,
 June 2001.

 [RFC5286] Atlas, A. and A. Zinin, "Basic Specification for IP Fast
 Reroute: Loop-Free Alternates", RFC 5286, September 2008.

 [RFC5714] Shand, M. and S. Bryant, "IP Fast Reroute Framework",
RFC 5714, January 2010.

Authors' Addresses

 Alia Atlas
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 USA

 Email: akatlas@juniper.net

 Gabor Sandor Enyedi
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Gabor.Sandor.Enyedi@ericsson.com

http://mycite.omikk.bme.hu/doc/71691.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
https://datatracker.ietf.org/doc/html/rfc3137
https://datatracker.ietf.org/doc/html/rfc5286
https://datatracker.ietf.org/doc/html/rfc5714

Atlas, et al. Expires April 24, 2013 [Page 46]

Internet-Draft MRT FRR Algorithm October 2012

 Andras Csaszar
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Andras.Csaszar@ericsson.com

 Abishek Gopalan
 University of Arizona
 1230 E Speedway Blvd.
 Tucson, AZ 85721
 USA

 Email: abishek@ece.arizona.edu

Atlas, et al. Expires April 24, 2013 [Page 47]

