
Network Working Group S. Erb
Internet-Draft R. Salz
Intended status: Standards Track Akamai Technologies
Expires: November 29, 2016 May 28, 2016

A PFS-preserving protocol for LURK
draft-erb-lurk-rsalg-01

Abstract

 This document defines a protocol between a content provider and an
 external key owner that enables the provider to act as a TLS
 termination end-point for the key owner, without having the key
 actually being provisioned at the provider.

 The protocol between the two preserves forward secrecy, and is also
 designed to prevent the use of the key owner as a general-purpose
 signing oracle which would make it complicit in attacks against uses
 of the very keys it is trying to protect.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 29, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Erb & Salz Expires November 29, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft draft-erb-lurk-rsalg May 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Terminology . 2
2. Goals and Non-Goals . 3
3. Protocol Overview . 3
3.1. Setup . 3
3.2. Server Key Exchange 3
3.3. RSALG . 4

 3.3.1. Implementation Note - Modified Bleichenbacher Attack 4
3.3.2. Implementation Note - Hash Calculation 4

3.4. Session Ticket Key Request 5
4. LURK Message Formats . 5
4.1. Setup Response Message 6
4.2. Setup Response Message 6
4.3. Request Message . 7
4.4. Session Ticket Request 9
4.5. Response Message . 9

5. Open Issues . 10
6. Acknowledgements . 10
7. Normative References . 10

 Authors' Addresses . 10

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Three entities are involved in this protocol, although only two
 actually

 participate in the protocol exchanges:

 Client <-----> Server <----> KeyOwner

 The "KeyOwner" is an entity holding a Certificate and associated
 private Key, typically bound to an identity such as a DNS name.

 The "server" acts on behalf of the KeyOwner, such as terminating TLS
 connections. From external appearances, such as TLS peer name
 verification, the server is indistinguishable from the KeyOwner.

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Erb & Salz Expires November 29, 2016 [Page 2]

Internet-Draft draft-erb-lurk-rsalg May 2016

 The "client" is the end-entity that initiates a connection to the
 server.

2. Goals and Non-Goals

 It is not a goal to protect against an active attacker who can
 decrypt or actively MiTM any of the traffic.

 It is not a goal to protect Client-Server traffic in the event of a
 full compromise of a KeyOwner private key.

 This protocol can support Client-Server communications from SSLv3 up
 through TLS 1.2. (TLS 1.3 will have to be evaluated at a later
 date.)

 Past Client-Server communications must remain private in the event
 that a Server is compromised (Perfect Forward Secrecy). For Server
 Key Exchange signing requests, this is not an issue. For RSA
 decryption requests used by the TLS_RSA_* cipher suites, the "RSALG"
 message exchanges described below provide PFS protection.

 The protocol should not become a generic signing oracle, even if it
 is suboptimal with regard to network bandwidth utilization. This is
 done by not simply signing values, but by computing the full
 signature hash at the KeyOwner.

3. Protocol Overview

 Communication between the Server and KeyOwner MUST be over a
 mutually-authenticated TLS connection that uses PFS key exchange.
 TLS 1.2 or later SHOULD be used.

3.1. Setup

 A Server can contact a KeyOwner at any time to request the state of
 the KeyOwner. When a Server is notified of a state change in a
 KeyOwner response message, it MUST then request the state of the
 KeyOwner.

3.2. Server Key Exchange

 A KeyOwner will sign requests on behalf of the Server for the
 signature required for the Server Key Exchange Message. This message
 includes the client and server random values and key parameters.

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Erb & Salz Expires November 29, 2016 [Page 3]

Internet-Draft draft-erb-lurk-rsalg May 2016

3.3. RSALG

 The basic premise of RSALG is that in the TLS_RSA_* handshakes:

 o The KeyOwner will not decrypt the PMS and provide it back to the
 Server. Instead, the KeyOwner will full compute the Master Secret
 (via the PRF function) and provide that.

 o The Server will choose a random ephemeral value, N, and provide a
 cryptographically-hashed value of (such as SHA256(N)) as its
 Server Random value. The Server sends N to KeyOwner which then
 computes the same hashed value and uses that hash as its input to
 the PRF.

 An attacker who later gains access to KeyOwner would be unable to
 derive the same Master Secret. This attacker would be able to see
 the Client Random, Server Random and encrypted PMS, but would be
 unable to replay this to KeyOwner unless they could reverse the
 cryptographic hash function used to compute the server random.

