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Abstract

   A complete solution for IP and LDP Fast-Reroute using Maximally
   Redundant Trees is presented in [I-D.ietf-rtgwg-mrt-frr-
   architecture].  This document describes an algorithm that can be used
   to compute the necessary Maximally Redundant Trees and the associated
   next-hops.
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   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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1.  Introduction

   MRT Fast-Reroute requires that packets can be forwarded not only on
   the shortest-path tree, but also on two Maximally Redundant Trees
   (MRTs), referred to as the Blue MRT and the Red MRT.  A router which
   experiences a local failure must also have pre-determined which
   alternate to use.  This document describes how to compute these three
   things and the algorithm design decisions and rationale.  The
   algorithms are based on those presented in [MRTLinear] and expanded
   in [EnyediThesis].

   Just as packets routed on a hop-by-hop basis require that each router
   compute a shortest-path tree which is consistent, it is necessary for
   each router to compute the Blue MRT and Red MRT in a consistent
   fashion.  This is the motivation for the detail in this document.

   As now, a router's FIB will contain primary next-hops for the current
   shortest-path tree for forwarding traffic.  In addition, a router's
   FIB will contain primary next-hops for the Blue MRT for forwarding
   received traffic on the Blue MRT and primary next-hops for the Red
   MRT for forwarding received traffic on the Red MRT.

   What alternate next-hops a point-of-local-repair (PLR) selects need
   not be consistent - but loops must be prevented.  To reduce
   congestion, it is possible for multiple alternate next-hops to be
   selected; in the context of MRT alternates, each of those alternate
   next-hops would be equal-cost paths.

   This document provides an algorithm for selecting an appropriate MRT
   alternate for consideration.  Other alternates, e.g.  LFAs that are
   downstream paths, may be prefered when available and that decision-
   making is not captured in this document.

   [E]---[D]---|           [E]<--[D]<--|                [E]-->[D]
    |     |    |            |     ^    |                       |
    |     |    |            V     |    |                       V
   [R]   [F]  [C]          [R]   [F]  [C]               [R]   [F]  [C]
    |     |    |                  ^                      ^     |    |
    |     |    |                  |                      |     V    |
   [A]---[B]---|           [A]-->[B]                    [A]---[B]<--|

         (a)                     (b)                         (c)
   a 2-connected graph     Blue MRT towards R          Red MRT towards R

                                 Figure 1

   Algorithms for computing MRTs can handle arbitrary network topologies
   where the whole network graph is not 2-connected, as in Figure 2, as
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   well as the easier case where the network graph is 2-connected
   (Figure 1).  Each MRT is a spanning tree.  The pair of MRTs provide
   two paths from every node X to the root of the MRTs.  Those paths
   share the minimum number of nodes and the minimum number of links.
   Each such shared node is a cut-vertex.  Any shared links are cut-
   links.

                         [E]---[D]---|     |---[J]
                          |     |    |     |    |
                          |     |    |     |    |
                         [R]   [F]  [C]---[G]   |
                          |     |    |     |    |
                          |     |    |     |    |
                         [A]---[B]---|     |---[H]

                        (a) a graph that isn't 2-connected

          [E]<--[D]<--|     |---[J]        [E]-->[D]             [J]
           |     ^    |     |    ^                |               |
           V     |    |     V    |                V               |
          [R]   [F]  [C]<--[G]   |         [R]   [F]  [C]<--[G]   |
                 ^               |          ^     |    |     ^    |
                 |               |          |     V    |     |    V
          [A]-->[B]             [H]        [A]<--[B]<--|     |---[H]

           (b) Blue MRT towards R          (c) Red MRT towards R

                                 Figure 2

2.  Terminology and Definitions

   Redundant Trees (RT):  A pair of trees where the path from any node X
      to the root R on the first tree is node-disjoint with the path
      from the same node X to the root along the second tree.  These can
      be computed in 2-connected graphs.

   Maximally Redundant Trees (MRT):   A pair of trees where the path
      from any node X to the root R along the first tree and the path
      from the same node X to the root along the second tree share the
      minimum number of nodes and the minimum number of links.  Each
      such shared node is a cut-vertex.  Any shared links are cut-links.
      Any RT is an MRT but many MRTs are not RTs.

   network graph:   A graph that reflects the network topology where all
      links connect exactly two nodes and broadcast links have been
      transformed into the standard pseudo-node representation.
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   cut-vertex:   A vertex whose removal partitions the network.

   cut-link:   A link whose removal partitions the network.  A cut-link
      by definition must be connected between two cut-vertices.  If
      there are multiple parallel links, then they are referred to as
      cut-links in this document if removing the set of parallel links
      would partition the network.

   2-connected:   A graph that has no cut-vertices.  This is a graph
      that requires two nodes to be removed before the network is
      partitioned.

   spanning tree:   A tree containing links that connects all nodes in
      the network graph.

   back-edge:   In the context of a spanning tree computed via a depth-
      first search, a back-edge is a link that connects a descendant of
      a node x with an ancestor of x.

   2-connected cluster:   A maximal set of nodes that are 2-connected.
      In a network graph with at least one cut-vertex, there will be
      multiple 2-connected clusters.

   block:   Either a 2-connected cluster, a cut-edge, or an isolated
      vertex.

   DAG:   Directed Acyclic Graph - a digraph containing no directed
      cycle.

   ADAG:   Almost Directed Acyclic Graph - a digraph that can be
      transformed into a DAG whith removing a single node (the root
      node).

   GADAG:   Generalized ADAG - a digraph, which has only ADAGs as all of
      its blocks.  The root of such a block is the node closest to the
      global root (e.g. with uniform link costs).

   DFS:   Depth-First Search

   DFS ancestor:   A node n is a DFS ancestor of x if n is on the DFS-
      tree path from the DFS root to x.

   DFS descendant:   A node n is a DFS descendant of x if x is on the
      DFS-tree path from the DFS root to n.
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   ear:   A path along not-yet-included-in-the-GADAG nodes that starts
      at a node that is already-included-in-the-GADAG and that ends at a
      node that is already-included-in-the-GADAG.  The starting and
      ending nodes may be the same node if it is a cut-vertex.

   X >> Y or Y << X:   Indicates the relationship between X and Y in a
      partial order, such as found in a GADAG.  X >> Y means that X is
      higher in the partial order than Y. Y << X means that Y is lower
      in the partial order than X.

   X > Y or Y < X:   Indicates the relationship between X and Y in the
      total order, such as found via a topological sort.  X > Y means
      that X is higher in the total order than Y. Y < X means that Y is
      lower in the total order than X.

   proxy-node:   A node added to the network graph to represent a multi-
      homed prefix or routers outside the local MRT-fast-reroute-
      supporting island of routers.  The key property of proxy-nodes is
      that traffic cannot transit them.

3.  Algorithm Key Concepts

   There are five key concepts that are critical for understanding the
   algorithms for computing MRTs.  The first is the idea of partially
   ordering the nodes in a network graph with regard to each other and
   to the GADAG root.  The second is the idea of finding an ear of nodes
   and adding them in the correct direction.  The third is the idea of a
   Low-Point value and how it can be used to identify cut-vertices and
   to find a second path towards the root.  The fourth is the idea that
   a non-2-connected graph is made up of blocks, where a block is a
   2-connected cluster, a cut-edge or an isolated node.  The fifth is
   the idea of a local-root for each node; this is used to compute ADAGs
   in each block.

3.1.  Partial Ordering for Disjoint Paths

   Given any two nodes X and Y in a graph, a particular total order
   means that either X < Y or X > Y in that total order.  An example
   would be a graph where the nodes are ranked based upon their IP
   loopback addresses.  In a partial order, there may be some nodes for
   which it can't be determined whether X << Y or X >> Y. A partial
   order can be captured in a directed graph, as shown in Figure 3.  In
   a graphical representation, a link directed from X to Y indicates
   that X is a neighbor of Y in the network graph and X << Y.
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         [A]<---[R]    [E]       R << A << B << C << D << E
          |             ^        R << A << B << F << G << H << D << E
          |             |
          V             |        Unspecified Relationships:
         [B]--->[C]--->[D]             C and F
          |             ^              C and G
          |             |              C and H
          V             |
         [F]--->[G]--->[H]

             Figure 3: Directed Graph showing a Partial Order

   To compute MRTs, it is very useful to have the root of the MRTs be at
   the very bottom and the very top of the partial ordering.  This means
   that from any node X, one can pick nodes higher in the order until
   the root is reached.  Similarly, from any node X, one can pick nodes
   lower in the order until the root is reached.  For instance, in
   Figure 4, from G the higher nodes picked can be traced by following
   the directed links and are H, D, E and R. Similarly, from G the lower
   nodes picked can be traced by reversing the directed links and are F,
   B, A, and R. A graph that represents this modified partial order is
   no longer a DAG; it is termed an Almost DAG (ADAG) because if the
   links directed to the root were removed, it would be a DAG.

      [A]<---[R]<---[E]      R << A << B << C << R
       |      ^      ^       R << A << B << C << D << E << R
       |      |      |       R << A << B << F << G << H << D << E << R
       V      |      |
      [B]--->[C]--->[D]      Unspecified Relationships:
       |             ^              C and F
       |             |              C and G
       V             |              C and H
      [F]--->[G]--->[H]

     Figure 4: ADAG showing a Partial Order with R lowest and highest

   Most importantly, if a node Y >> X, then Y can only appear on the
   increasing path from X to the root and never on the decreasing path.
   Similarly, if a node Z << X, then Z can only appear on the decreasing
   path from X to the root and never on the inceasing path.