3.3.1. Implementation Note - Modified Bleichenbacher Attack

 If an attacker can gain access to a Server, they could mount a
 Bleichenbacher attack against it (REF NEEDED). The standard SSL/TLS
 defense against the Bleichenbacher attack (generating a string of
 random bytes) is not effective here, since an attacker could generate
 two requests with identical inputs and learn information about the
 validity of the padding by seeing whether it gets a consistent output
 in both cases. This is possible because the attacker also controls
 (the input to) the server random.

 To avoid this variation on the Bleichenbacher attack, KeyOwner should
 compute the HMAC-SHA-384 over the PRF inputs as its "invalid"
 response, using a private key as the hash key, to ensure that the
 output is a deterministic function of the input and cannot be
 calculated by the attacker. This private key must be globally unique
 per keypair, therefore the RSA private key being used to decrypt the
 PMS is an obvious choice.

 The PRF inputs to the HMAC-SHA-384 described above are the encrypted
 PMS, client version and server version.

3.3.2. Implementation Note - Hash Calculation

 In TLS 1.2 and earlier, the first four bytes of a server random value
 are actually a timestamp. An implementation must use those four
 bytes as an input to the hash function as described above, then

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Erb & Salz Expires November 29, 2016 [Page 4]

Internet-Draft draft-erb-lurk-rsalg May 2016

 overwrite them as input to the PRF calculated by the KeyOwner and the
 Server Random value provided to the Client.

 Example:

 server_random = N
 server_random[0..3] = get_time()

 Server communicates server_random to KeyOwner

 Both Server and KeyOwner compute the following:

 saved_time = server_random[0..3]
 server_random = sha256(server_random)
 server_random[0..3] = saved_time

3.4. Session Ticket Key Request

 A Server that supports TLS session tickets for multiple KeyOwners
 SHOULD ensure that the ticket encryption keys are secure in the face
 of various compromises. Using a hash of the private key as one of
 the inputs to the session ticket KDF ensures that the traffic for
 KeyOwner is protected against compromise of, or malicious behavior
 by, other input parts to the session ticket KDF. It also limits the
 extent to which compromise of a particular session ticket key effects
 the Server acting on behalf of multiple KeyOwners.

 After receiving a request, the KeyOwner computes an HMAC over a
 server-supplied salt and a fixed string using the private key for the
 certificate specified in the request as the hash key.

 The fixed string is set by the KeyOwner, for example "LURK SESSION
 TICKET".

 session_ticket_secret = HMAC-SHA-384(private_key,
 server_salt + fixed_string)

4. LURK Message Formats

 The formats below are described using the TLS Presentation Language.

 The following message header appears at the start of every message:

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Erb & Salz Expires November 29, 2016 [Page 5]

Internet-Draft draft-erb-lurk-rsalg May 2016

 enum {
 one(1), (255)
 } Version
 enum {
 setup_request(0), setup_response(1),
 request(2), session_ticket_request(3), response(4), (255)
 } Type
 struct {
 Version version;
 Type type;
 uint16 length;
 } lurk_msg_header;

 version The version of this protocol.

 type The message type. Details defined below.

 length Length of the entire message, including header, in bytes.

4.1. Setup Response Message

 A setup request message, requesting the state of the KeyOwner looks
 like this:

 struct {
 lurk_msg_header header;
 uint64 id;
 } setup_request;

 id A unique identifier to allow pipelining and match requests and
 responses.

4.2. Setup Response Message

 A setup response message, returning the state of the KeyOwner looks
 like this:

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Erb & Salz Expires November 29, 2016 [Page 6]

Internet-Draft draft-erb-lurk-rsalg May 2016

 struct {
 uint8 purpose<32>;
 opaque ASN.1Cert<1..2^24-1>;
 } certificate;
 struct {
 lurk_msg_header header;
 uint64 id;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;
 certificate certificate_list<0..2^24-1>;
 uint8 state<32>;
 } setup_response;

 id A unique identifier to allow pipelining and match requests and
 responses.

 supported_signature_algorithms A list of supported signature hash
 algorithms that the KeyOwner supports (see RFC5246, section

7.4.1.4.1). TODO: TLSv1.3 considerations

 certificate_list A list of certificate that are supported by the
 KeyOwner. The purpose field is a value that MUST be pre-
 configured by the Server and KeyOwner so a Server can have context
 of where to use the corresponding ASN.1Cert. An example pre-
 configuration of the purpose field is: purpose = sha256(hostname)

 state A hash of the current state of the server. A KeyOwner MUST
 provide this value in every response message and MUST update the
 value to let a Server know to send a setup_request message. This
 value MUST be consistant across multiple KeyOwners with identical
 configurations. An example of this value: state =
 sha256(supported_signature_algorithms + certificate_list)