   Additionally, when following the increasing paths, it is possible to
   pick multiple higher nodes and still have the certainty that those
   paths will be disjoint from the decreasing paths.  E.g. in the
   previous example node B has multiple possibilities to forward packets
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   along an increasing path: it can either forward packets to C or F.

3.2.  Finding an Ear and the Correct Direction

   For simplicity, the basic idea of creating a GADAG by adding ears is
   described assuming that the network graph is a single 2-connected
   cluster so that an ADAG is sufficient.  Generalizing to multiple
   blocks is done by considering the block-roots instead of the GADAG
   root - and the actual algorithms given in Section 4.3 and

Section 4.4.

   In order to understand the basic idea of finding an ADAG, first
   suppose that we have already a partial ADAG, which doesn't contain
   all the nodes in the block yet, and we want to extend it to cover all
   the nodes.  Suppose that we find a path from a node X to Y such that
   X and Y are already contained by our partial ADAG, but all the
   remaining nodes along the path are not added to the ADAG yet.  We
   refer to such a path as an ear.

   Recall that our ADAG is closely related to a partial order, more
   precisely, if we remove root R, the remaining DAG describes a partial
   order of the nodes.  If we suppose that neither X nor Y is the root,
   we may be able to compare them.  If one of them is definitely lesser
   with respect to our partial order (say X<<Y), we can add the new path
   to the ADAG in a direction from X to Y. As an example consider
   Figure 5.

            E---D---|              E<--D---|           E<--D<--|
            |   |   |              |   ^   |           |   ^   |
            |   |   |              V   |   |           V   |   |
            R   F   C              R   F   C           R   F   C
            |   |   |              |   ^   |           |   ^   ^
            |   |   |              V   |   |           V   |   |
            A---B---|              A-->B---|           A-->B---|

               (a)                    (b)                 (c)

                             (a) A 2-connected graph
                       (b) Partial ADAG (C is not included)
            (c) Resulting ADAG after adding path (or ear) B-C-D

                                 Figure 5

   In this partial ADAG, node C is not yet included.  However, we can
   find path B-C-D, where both endpoints are contained by this partial
   ADAG (we say those nodes are *ready* in the sequel), and the
   remaining node (node C) is not contained yet.  If we remove R, the
   remaining DAG defines a partial order, and with respect to this
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   partial order we can say that B<<D, so we can add the path to the
   ADAG in the direction from B to D (arcs B->C and C->D are added).  If
   B were strictly greater than D, we would add the same path in reverse
   direction.

   If in the partial order where an ear's two ends are X and Y, X << Y,
   then there must already be a directed path from X to Y already in the
   ADAG.  The ear must be added in a direction such that it doesn't
   create a cycle; therefore the ear must go from X to Y.

   In the case, when X and Y are not ordered with each other, we can
   select either direction for the ear.  We have no restriction since
   neither of the directions can result in a cycle.  In the corner case
   when one of the endpoints of an ear, say X, is the root (recall that
   the two endpoints must be different), we could use both directions
   again for the ear because the root can be considered both as smaller
   and as greater than Y. However, we strictly pick that direction in
   which the root is lower than Y. The logic for this decision is
   explained in Section 4.7

   A partial ADAG is started by finding a cycle from the root R back to
   itself.  This can be done by selecting a non-ready neighbor N of R
   and then finding a path from N to R that doesn't use any links
   between R and N. The direction of the cycle can be assigned either
   way since it is starting the ordering.

   Once a partial ADAG is already present, we can always add ears to it:
   just select a non-ready neighbor N of a ready node Q, such that Q is
   not the root, find a path from N to the root in the graph with Q
   removed.  This path is an ear where the first node of the ear is Q,
   the next is N, then the path until the first ready node the path
   reached (that second ready node is the other endpoint of the path).
   Since the graph is 2-connected, there must be a path from N to R
   without Q.

   It is always possible to select a non-ready neighbor N of a ready
   node Q so that Q is not the root R. Because the network is
   2-connected, N must be connected to two different nodes and only one
   can be R. Because the initial cycle has already been added to the
   ADAG, there are ready nodes that are not R. Since the graph is
   2-connected, while there are non-ready nodes, there must be a non-
   ready neighbor N of a ready node that is not R.



Atlas, et al.            Expires April 24, 2013                 [Page 9]



Internet-Draft              MRT FRR Algorithm               October 2012

    Generic_Find_Ears_ADAG(root)
       Create an empty ADAG.  Add root to the ADAG.
       Mark root as IN_GADAG.
       Select an arbitrary cycle containing root.
       Add the arbitrary cycle to the ADAG.
       Mark cycle's nodes as IN_GADAG.
       Add cycle's non-root nodes to process_list.
       while there exists connected nodes in graph that are not IN_GADAG
          Select a new ear.  Let its endpoints be X and Y.
          if Y is root or (Y << X)
             add the ear towards X to the ADAG
          else // (a) X is root or (b)X << Y or (c) X, Y not ordered
             Add the ear towards Y to the ADAG

      Figure 6: Generic Algorithm to find ears and their direction in
                             2-connected graph

   Algorithm Figure 6 merely requires that a cycle or ear be selected
   without specifying how.  Regardless of the way of selecting the path,
   we will get an ADAG.  The method used for finding and selecting the
   ears is important; shorter ears result in shorter paths along the
   MRTs.  There are three options being considered.  The Low-Point
   Inheritance option is described in Section 4.3.  The SPF-based option
   is described in Section 4.4 and the hybrid option is described in

Section 4.5.

   As an example, consider Figure 5 again.  First, we select the
   shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
   costs were assumed), so we get to the situation depicted in Figure 5
   (b).  Finally, we find a node next to a ready node; that must be node
   C and assume we reached it from ready node B. We search a path from C
   to R without B in the original graph.  The first ready node along
   this is node D, so the open ear is B-C-D.  Since B<<D, we add arc
   B->C and C->D to the ADAG.  Since all the nodes are ready, we stop at
   this point.

3.3.  Low-Point Values and Their Uses

   A basic way of computing a spanning tree on a network graph is to run
   a depth-first-search, such as given in Figure 7.  This tree has the
   important property that if there is a link (x, n), then either n is a
   DFS ancestor of x or n is a DFS descendant of x.  In other words,
   either n is on the path from the root to x or x is on the path from
   the root to n.
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                        global_variable: dfs_number

                        DFS_Visit(node x, node parent)
                           D(x) = dfs_number
                           dfs_number += 1
                           x.dfs_parent = parent
                           for each link (x, w)
                             if D(w) is not set
                               DFS_Visit(w, x)

                        Run_DFS(node root)
                           dfs_number = 0
                           DFS_Visit(root, NONE)

               Figure 7: Basic Depth-First Search algorithm

   Given a node x, one can compute the minimal DFS number of the
   neighbours of x, i.e. min( D(w) if (x,w) is a link).  This gives the
   highest attachment point neighbouring x.  What is interesting,
   though, is what is the highest attachment point from x and x's
   descendants.  This is what is determined by computing the Low-Point
   value, as given in Algorithm Figure 9 and illustrated on a graph in
   Figure 8.
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            [E]---|    [J]-------[I]   [P]---[O]
             |    |     |         |     |     |
             |    |     |         |     |     |
            [R]  [D]---[C]--[F]  [H]---[K]   [N]
             |          |    |    |     |     |
             |          |    |    |     |     |
            [A]--------[B]  [G]---|    [L]---[M]

               (a) a non-2-connected graph

             [E]----|    [J]---------[I]    [P]------[O]
            (5, )   |  (10, )       (9, ) (16,  ) (15,  )
              |     |     |           |      |        |
              |     |     |           |      |        |
             [R]   [D]---[C]---[F]   [H]----[K]      [N]
            (0, ) (4, ) (3, ) (6, ) (8, ) (11, )  (14, )
              |           |     |     |      |        |
              |           |     |     |      |        |
             [A]---------[B]   [G]----|     [L]------[M]
            (1, )       (2, ) (7, )       (12,  )  (13,  )

               (b) with DFS values assigned   (D(x), L(x))

             [E]----|    [J]---------[I]    [P]------[O]
            (5,0)   |  (10,3)       (9,3) (16,11) (15,11)
              |     |     |           |      |        |
              |     |     |           |      |        |
             [R]   [D]---[C]---[F]   [H]----[K]      [N]
            (0, ) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
              |           |     |     |      |        |
              |           |     |     |      |        |
             [A]---------[B]   [G]----|     [L]------[M]
            (1,0)       (2,0) (7,3)       (12,11)  (13,11)

                (c) with low-point values assigned (D(x), L(x))

                                 Figure 8
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             global_variable: dfs_number

             Lowpoint_Visit(node x, node parent, interface p_to_x)
                D(x) = dfs_number
                L(x) = D(x)
                dfs_number += 1
                x.dfs_parent = parent
                x.dfs_parent_intf = p_to_x
                x.lowpoint_parent = NONE
                for each interface intf of x:
                  if D(intf.remote_node) is not set
                    Lowpoint_Visit(intf.remote_node, x, intf)
                    if L(intf.remote_node) < L(x)
                       L(x) = L(intf.remote_node)
                       x.lowpoint_parent = intf.remote_node
                       x.lowpoint_parent_intf = intf
                  else if intf.remote_node is not parent
                    if D(intf.remote_node) < L(x)
                      L(x) = D(intf.remote)
                      x.lowpoint_parent = intf.remote_node
                      x.lowpoint_parent_intf = intf

             Run_Lowpoint(node root)
                dfs_number = 0
                Lowpoint_Visit(root, NONE, NONE)

                    Figure 9: Computing Low-Point value

   From the low-point value and lowpoint parent, there are two very
   useful things which motivate our computation.

   First, if there is a child c of x such that L(c) >= D(x), then there
   are no paths in the network graph that go from c or its descendants
   to an ancestor of x - and therefore x is a cut-vertex.  This is
   useful because it allows identification of the cut-vertices and thus
   the blocks.  As seen in Figure 8, even if L(x) < D(x), there may be a
   block that contains both the root and a DFS-child of a node while
   other DFS-children might be in different blocks.  In this example,
   C's child D is in the same block as R while F is not.

   Second, by repeatedly following the path given by lowpoint_parent,
   there is a path from x back to an ancestor of x that does not use the
   link [x, x.dfs_parent] in either direction.  The full path need not
   be taken, but this gives a way of finding an initial cycle and then
   ears.
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3.4.  Blocks in a Graph

   A key idea for the MRT algorithm is that any non-2-connected graph is
   made up by blocks (e.g. 2-connected clusters, cut-links, and/or
   isolated nodes).  To compute GADAGs and thus MRTs, computation is
   done in each block to compute ADAGs or Redundant Trees and then those
   ADAGs or Redundant Trees are combined into a GADAG or MRT.

                 [E]---|    [J]-------[I]   [P]---[O]
                  |    |     |         |     |     |
                  |    |     |         |     |     |
                 [R]  [D]---[C]--[F]  [H]---[K]   [N]
                  |          |    |    |     |     |
                  |          |    |    |     |     |
                 [A]--------[B]  [G]---|    [L]---[M]

                 (a)  A graph with four blocks that are:
                      3 2-connected clusters and a cut-link

                 [E]<--|    [J]<------[I]   [P]<--[O]
                  |    |     |         ^     |     ^
                  V    |     V         |     V     |
                 [R]  [D]<--[C]  [F]  [H]<---[K]  [N]
                             ^    |    ^           ^
                             |    V    |           |
                 [A]------->[B]  [G]---|     [L]-->[M]

                             (b) Blue MRT

                 [E]---|    [J]-------->[I]    [P]-->[O]
                       |                 |            |
                       V                 V            V
                 [R]  [D]-->[C]<---[F]  [H]<---[K]   [N]
                  ^          |      ^    |      ^     |
                  |          V      |    |      |     V
                 [A]<-------[B]    [G]<--|     [L]<--[M]

                             (c) Red MRT

                                 Figure 10

   Consider the example depicted in Figure 10 (a).  In this figure, a
   special graph is presented, showing us all the ways 2-connected
   clusters can be connected.  It has four blocks: block 1 contains R,
   A, B, C, D, E, block 2 contains C, F, G, H, I, J, block 3 contains K,
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   L, M, N, O, P, and block 4 is a cut-edge containing H and K. As can
   be observed, the first two blocks have one common node (node C) and
   blocks 2 and 3 do not have any common node, but they are connected
   through a cut-edge that is block 4.  No two blocks can have more than
   one common node, since two blocks with at least 2 common nodes would
   qualify as a single 2-connected cluster.

   Moreover, observe that if we want to get from one block to another,
   we must use a cut-vertex (the cut-vertices in this graph are C, H,
   K), regardless of the path selected, so we can say that all the paths
   from block 3 along the MRTs rooted at R will cross K first.  This
   observation means that if we want to find a pair of MRTs rooted at R,
   then we need to build up a pair of RTs in block 3 with K as a root.
   Similarly, we need to find another one in block 2 with C as a root,
   and finally, we need the last one in block 1 with R as a root.  When
   all the trees are selected, we can simply combine them; when a block
   is a cut-edge (as in block 4), that cut-edge is added in the same
   direction to both of the trees.  The resulting trees are depicted in
   Figure 10 (b) and (c).

   Similarly, to create a GADAG it is sufficient to compute ADAGs in
   each block and connect them.

   It is necessary, therefore, to identify the cut-vertices, the blocks
   and identify the appropriate local-root to use for each block.

3.5.  Determining Local-Root and Assigning Block-ID

   Each node in a network graph has a local-root, which is the cut-
   vertex (or root) in the same block that is closest to the root.  The
   local-root is used to determine whether two nodes share a common
   block.

                Compute_Localroot(node x, node localroot)
                    x.localroot = localroot
                    for each DFS child c
                        if L(c) < D(x)   //x is not a cut-vertex
                            Compute_Localroot(c, x.localroot)
                        else
                            mark x as cut-vertex
                            Compute_Localroot(c, x)

                Compute_Localroot(root, root)

               Figure 11: A method for computing local-roots

   There are two different ways of computing the local-root for each
   node.  The stand-alone method is given in Figure 11 and better
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   illustrates the concept.  It is used in the second and third options
   for computing a GADAG using SPFs and the hybrid versions
   respectively.  The other method for local-root computation is used in
   the first option for computing a GADAG using Low-Point inheritance
   and the essence of it is given in Figure 12.

            Get the current node, s.
            Compute an ear(either through lowpoint inheritance
            or by following dfs parents) from s to a ready node e.
            (Thus, s is not e, if there is such ear.)
            if s is e
               for each node x in the ear that is not s
                   x.localroot = s
            else
               for each node x in the ear that is not s or e
                   x.localroot = e.localroot

           Figure 12: Ear-based method for computing local-roots

   Once the local-roots are known, two nodes X and Y are in a common
   block if and only if one of the following three conditions apply.

   o  Y's local-root is X's local-root : They are in the same block and
      neither is the cut-vertex closest to the root.

   o  Y's local-root is X: X is the cut-vertex closest to the root for
      Y's block

   o  Y is X's local-root: Y is the cut-vertex closest to the root for
      X's block

   Once we have computed the local-root for each node in the network
   graph, we can assign for each node, a block id that represents the
   block in which the node is present.  This computation is shown in
   Figure 13.  The block id is useful in the ear computations involved
   in the SPF and hybrid based GADAG's as will be seen later.
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                  global_var: max_block_id

                  Assign_Block_ID(x, cur_block_id)
                    x.block_id = cur_block_id
                    foreach DFS child c of x
                       if (c.local_root is x)
                          max_block_id += 1
                          Assign_Block_ID(c, max_block_id)
                       else
                         Assign_Block_ID(c, cur_block_id)

                  max_block_id = 0
                  Assign_Block_ID(root, max_block_id)

             Figure 13: Assigning block id to identify blocks

4.  Algorithm Sections

   This algorithm computes one GADAG that is then used by a router to
   determine its blue MRT and red MRT next-hops to all destinations.
   Finally, based upon that information, alternates are selected for
   each next-hop to each destination.  The different parts of this
   algorithm are described below.  These work on a network graph after,
   for instance, its interfaces are ordered as per Figure 14.

   1.  Select the root to use for the GADAG.  [See Section 4.1.]

   2.  Initialize all interfaces to UNDIRECTED.  [See Section 4.2.]

   3.  Compute the DFS value,e.g.  D(x), and lowpoint value, L(x).  [See
       Figure 9.]

   4.  Construct the GADAG.  [See Section 4.3 for Option 1 using
       Lowpoint Inheritance, Section 4.4 for Option 2 using SPFs and

Section 4.5 for Option 3 using a hybrid method.]

   5.  Assign directions to all interfaces that are still UNDIRECTED.
       [See Section 4.6.]

   6.  From the computing router x, compute the next-hops for the blue
       MRT and red MRT.  [See Section 4.7.]

   7.  Identify alternates for each next-hop to each destination by
       determining which one of the blue MRT and the red MRT the
       computing router x should select.  [See Section 4.8.]

   To ensure consistency in computation, it is necessary that all



Atlas, et al.            Expires April 24, 2013                [Page 17]



Internet-Draft              MRT FRR Algorithm               October 2012

   routers order interfaces identically.  This is necessary for the DFS,
   where the selection order of the interfaces to explore results in
   different trees, and for computing the GADAG, where the selection
   order of the interfaces to use to form ears can result in different
   GADAGs.  The recommended ordering between two interfaces from the
   same router x is given in Figure 14.

    Interface_Compare(interface a, interface b)
      if a.metric < b.metric
         return A_LESS_THAN_B
      if b.metric < a.metric
         return B_LESS_THAN_A
      if a.neighbor.loopback_addr < b.neighbor.loopback_addr
         return A_LESS_THAN_B
      if b.neighbor.loopback_addr < a.neighbor.loopback_addr
         return B_LESS_THAN_A
      // Same metric to same node, so the order doesn't matter anymore.
      // To have a unique, consistent total order,
      // tie-break based on ifindex.
      if a.ifindex < b.ifindex
         return A_LESS_THAN_B
      return B_LESS_THAN_A

   Figure 14: Rules for ranking multiple interfaces.  Order is from low
                                 to high.

4.1.  Root Selection

   The precise mechanism by which routers advertise a priority for the
   GADAG root is not described in this document.  Nor is the algorithm
   for selecting routers based upon priority described in this document.

   A network may be partitioned or there may be islands of routers that
   support MRT fast-reroute.  Therefore, the root selected for use in a
   GADAG must be consistent only across each connected island of MRT
   fast-reroute support.  Before beginning computation, the network
   graph is reduced to contain only the set of routers that support a
   compatible MRT fast-reroute.