4.3. Request Message

 A request message looks like this:

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1

Erb & Salz Expires November 29, 2016 [Page 7]

Internet-Draft draft-erb-lurk-rsalg May 2016

 enum {
 rsalg(0), server_kx(1), (255)
 } ReqType
 struct {
 lurk_msg_header header;
 uint64 id;
 ReqType op_type;
 uint8 cert<32>;
 uint16 client_version;
 uint16 server_version;
 uint8 client_random<32>;
 uint8 server_random<32>;
 SignatureAndHashAlgorithm sig_hash_alg;
 PRFHashAlgorithm prf_hash_alg;
 opaque data<0..2^16-1>;
 } lurk_request;

 id A unique identifier to allow pipelining and match requests and
 responses.

 cert The identifier for the keypair to be used in this request.
 This SHOULD be the SHA256 value of the public key.

 client_version The TLS Version Number provided by the Client in the
 clientHello message. Note that for RSALG requests, the value must
 be verified (see RFC5264, section 7.4.7.1)

 server_version The TLS Version Number provided by the Server in the
 serverHello message. Note that for RSALG requests, the value must
 be verified (see RFC5264, section 7.4.7.1)

 client_random The TLS Client Random provided by the clientHello
 message.

 server_random The TLS Server Random provided by the serverHello
 message. Note that for RSALG requests, this is actually the
 digested value of N.

 sig_hash_alg For server_kx requests, this is the signature hash
 value that the Server will use (see RFC5246, section 7.4.1.4.1).
 For rsalg requests, this field is ignored and SHOULD be NULL.
 TODO - TLSv1.3 considerations.

 prf_hash_alg For rsalg requests, this identifies the PRF function to
 use. For server_kx requests, this field is ignored and SHOULD be
 NULL.

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg
https://datatracker.ietf.org/doc/html/rfc5264#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc5264#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1

Erb & Salz Expires November 29, 2016 [Page 8]

Internet-Draft draft-erb-lurk-rsalg May 2016

 TODO: this likely should follow the same format as the first byte of
 sighashalgo above, also need md5/sha1 combo value here.

 data For rsalg requests, this contains the encrypted PRF. For
 server_kx signing requests, this contains the key parameters to
 sign.

4.4. Session Ticket Request

 A session ticket key input request message looks like this:

 struct {
 lurk_msg_header header;
 uint64 id;
 uint8 cert<32>;
 uint8 server_salt<48>;
 } lurk_session_ticket_request;

 id A unique identifier to allow pipelining and match requests and
 responses.

 cert The identifier for the keypair to be used in this request.
 This SHOULD be the SHA256 value of the public key.

 server_salt A server supplied random salt.

4.5. Response Message

 A response message, used by both request types, looks like this:

 enum {
 success(0), invalidParameters(1), certUnavailable(2),
 permissionDenied(3), insufficentResources(4), (255)
 } ResponseStatus
 struct {
 lurk_msg_header header;
 ResponseStatus status;
 uint64 id;
 uint8 state<32>;
 opaque data<0..2^16-1>;
 } lurk_response;

 id The request id for which this is the response.

 state A 32 byte tag identifying the current state of the server.
 This is expected to be the same value found in the setup_response
 message. If this value is different the Server MUST send a
 setup_request message.

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg

Erb & Salz Expires November 29, 2016 [Page 9]

Internet-Draft draft-erb-lurk-rsalg May 2016

 data For any status other than success, the data is ignored and MUST
 be NULL. For rsalg requests, the data contains the master secret.
 For server_kx requests, the data contains the signed hash. For
 session ticket key requests, the data contains the computed HMAC.

5. Open Issues

 The KeyOwner could choose the TLS server random. This makes RSALG
 even less likely to be useful as an oracle, but has turned out to be
 difficult to integrate into existing TLS/SSL libraries.

 Should the lurk_request and lurk_response messages be padded out to
 eight-byte alignment?

 Should we use variant for the different request/response payloads?

6. Acknowledgements

 We acknowledge the cooperation of Charlie Gero and Phil Lisiecki of
 Akamai Technologies, and their disclosure of US Patent Application
 20150106624, "Providing forward secrecy in a terminating TLS
 connection proxy."

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Authors' Addresses

 Samuel Erb
 Akamai Technologies

 Email: serb@akamai.com

 Rich Salz
 Akamai Technologies

 Email: rsalz@akamai.com

https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246

Erb & Salz Expires November 29, 2016 [Page 10]