   The selection of a GADAG root is done among only those routers in the
   same MRT fast-reroute island as the computing router x.
   Additionally, only routers that are not marked as unusable or
   overloaded (e.g.  ISIS overload or [RFC3137]) are eligible for
   selection as root.

https://datatracker.ietf.org/doc/html/rfc3137
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4.2.  Initialization

   Before running the algorithm, there is the standard type of
   initialization to be done, such as clearing any computed DFS-values,
   lowpoint-values, DFS-parents, lowpoint-parents, any MRT-computed
   next-hops, and flags associated with algorithm.

   It is assumed that a regular SPF computation has been run so that the
   primary next-hops from the computing router to each destination are
   known.  This is required for determining alternates at the last step.

   Initially, all interfaces must be initialized to UNDIRECTED.  Whether
   they are OUTGOING, INCOMING or both is determined when the GADAG is
   constructed and augmented.

   It is possible that some links and nodes will be marked as unusable,
   whether because of configuration, overload, or due to a transient
   cause such as [RFC3137].  In the algorithm description, it is assumed
   that such links and nodes will not be explored or used and no more
   disussion is given of this restriction.

4.3.  Option 1: Computing GADAG using lowpoint inheritance

   The basic idea of this is to find ears from a node x that is already
   in the GADAG (known as IN_GADAG).  There are two methods to find
   ears; both are required.  The first is by going to a not IN_GADAG
   DFS-child and then following the chain of low-point parents until an
   IN_GADAG node is found.  The second is by going to a not IN_GADAG
   neighbor and then following the chain of DFS parents until an
   IN_GADAG node is found.  As an ear is found, the associated
   interfaces are marked based on the direction taken.  The nodes in the
   ear are marked as IN_GADAG.  In the algorithm, first the ears via
   DFS-children are found and then the ears via DFS-neighbors are found.

   By adding both types of ears when an IN_GADAG node is processed, all
   ears that connect to that node are found.  The order in which the
   IN_GADAG nodes is processed is, of course, key to the algorithm.  The
   order is a stack of ears so the most recent ear is found at the top
   of the stack.  Of course, the stack stores nodes and not ears, so an
   ordered list of nodes, from the first node in the ear to the last
   node in the ear, is created as the ear is explored and then that list
   is pushed onto the stack.

   Each ear represents a partial order (see Figure 4) and processing the
   nodes in order along each ear ensures that all ears connecting to a
   node are found before a node higher in the partial order has its ears
   explored.  This means that the direction of the links in the ear is
   always from the node x being processed towards the other end of the

https://datatracker.ietf.org/doc/html/rfc3137
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   ear.  Additionally, by using a stack of ears, this means that any
   unprocessed nodes in previous ears can only be ordered higher than
   nodes in the ears below it on the stack.

   In this algorithm that depends upon Low-Point inheritance, it is
   necessary that every node have a low-point parent that is not itself.
   If a node is a cut-vertex, that may not yet be the case.  Therefore,
   any nodes without a low-point parent will have their low-point parent
   set to their DFS parent and their low-point value set to the DFS-
   value of their parent.  This assignment also properly allows an ear
   between two cut-vertices.

   Finally, the algorithm simultaneously computes each node's local-
   root, as described in Figure 12.  This is further elaborated as
   follows.  The local-root can be inherited from the node at the end of
   the ear unless the end of the ear is x itself, in which case the
   local-root for all the nodes in the ear would be x.  This is because
   whenever the first cycle is found in a block, or an ear involving a
   bridge is computed, the cut-vertex closest to the root would be x
   itself.  In all other scenarios, the properties of lowpoint/dfs
   parents ensure that the end of the ear will be in the same block, and
   thus inheriting its local-root would be the correct local-root for
   all newly added nodes.

   The pseudo-code for the GADAG algorithm (assuming that the adjustment
   of lowpoint for cut-vertices has been made) is shown in Figure 15.

      Construct_Ear(x, Stack, intf, type)
         ear_list = empty
         cur_node = intf.remote_node
         cur_intf = intf
         not_done = true

         while not_done
            cur_intf.UNDIRECTED = false
            cur_intf.OUTGOING = true
            cur_intf.remote_intf.UNDIRECTED = false
            cur_intf.remote_intf.INCOMING = true

            if cur_node.IN_GADAG is false
               cur_node.IN_GADAG = true
               add_to_list_end(ear_list, cur_node)
               if type is CHILD
                  cur_intf = cur_node.lowpoint_parent_intf
               else type must be NEIGHBOR
                  cur_intf = cur_node.dfs_parent_intf
               cur_node = cur_intf.remote_node
            else
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               not_done = false

         if (cur_node is x) //x is a cut-vertex and the local root for
                            //the block in which the ear is computed
            localroot = x
         else
            // Inherit local-root from the end of the ear
            localroot = cur_node.localroot
         while ear_list is not empty
            y = remove_end_item_from_list(ear_list)
            y.localroot = localroot
            push(Stack, y)

      Construct_GADAG_via_Lowpoint(topology, root)
        root.IN_GADAG = true
        root.localroot = root
        Initialize Stack to empty
        push root onto Stack
        while (Stack is not empty)
           x = pop(Stack)
           foreach interface intf of x
              if ((intf.remote_node.IN_GADAG == false) and
                  (intf.remote_node.dfs_parent is x))
                  Construct_Ear(x, Stack, intf, CHILD)
           foreach interface intf of x
              if ((intf.remote_node.IN_GADAG == false) and
                  (intf.remote_node.dfs_parent is not x))
                  Construct_Ear(x, Stack, intf, NEIGHBOR)

      Construct_GADAG_via_Lowpoint(topology, root)

             Figure 15: Low-point Inheritance GADAG algorithm

4.4.  Option 2: Computing GADAG using SPFs

   The basic idea in this option is to use slightly-modified SPF
   computations to find ears.  In every block, an SPF computation is
   first done to find a cycle from the local root and then SPF
   computations in that block find ears until there are no more
   interfaces to be explored.  The used result from the SPF computation
   is the path of interfaces indicated by following the previous hops
   from the mininized IN_GADAG node back to the SPF root.

   To do this, first all cut-vertices must be identified and local-roots
   assigned as specified in Figure 12.

   The slight modifications to the SPF are as follows.  The root of the
   block is referred to as the block-root; it is either the GADAG root
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   or a cut-vertex.

   a.  The SPF is rooted at a neighbor x of an IN_GADAG node y.  All
       links between y and x are marked as TEMP_UNUSABLE.  They should
       not be used during the SPF computation.

   b.  If y is not the block-root, then it is marked TEMP_UNUSABLE.  It
       should not be used during the SPF computation.  This prevents
       ears from starting and ending at the same node and avoids cycles;
       the exception is because cycles to/from the block-root are
       acceptable and expected.

   c.  Do not explore links to nodes whose local-root is not the block-
       root.  This keeps the SPF confined to the particular block.

   d.  Terminate when the first IN_GADAG node z is minimized.

   e.  Respect the existing directions (e.g.  INCOMING, OUTGOING,
       UNDIRECTED) already specified for each interface.
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    Mod_SPF(spf_root, block_root)
       Initialize spf_heap to empty
       Initialize nodes' spf_metric to infinity
       spf_root.spf_metric = 0
       insert(spf_heap, spf_root)
       found_in_gadag = false
       while (spf_heap is not empty) and (found_in_gadag is false)
           min_node = remove_lowest(spf_heap)
           if min_node.IN_GADAG is true
              found_in_gadag = true
           else
              foreach interface intf of min_node
                 if ((intf.OUTGOING or intf.UNDIRECTED) and
                     ((intf.remote_node.localroot is block_root) or
                      (intf.remote_node is block_root)) and
                     (intf.remote_node is not TEMP_UNUSABLE) and
                     (intf is not TEMP_UNUSABLE))
                    path_metric = min_node.spf_metric + intf.metric
                    if path_metric < intf.remote_node.spf_metric
                       intf.remote_node.spf_metric = path_metric
                       intf.remote_node.spf_prev_intf = intf
                       insert_or_update(spf_heap, intf.remote_node)
       return min_node

    SPF_for_Ear(cand_intf.local_node,cand_intf.remote_node, block_root,
                            method)
       Mark all interfaces between cand_intf.remote_node
                  and cand_intf.local_node as TEMP_UNUSABLE
       if cand_intf.local_node is not block_root
          Mark cand_intf.local_node as TEMP_UNUSABLE
       Initialize ear_list to empty
       end_ear = Mod_SPF(spf_root, block_root)
       y = end_ear.spf_prev_hop
       while y.local_node is not spf_root
         add_to_list_start(ear_list, y)
         y.local_node.IN_GADAG = true
         y = y.local_node.spf_prev_intf
       if(method is not hybrid)
          Set_Ear_Direction(ear_list, cand_intf.local_node,
                                                    end_ear,block_root)
       Clear TEMP_UNUSABLE from all interfaces between
             cand_intf.remote_node and cand_intf.local_node
       Clear TEMP_UNUSABLE from cand_intf.local_node
    return end_ear
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               Figure 16: Modified SPF for GADAG computation

   Assume that an ear is found by going from y to x and then running an
   SPF that terminates by minimizing z (e.g. y<->x...q<->z).  Now it is
   necessary to determine the direction of the ear; if y << z, then the
   path should be y->x...q->z but if y >> z, then the path should be
   y<-x...q<-z.  In Section 4.3, the same problem was handled by finding
   all ears that started at a node before looking at ears starting at
   nodes higher in the partial order.  In this algorithm, using that
   approach could mean that new ears aren't added in order of their
   total cost since all ears connected to a node would need to be found
   before additional nodes could be found.

   The alternative is to track the order relationship of each node with
   respect to every other node.  This can be accomplished by maintaining
   two sets of nodes at each node.  The first set, Higher_Nodes,
   contains all nodes that are known to be ordered above the node.  The
   second set, Lower_Nodes, contains all nodes that are known to be
   ordered below the node.  This is the approach used in this algorithm.
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      Set_Ear_Direction(ear_list, end_a, end_b, block_root)
        // Default of A_TO_B for the following cases:
        //  (a) end_a and end_b are the same (root)
        // or (b) end_a is in end_b's Lower Nodes
        // or (c) end_a and end_b were unordered with respect to each
        //        other
        direction = A_TO_B
        if (end_b is block_root) and (end_a is not end_b)
           direction = B_TO_A
        else if end_a is in end_b.Higher_Nodes
           direction = B_TO_A
        if direction is B_TO_A
           foreach interface i in ear_list
               i.UNDIRECTED = false
               i.INCOMING = true
               i.remote_intf.UNDIRECTED = false
               i.remote_intf.OUTGOING = true
        else
           foreach interface i in ear_list
               i.UNDIRECTED = false
               i.OUTGOING = true
               i.remote_intf.UNDIRECTED = false
               i.remote_intf.INCOMING = true
         if end_a is end_b
            return
         // Next, update all nodes' Lower_Nodes and Higher_Nodes
         if (end_a is in end_b.Higher_Nodes)
            foreach node x where x.localroot is block_root
                if end_a is in x.Lower_Nodes
                   foreach interface i in ear_list
                      add i.remote_node to x.Lower_Nodes
                if end_b is in x.Higher_Nodes
                   foreach interface i in ear_list
                      add i.local_node to x.Higher_Nodes
          else
            foreach node x where x.localroot is block_root
                if end_b is in x.Lower_Nodes
                   foreach interface i in ear_list
                      add i.local_node to x.Lower_Nodes
                if end_a is in x.Higher_Nodes
                   foreach interface i in ear_list
                      add i.remote_node to x.Higher_Nodes

         Figure 17: Algorithm to assign links of an ear direction

   A goal of the algorithm is to find the shortest cycles and ears.  An
   ear is started by going to a neighbor x of an IN_GADAG node y.  The
   path from x to an IN_GADAG node is minimal, since it is computed via
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   SPF.  Since a shortest path is made of shortest paths, to find the
   shortest ears requires reaching from the set of IN_GADAG nodes to the
   closest node that isn't IN_GADAG.  Therefore, an ordered tree is
   maintained of interfaces that could be explored from the IN_GADAG
   nodes.  The interfaces are ordered by their characteristics of
   metric, local loopback address, remote loopback address, and ifindex,
   as in the algorithm previously described in Figure 14.

   The algorithm ignores interfaces picked from the ordered tree that
   belong to the block root if the block in which the interface is
   present already has an ear that has been computed.  This is necessary
   since we allow at most one incoming interface to a block root in each
   block.  This requirement stems from the way next-hops are computed as
   will be seen in Section 4.7.  After any ear gets computed, we
   traverse the newly added nodes to the GADAG and insert interfaces
   whose far end is not yet on the GADAG to the ordered tree for later
   processing.

   Finally, cut-edges are a special case because there is no point in
   doing an SPF on a block of 2 nodes.  The algorithm identifies cut-
   edges simply as links where both ends of the link are cut-vertices.
   Cut-edges can simply be added to the GADAG with both OUTGOING and
   INCOMING specified on their interfaces.

      add_eligible_interfaces_of_node(ordered_intfs_tree,node)
         for each interface of node
            if intf.remote_node.IN_GADAG is false
              insert(intf,ordered_intfs_tree)

      check_if_block_has_ear(x,block_id)
         block_has_ear = false
            for all interfaces of x
               if (intf.remote_node.block_id == block_id) &&
                      (intf.remote_node.IN_GADAG is true)
                  block_has_ear = true
      return block_has_ear

      Construct_GADAG_via_SPF(topology, root)
        Compute_Localroot (root,root)
        Assign_Block_ID(root,0)
        root.IN_GADAG = true
           add_eligible_interfaces_of_node(ordered_intfs_tree,root)
        while ordered_intfs_tree is not empty
           cand_intf = remove_lowest(ordered_intfs_tree)
           if cand_intf.remote_node.IN_GADAG is false
              if L(cand_intf.remote_node) == D(cand_intf.remote_node)
                 // Special case for cut-edges
                 cand_intf.UNDIRECTED = false
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                 cand_intf.remote_intf.UNDIRECTED = false
                 cand_intf.OUTGOING = true
                 cand_intf.INCOMING = true
                 cand_intf.remote_intf.OUTGOING = true
                 cand_intf.remote_intf.INCOMING = true
                 cand_intf.remote_node.IN_GADAG = true
                 add_eligible_interfaces_of_node(
                      ordered_intfs_tree,cand_intf.remote_node)
               else
                 if (cand_intf.remote_node.local_root ==
                              cand_intf.local_node) &&
                              check_if_block_has_ear
                                      (cand_intf.local_node,
                                      cand_intf.remote_node.block_id))
                              /* Skip the interface since the block root
                              already has an incoming interface in the
                              block */
                 else
                      ear_end = SPF_for_Ear(cand_intf.local_node,
                                      cand_intf.remote_node,
                                      cand_intf.remote_node.localroot,
                                      SPF method)
                      y = ear_end.spf_prev_hop
                      while y.local_node is not cand_intf.local_node
                          add_eligible_interfaces_of_node(
                                              ordered_intfs_tree,
                                              y.local_node)
                          y = y.local_node.spf_prev_intf

                   Figure 18: SPF-based GADAG algorithm

4.5.  Option 3: Computing GADAG using a hybrid method

   In this option, the idea is to combine the salient features of the
   above two options.  To this end, we process nodes as they get added
   to the GADAG just like in the lowpoint inheritance by maintaining a
   stack of nodes.  This ensures that we do not need to maintain lower
   and higher sets at each node to ascertain ear directions since the
   ears will always be directed from the node being processed towards
   the end of the ear.  To compute the ear however, we resort to an SPF
   to have the possibility of better ears (path lentghs) thus giving
   more flexibility than the restricted use of lowpoint/dfs parents.

   Regarding ears involving a block root, unlike the SPF method which
   ignored interfaces of the block root after the first ear, in the
   hybrid method we would have to process all interfaces of the block
   root before moving on to other nodes in the block since the direction
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   of an ear is pre-determined.  Thus, whenever the block already has an
   ear computed, and we are processing an interface of the block root,
   we mark the block root as unusable before the SPF run that computes
   the ear.  This ensures that the SPF terminates at some node other
   than the block-root.  This in turn guarantees that the block-root has
   only one incoming interface in each block, which is necessary for
   correctly computing the next-hops on the GADAG.

   As in the SPF gadag, bridge ears are handled as a special case.

   The entire algorithm is shown below in Figure 19
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      find_spf_stack_ear(stack, x, y, xy_intf, block_root)
         if L(y) == D(y)
            // Special case for cut-edges
            xy_intf.UNDIRECTED = false
            xy_intf.remote_intf.UNDIRECTED = false
            xy_intf.OUTGOING = true
            xy_intf.INCOMING = true
            xy_intf.remote_intf.OUTGOING = true
            xy_intf.remote_intf.INCOMING = true
            xy_intf.remote_node.IN_GADAG = true
            push y onto stack
            return
         else
            if (y.local_root == x) &&
                 check_if_block_has_ear(x,y.block_id)
               //Avoid the block root during the SPF
               Mark x as TEMP_UNUSABLE
            end_ear = SPF_for_Ear(x,y,block_root,hybrid)
            If x was set as TEMP_UNUSABLE, clear it
            cur = end_ear
            while (cur != y)
               intf = cur.spf_prev_hop
               prev = intf.local_node
               intf.UNDIRECTED = false
               intf.remote_intf.UNDIRECTED = false
               intf.OUTGOING = true
               intf.remote_intf.INCOMING = true
               push prev onto stack
               cur = prev
            xy_intf.UNDIRECTED = false
            xy_intf.remote_intf.UNDIRECTED = false
            xy_intf.OUTGOING = true
            xy_intf.remote_intf.INCOMING = true
            return

      Construct_GADAG_via_hybrid(topology,root)
         Compute_Localroot (root,root)
         Assign_Block_ID(root,0)
         root.IN_GADAG = true
         Initialize Stack to empty
         push root onto Stack
         while (Stack is not empty)
            x = pop(Stack)
            for each interface intf of x
               y = intf.remote_node
               if y.IN_GADAG is false
                  find_spf_stack_ear(stack, x, y, intf, y.block_root)
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                     Figure 19: Hybrid GADAG algorithm

4.6.  Augmenting the GADAG by directing all links

   The GADAG, whether constructed via Low-Point Inheritance or with SPFs
   or the hybrid method, at this point could be used to find MRTs but
   the topology does not include all links in the network graph.  That
   has two impacts.  First, there might be shorter paths that respect
   the GADAG partial ordering and so the alternate paths would not be as
   short as possible.  Second, there may be additional paths between a
   router x and the root that are not included in the GADAG.  Including
   those provides potentially more bandwidth to traffic flowing on the
   alternates and may reduce congestion compared to just using the GADAG
   as currently constructed.

   The goal is thus to assign direction to every remaining link marked
   as UNDIRECTED to improve the paths and number of paths found when the
   MRTs are computed.

   To do this, we need to establish a total order that respects the
   partial order described by the GADAG.  This can be done using Kahn's
   topological sort[Kahn_1962_topo_sort] which essentially assigns a
   number to a node x only after all nodes before it (e.g. with a link
   incoming to x) have had their numbers assigned.  The only issue with
   the topological sort is that it works on DAGs and not ADAGs or
   GADAGs.

   To convert a GADAG to a DAG, it is necessary to remove all links that
   point to a root of block from within that block.  That provides the
   necessary conversion to a DAG and then a topological sort can be
   done.  Finally, all UNDIRECTED links are assigned a direction based
   upon the partial ordering.  Any UNDIRECTED links that connect to a
   root of a block from within that block are assigned a direction
   INCOMING to that root.  The exact details of this whole process are
   captured in Figure 20

      Set_Block_Root_Incoming_Links(topo, root, mark_or_clear)
         foreach node x in topo
            if node x is a cut-vertex or root
               foreach interface i of x
                  if (i.remote_node.localroot is x)
                     if i.UNDIRECTED
                        i.OUTGOING = true
                        i.remote_intf.INCOMING = true
                        i.UNDIRECTED = false
                        i.remote_intf.UNDIRECTED = false
                     if i.INCOMING
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                        if mark_or_clear is mark
                           if i.OUTGOING  // a cut-edge
                              i.STORE_INCOMING = true
                              i.INCOMING = false
                              i.remote_intf.STORE_OUTGOING = true
                              i.remote_intf.OUTGOING = false
                           i.TEMP_UNUSABLE = true
                           i.remote_intf.TEMP_UNUSABLE = true
                        else
                           i.TEMP_UNUSABLE = false
                           i.remote_intf.TEMP_UNUSABLE = false
                     if i.STORE_INCOMING and (mark_or_clear is clear)
                        i.INCOMING = true
                        i.STORE_INCOMING = false
                        i.remote_intf.OUTGOING = true
                        i.remote_intf.STORE_OUTGOING = false

      Run_Topological_Sort_GADAG(topo, root)
         Set_Block_Root_Incoming_Links(topo, root, MARK)
         foreach node x
           set x.unvisited to the count of x's incoming interfaces
              that aren't marked TEMP_UNUSABLE
         Initialize working_list to empty
         Initialize topo_order_list to empty
         add_to_list_end(working_list, root)
         while working_list is not empty
            y = remove_start_item_from_list(working_list)
            add_to_list_end(topo_order_list, y)
            foreach interface i of y
                if (i.OUTGOING) and (not i.TEMP_UNUSABLE)
                   i.remote_node.unvisited -= 1
                   if i.remote_node.unvisited is 0
                       add_to_list_end(working_list, i.remote_node)
          next_topo_order = 1
          while topo_order_list is not empty
              y = remove_start_item_from_list(topo_order_list)
              y.topo_order = next_topo_order
              next_topo_order += 1
          Set_Block_Root_Incoming_Links(topo, root, CLEAR)

      Add_Undirected_Links(topo, root)
          Run_Topological_Sort_GADAG(topo, root)
          foreach node x in topo
            foreach interface i of x
               if i.UNDIRECTED
                 if x.topo_order < i.remote_node.topo_order
                    i.OUTGOING = true
                    i.UNDIRECTED = false
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                    i.remote_intf.INCOMING = true
                    i.remote_intf.UNDIRECTED = false
                 else
                    i.INCOMING = true
                    i.UNDIRECTED = false
                    i.remote_intf.OUTGOING = true
                    i.remote_intf.UNDIRECTED = false

      Add_Undirected_Links(topo, root)

            Figure 20: Assigning direction to UNDIRECTED links

   Proxy-nodes are used to represent multi-homed prefixes and routers
   that do not support MRT Fast-Reroute.  Until now, the network graph
   has not included proxy-nodes because the computation for a GADAG
   assumes that the nodes can be transited.

   To handle destinations that can only be reached via proxy-nodes, each
   proxy-node should be added into the network graph after
   Add_Directed_Links() has beeen run once.  A proxy-node P is connected
   to two routers, X and Y, which have been found to offer the best
   cost.  If X.topo_order < Y.topo_order, then the proxy-node P is added
   along with a link X->P and a link P->Y. Once all the proxy-nodes have
   been added in this fashion, Run_Topological_Sort_GADAG() should be
   rerun so that the topological order includes the proxy-nodes as well.
   This is needed for determining which MRT can offer alternates, as is
   explained in Section 4.8.

4.7.  Compute MRT next-hops

   As was discussed in Section 3.1, once a ADAG is found, it is
   straightforward to find the next-hops from any node X to the ADAG
   root.  However, in this algorithm, we want to reuse the common GADAG
   and find not only one pair of redundant trees with it, but a pair
   rooted at each node.  This is ideal, since it is faster and it
   results packet forwarding easier to trace and/or debug.  The method
   for doing that is based on two basic ideas.  First, if two nodes X
   and Y are ordered with respect to each other in the partial order,
   then the same SPF and reverse-SPF can be used to find the increasing
   and decreasing paths.  Second, if two nodes X and Y aren't ordered
   with respect to each other in the partial order, then intermediary
   nodes can be used to create the paths by increasing/decreasing to the
   intermediary and then decreasing/increasing to reach Y.

   As usual, the two basic ideas will be discussed assuming the network
   is two-connected.  The generalization to multiple blocks is discussed
   in Section 4.7.4.  The full algorithm is given in Section 4.7.5.
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4.7.1.  MRT next-hops to all nodes partially ordered with respect to the
        computing node

   To find two node-disjoint paths from the computing router X to any
   node Y, depends upon whether Y >> X or Y << X. As shown in Figure 21,
   if Y >> X, then there is an increasing path that goes from X to Y
   without crossing R; this contains nodes in the interval [X,Y].  There
   is also a decreasing path that decreases towards R and then decreases
   from R to Y; this contains nodes in the interval [X,R-small] or
   [R-great,Y].  The two paths cannot have common nodes other than X and
   Y.

                     [Y]<---(Cloud 2)<--- [X]
                      |                    ^
                      |                    |
                      V                    |
                   (Cloud 3)--->[R]--->(Cloud 1)

                  Blue MRT path: X->Cloud 2->Y
                  Red MRT path: X->Cloud 1->R->Cloud 3->Y

                             Figure 21: Y >> X

   Similar logic applies if Y << X, as shown in Figure 22.  In this
   case, the increasing path from X increases to R and then increases
   from R to Y to use nodes in the intervals [X,R-great] and [R-small,
   Y].  The decreasing path from X reaches Y without crossing R and uses
   nodes in the interval [Y,X].

                     [X]<---(Cloud 2)<--- [Y]
                      |                    ^
                      |                    |
                      V                    |
                   (Cloud 3)--->[R]--->(Cloud 1)

                  Blue MRT path: X->Cloud 3->R->Cloud 1->Y
                  Red MRT path: X->Cloud 2->Y

                             Figure 22: Y << X

4.7.2.  MRT next-hops to all nodes not partially ordered with respect to
        the computing node

   When X and Y are not ordered, the first path should increase until we
   get to a node G, where G >> Y. At G, we need to decrease to Y. The
   other path should be just the opposite: we must decrease until we get
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   to a node H, where H << Y, and then increase.  Since R is smaller and
   greater than Y, such G and H must exist.  It is also easy to see that
   these two paths must be node disjoint: the first path contains nodes
   in interval [X,G] and [Y,G], while the second path contains nodes in
   interval [H,X] and [H,Y].  This is illustrated in Figure 23.  It is
   necessary to decrease and then increase for the Blue MRT and increase
   and then decrease for the Red MRT; if one simply increased for one
   and decreased for the other, then both paths would go through the
   root R.

                 (Cloud 6)<---[Y]<---(Cloud 5)<------------|
                   |                                       |
                   |                                       |
                   V                                       |
                  [G]--->(Cloud 4)--->[R]--->(Cloud 1)--->[H]
                   ^                                       |
                   |                                       |
                   |                                       |
                  (Cloud 3)<---[X]<---(Cloud 2)<-----------|

              Blue MRT path: decrease to H and increase to Y
                   X->Cloud 2->H->Cloud 5->Y
              Red MRT path:  increase to G and decrease to Y
                   X->Cloud 3->G->Cloud 6->Y

                       Figure 23: X and Y unordered

   This gives disjoint paths as long as G and H are not the same node.
   Since G >> Y and H << Y, if G and H could be the same node, that
   would have to be the root R. This is not possible because there is
   only one incoming interface to the root R which is created when the
   initial cycle is found.  Recall from Figure 6 that whenever an ear
   was found to have an end that was the root R, the ear was directed
   from R so that the associated interface on R is outgoing and not
   incoming.  Therefore, there must be exactly one node M which is the
   largest one before R, so the Red MRT path will never reach R; it will
   turn at M and decrease to Y.

4.7.3.  Computing Redundant Tree next-hops in a 2-connected Graph

   The basic ideas for computing RT next-hops in a 2-connected graph
   were given in Section 4.7.1 and Section 4.7.2.  Given these two
   ideas, how can we find the trees?

   If some node X only wants to find the next-hops (which is usually the
   case for IP networks), it is enough to find which nodes are greater
   and less than X, and which are not ordered; this can be done by
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   running an SPF and a reverse-SPF rooted at X and not exploring any
   links from the ADAG root. ( Other traversal algorithms could safely
   be used instead where one traversal takes the links in their given
   directions and the other reverses the links' directions.)

   An SPF rooted at X and not exploring links from the root will find
   the increasing next-hops to all Y >> X. Those increasing next-hops
   are X's next-hops on the Blue MRT to reach Y. A reverse-SPF rooted at
   X and not exploring links from the root will find the decreasing
   next-hops to all Z << X. Those decreasing next-hops are X's next-hops
   on the Red MRT to reach Z. Since the root R is both greater than and
   less than X, after this SPF and reverse-SPF, X's next-hops on the
   Blue MRT and on the Red MRT to reach R are known.  For every node Y
   >> X, X's next-hops on the Red MRT to reach Y are set to those on the
   Red MRT to reach R. For every node Z << X, X's next-hops on the Blue
   MRT to reach Z are set to those on the Blue MRT to reach R.

   For those nodes, which were not reached, we have the next-hops as
   well.  The increasing Blue MRT next-hop for a node, which is not
   ordered, is the next-hop along the decreasing Red MRT towards R and
   the decreasing Red MRT next-hop is the next-hop along the increasing
   Blue MRT towards R. Naturally, since R is ordered with respect to all
   the nodes, there will always be an increasing and a decreasing path
   towards it.  This algorithm does not provide the specific path taken
   but only the appropriate next-hops to use.  The identity of G and H
   is not determined.

   The final case to considered is when the root R computes its own
   next-hops.  Since the root R is << all other nodes, running an SPF
   rooted at R will reach all other nodes; the Blue MRT next-hops are
   those found with this SPF.  Similarly, since the root R is >> all
   other nodes, running a reverse-SPF rooted at R will reach all other
   nodes; the Red MRT next-hops are those found with this reverse-SPF.

                  E---D---|              E<--D<--|
                  |   |   |              |   ^   |
                  |   |   |              V   |   |
                  R   F   C              R   F   C
                  |   |   |              |   ^   ^
                  |   |   |              V   |   |
                  A---B---|              A-->B---|

                     (a)                    (b)
             A 2-connected graph    A spanning ADAG rooted at R

                                 Figure 24

   As an example consider the situation depicted in Figure 24.  There
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   node C runs an SPF and a reverse-SPF The SPF reaches D, E and R and
   the reverse SPF reaches B, A and R. So we immediately get that e.g.
   towards E the increasing next-hop is D (it was reached though D), and
   the decreasing next-hop is B (since R was reached though B).  Since
   both D and B, A and R will compute the next hops similarly, the
   packets will reach E.

   We have the next-hops towards F as well: since F is not ordered with
   respect to C, the increasing next-hop is the decreasing one towards R
   (which is B) and the decreasing next-hop is the increasing one
   towards R (which is D).  Since B is ordered with F, it will find a
   real increasing next-hop, so packet forwarded to B will get to F on
   path C-B-F.  Similarly, D will have a real decreasing next-hop, and
   packet will use path C-D-F.

4.7.4.  Generalizing for graph that isn't 2-connected

   If a graph isn't 2-connected, then the basic approach given in
Section 4.7.3 needs some extensions to determine the appropriate MRT

   next-hops to use for destinations outside the computing router X's
   blocks.  In order to find a pair of maximally redundant trees in that
   graph we need to find a pair of RTs in each of the blocks (the root
   of these trees will be discussed later), and combine them.

   When computing the MRT next-hops from a router X, there are three
   basic differences:

   1.  Only nodes in a common block with X should be explored in the SPF
       and reverse-SPF.

   2.  Instead of using the GADAG root, X's local-root should be used.
       This has the following implications:

       A.  The links from X's local-root should not be explored.

       B.  If a node is explored in the increasing SPF so Y >> X, then
           X's Red MRT next-hops to reach Y uses X's Red MRT next-hops
           to reach X's local-root and if Z <<, then X's Blue MRT next-
           hops to reach Z uses X's Blue MRT next-hops to reach X's
           local-root.

       C.  If a node W in a common block with X was not reached in the
           SPF or reverse-SPF, then W is unordered with respect to X.
           X's Blue MRT next-hops to W are X's decreasing aka Red MRT
           next-hops to X's local-root.  X's Red MRT next-hops to W are
           X's increasing aka Blue MRT next-hops to X's local-root.
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   3.  For nodes in different blocks, the next-hops must be inherited
       via the relevant cut-vertex.

   These are all captured in the detailed algorithm given in
Section 4.7.5.

4.7.5.  Complete Algorithm to Compute MRT Next-Hops

   The complete algorithm to compute MRT Next-Hops for a particular
   router X is given in Figure 25.  In addition to computing the Blue
   MRT next-hops and Red MRT next-hops used by X to reach each node Y,
   the algorithm also stores an "order_proxy", which is the proper cut-
   vertex to reach Y if it is outside the block, and which is used later
   in deciding whether the Blue MRT or the Red MRT can provide an
   acceptable alternate for a particular primary next-hop.

    In_Common_Block(x, y)
      if ((x.localroot is y.localroot) or (x is y.localroot) or
          (y is x.localroot))
         return true
      return false

    Store_Results(y, direction, spf_root, store_nhs)
       if direction is FORWARD
          y.higher = true
          if store_nhs
             y.blue_next_hops = y.next_hops
       if direction is REVERSE
          y.lower = true
          if store_nhs
             y.red_next_hops = y.next_hops

    SPF_No_Traverse_Root(spf_root, block_root, direction, store_nhs)
       Initialize spf_heap to empty
       Initialize nodes' spf_metric to infinity and next_hops to empty
       spf_root.spf_metric = 0
       insert(spf_heap, spf_root)
       while (spf_heap is not empty)
           min_node = remove_lowest(spf_heap)
           Store_Results(min_node, direction, spf_root, store_nhs)
           if ((min_node is spf_root) or
               ((min_node is not block_root) and
                (min_node is not a proxy_node)))
              foreach interface intf of min_node
                 if (((direction is FORWARD) and intf.OUTGOING) or
                     ((direction is REVERSE) and intf.INCOMING)  and
                     In_Common_Block(spf_root, intf.remote_node))
                    if direction is FORWARD
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                       path_metric = min_node.spf_metric + intf.metric
                    else
                       path_metric = min_node.spf_metric +
                                     intf.remote_intf.metric
                    if path_metric < intf.remote_node.spf_metric
                       intf.remote_node.spf_metric = path_metric
                       if min_node is spf_root
                         intf.remote_node.next_hops = make_list(intf)
                       else
                         intf.remote_node.next_hops = min_node.next_hops
                       insert_or_update(spf_heap, intf.remote_node)
                    else if path_metric is intf.remote_node.spf_metric
                       if min_node is spf_root
                          add_to_list(intf.remote_node.next_hops, intf)
                       else
                          add_list_to_list(intf.remote_node.next_hops,
                                           min_node.next_hops)

    SetEdge(y)
      if y.blue_next_hops is empty and y.red_next_hops is empty
         SetEdge(y.localroot)
         y.blue_next_hops = y.localroot.blue_next_hops
         y.red_next_hops = y.localroot.red_next_hops
         y.order_proxy = y.localroot.order_proxy

    Compute_MRT_NextHops(x, root)
       foreach node y
         y.higher = y.lower = false
         clear y.red_next_hops and y.blue_next_hops
         y.order_proxy = y
       SPF_No_Traverse_Root(x, x.localroot, FORWARD, TRUE)
       SPF_No_Traverse_Root(x, x.localroot, REVERSE, TRUE)

       // red and blue next-hops are stored to x.localroot as different
       // paths are found via the SPF and reverse-SPF.
       // Similarly any nodes whose local-root is x will have their
       // red_next_hops and blue_next_hops already set.

       // Handle nodes in the same block that aren't the local-root
       foreach node y
         if ((y is not x) and (y.localroot is x.localroot) and
             ((y is x.localroot) or (y.block_id is x.block_id))
            if y.higher
               y.red_next_hops = x.localroot.red_next_hops
            else if y.lower
               y.blue_next_hops = x.localroot.blue_next_hops
            else
               y.blue_next_hops = x.localroot.red_next_hops
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               y.red_next_hops = x.localroot.blue_next_hops

       // Inherit next-hops and order_proxies to other components
       if x is not root
          root.blue_next_hops = x.localroot.blue_next_hops
          root.red_next_hops = x.localroot.red_next_hops
          root.order_proxy = x.localroot
       foreach node y
          if (y is not root) and (y is not x)
            SetEdge(y)

    max_block_id = 0
    Assign_Block_ID(root, max_block_id)
    Compute_MRT_NextHops(x, root)

                                 Figure 25

4.8.  Identify MRT alternates

   At this point, a computing router S knows its Blue MRT next-hops and
   Red MRT next-hops for each destination.  The primary next-hops along
   the SPT are also known.  It remains to determine for each primary
   next-hop to a destination D, which of the MRTs avoids the primary
   next-hop node F. This computation depends upon data set in
   Compute_MRT_NextHops such as each node y's y.blue_next_hops,
   y.red_next_hops, y.order_proxy, y.higher, y.lower and topo_orders.
   Recall that any router knows only which are the nodes greater and
   lesser than itself, but it cannot decide the relation between any two
   given nodes easily; that is why we need topological ordering.

   For each primary next-hop node F to each destination D, S can call
   Select_Alternates(S, D, F, primary_intf) to determine whether to use
   the Blue MRT next-hops as the alternate next-hop(s) for that primary
   next hop or to use the Red MRT next-hops.  The algorithm is given in
   Figure 26 and discussed afterwards.

    Select_Alternates(S, D, F, primary_intf)
        if D.order_proxy is not D
            D_lower = D.order_proxy.lower
            D_higher = D.order_proxy.higher
            D_topo_order = D.order_proxy.topo_order
        else
            D_lower = D.lower
            D_higher = D.higher
            D_topo_order = D.topo_order

        //When D==F, we can do only link protection
        if ((D is F) or (D.order_proxy is F))
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            if an MRT doesn't use primary_intf
                indicate alternate is not node-protecting
                return that MRT color
            else // parallel links are cut-edge
                return AVOID_LINK_ON_BLUE

        if (D_lower and D_higher and F.lower and F.higher)
            if F.topo_order < D_topo_order
                return USE_RED
            else
                return USE_BLUE

        if (D_lower and D_higher)
            if F.higher
                return USE_RED
            else
                return USE_BLUE

        if (F.lower and F.higher)
            if D_lower
                return USE_RED
            else if D_higher
                return USE_BLUE
            else
                if primary_intf.OUTGOING and primary_intf.INCOMING
                    return AVOID_LINK_ON_BLUE
                if primary_intf.OUTGOING is true
                    return USE_BLUE
                if primary_intf.INCOMING is true
                    return USE_RED

        if D_higher
            if F.higher
                if F.topo_order < D_topo_order
                    return USE_RED
                else
                    return USE_BLUE
            else if F.lower
                return USE_BLUE
            else
                // F and S are neighbors so either F << S or F >> S
        else if D_lower
            if F.higher
                return USE_RED
            else if F.lower
                if F.topo_order < D_topo_order
                    return USE_RED
                else
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                    return USE_BLUE
                else
                    // F and S are neighbors so either F << S or F >> S
        else // D and S not ordered
            if F.lower
                return USE_RED
            else if F.higher
                return USE_BLUE
            else
                // F and S are neighbors so either F << S or F >> S

                                 Figure 26

   If either D>>S>>F or D<<S<<F holds true, the situation is simple: in
   the first case we should choose the increasing Blue next-hop, in the
   second case, the decreasing Red next-hop is the right choice.

   However, when both D and F are greater than S the situation is not so
   simple, there can be three possibilities: (i) F>>D (ii) F<<D or (iii)
   F and D are not ordered.  In the first case, we should choose the
   path towards D along the Blue tree.  In contrast, in case (ii) the
   Red path towards the root and then to D would be the solution.
   Finally, in case (iii) both paths would be acceptable.  However,
   observe that if e.g.  F.topo_order>D.topo_order, either case (i) or
   case (iii) holds true, which means that selecting the Blue next-hop
   is safe.  Similarly, if F.topo_order<D.topo_order, we should select
   the Red next-hop.  The situation is almost the same if both F and D
   are less than S.

   Recall that we have added each link to the GADAG in some direction,
   so it is impossible that S and F are not ordered.  But it is possible
   that S and D are not ordered, so we need to deal with this case as
   well.  If F<<S, we can use the Red next-hop, because that path is
   first increasing until a node definitely greater than D is reached,
   than decreasing; this path must avoid using F. Similarly, if F>>S, we
   should use the Blue next-hop.

   Additionally, the cases where either F or D is ordered both higher
   and lower must be considered; this can happen when one is a block-
   root or inherits its order_proxy is.  If D is both higher and lower
   than S, then the MRT to use is the one that avoids F so if F is
   higher, then the Red MRT should be used and if F is lower, then the
   Blue MRT should be used; F and S must be ordered because they are
   neighbors.  If F is both higher and lower, then if D is lower, using
   the Red MRT to decrease reaches D and if D is higher, using the Blue
   MRT to increase reaches D; if D is unordered compared to S, then the
   situation is a bit more complicated.
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   In the case where F<<S<<F and D and S are unordered, the direction of
   the link in the GADAG between S and F should be examined.  If the
   link is directed S --> F, then use the Blue MRT (decrease to avoid
   that link and then increase).  If the link is directed S <-- F, then
   use the Red MRT (increase to avoid that link and then decrease).  If
   the link is S <----> F, then the link must be a cut-link and there is
   no node-protecting alternate.  If there are multiple links between S
   and F, then they can protect against each other; of course, in this
   situation, they are probably already ECMP.

   Finally, there is the case where D is also F. In this case, only link
   protection is possible.  The MRT that doesn't use the indicated
   primary next-hop is used.  If both MRTs use the primary next-hop,
   then the primary next-hop must be a cut-edge so either MRT could be
   used but the set of MRT next-hops must be pruned to avoid that
   primary next-hop.  To indicate this case, Select_Alternates returns
   AVOID_LINK_ON_BLUE.

   As an example, consider the ADAG depicted in Figure 27 and first
   suppose that G is the source, D is the destination and H is the
   failed next-hop.  Since D>>G, we need to compare H.topo_order and
   D.topo_order.  Since D.topo_order>H.topo_order, D must be not smaller
   than H, so we should select the decreasing path towards the root.
   If, however, the destination were instead J, we must find that
   H.topo_order>J.topo_order, so we must choose the increasing Blue
   next-hop to J, which is I. In the case, when instead the destination
   is C, we find that we need to first decrease to avoid using H, so the
   Blue, first decreasing then increasing, path is selected.

                            [E]<-[D]<-[H]<-[J]
                             |    ^    ^    ^
                             V    |    |    |
                            [R]  [C]  [G]->[I]
                             |    ^    ^    ^
                             V    |    |    |
                            [A]->[B]->[F]---|

                                  (a)
                            a 2-connected graph

                                 Figure 27

5.  Algorithm Alternatives and Evaluation

   This description of the algorithm assumes a particular approach that
   is believed to be a reasonable compromise between complexity and
   computation.  There are two options given for constructing the GADAG
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   as both are reasonable and promising.

   SPF-based GADAG  Compute the common GADAG using Option 2 of SPF-based
      inheritance.  This considers metrics when constructing the GADAG,
      which is important for path length and operational control.  It
      has higher computational complexity than the Low-Point Inheritance
      GADAG.

   Low-Point Inheritance GADAG  Compute the common GADAG using Option 1
      of Low-Point Inheritance.  This ignores metrics when constructing
      the GADAG, but its computational complexity is O(links) which is
      attractive.  It is possible that augmenting the GADAG by assigning
      directions to all links in the network graph and adding them to
      the GADAG will make the difference between this and the SPF-based
      GADAG minimal.

   In addition, it is possible to calculate Destination-Rooted GADAG,
   where for each destination, a GADAG rooted at that destination is
   computed.  The GADAG can be computed using either Low-Point
   Inheritance or SPF-based.  Then a router would need to compute the
   blue MRT and red MRT next-hops to that destination.  Building GADAGs
   per destination is computationally more expensive, but may give
   somewhat shorter alternate paths.  It may be useful for live-live
   multicast along MRTs.

5.1.  Algorithm Evaluation

   When evaluating different algorithms and methods for IP Fast Reroute
   [RFC5714], there are three critical points to consider.

   o  Coverage: For every Point of Local Repair (PLR) and local failure,
      is there an alternate to reach every destination?  Those
      destinations include not only routers in the IGP area, but also
      prefixes outside the IGP area.

   o  Alternate Length: What is the length of the alternate path offered
      compared to the optimal alternate route in the network?  This is
      computed as the total length of the alternate path divided by the
      length of an optimal alternate path.  The optimal alternate path
      is computed by removing the failed node and running an SPF to find
      the shortest path from the PLR to the destination.

   o  Alternate Bandwidth: What percentage of the traffic sent to the
      failed point can be sent on the alternates?  This is computed as
      the sum of the bandwidths along the alternate paths divided by the
      bandwidth of the primary paths that go through the failure point.

   Simulation and modeling to evalute the MRT algorithms is underway.

https://datatracker.ietf.org/doc/html/rfc5714
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   The algorithms being compared are:

   o  SPF-based GADAG

   o  Low-Point Inheritance GADAG

   o  Destination-Rooted SPF-based GADAG

   o  Destination-Rooted Low-Point Inheritance GADAG

   o  Not-Via to Next-Next Hop[I-D.ietf-rtgwg-ipfrr-notvia-addresses]

   o  Loop-Free Alternates[RFC5286]

   o  Remote LFAs[I-D.shand-remote-lfa]

6.  Algorithm Work to Be Done

   Broadcast Interfaces:   The algorithm assumes that broadcast
      interfaces are already represented as pseudo-nodes in the network
      graph.  The exact rules for extending the set of next-hops and
      ensuring that the neighboring node is avoided need to be fully
      specified.

   Local SRLG Protection:   The algorithmic extensions to handle local
      SRLGs, where each member of the SRLG shares a common router end,
      need to be fully specified.

   General SRLG Protection:   Creating MRTs that consider general SRLGs
      is still a challenging open research problem.

7.  IANA Considerations

   This doument includes no request to IANA.

8.  Security Considerations

   This architecture is not currently believed to introduce new security
   concerns.
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