
MADMAN Working Group Bruce Ernst [bruce_ernst@lotus.com]
INTERNET-DRAFT Lotus Development Corporation
draft-ernst-msgmib-00.txt Gordon Jones [gbjones@mitre.org]
 MITRE Corporation
 Jonathan Weintraub
 Electronic Data Systems, Inc.

 March 1998

Message Tracking MIB

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress."

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.nisc.sri.com, or
 munnari.oz.au.

Abstract

This document defines a message tracking Management Information Base
(MIB) for electronic messaging management. Message tracking is the
ability to find out, after the fact, the path that a particular message
took through the messaging system and the current status of that message.

Expires: September 1, 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ernst-msgmib-00.txt

Internet Draft March 1998

1. The SNMP Network Management Framework.

 The major components of the SNMP Network Management framework are
 described in the documents listed below.

 o RFC 1902 [1] defines the Structure of Management Information
 (SMI), the mechanisms used for describing and naming objects
 for the purpose of management.

 o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed
 objects (MO) for the Internet suite of protocols.

 o RFC 1905 [3] defines the protocol used for network access to
 managed objects.

The framework is adaptable/extensible by defining new MIBs to suit the
requirements of specific applications/protocols/situations.

Managed objects are accessed via a virtual information store, the MIB.
Objects in the MIB are defined using the subset of Abstract Syntax
Notation One (ASN.1) defined in the SMI. In particular, each object type
is named by an OBJECT IDENTIFIER, which is an administratively assigned
name. The object type together with an object instance serves to
uniquely identify a specific instantiation of the object. For human
convenience, often a textual string, termed the descriptor, is used to
refer to the object type.

2. Message Tracking

Message tracking refers, in its simplest form, to determining the path
a message
has taken and it's current location. This capability is analogous to
the service
provided by carriers of conventional paper mail - the ability to
quickly locate
where a package is, and to determine whether or not the package has
been
delivered to its destination. This document discusses a specific
SNMP-based
per-message mechanism to query the messaging system to perform message
tracking. For a detailed definition of message tracking, and the need
for message
tracking, refer to [MODEL].

https://datatracker.ietf.org/doc/html/rfc1902
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1905

Expires: September 1, 1998 [Page 2]

Internet Draft March 1998

3. MIB Data to Support Message Tracking

This MIB contains the syntax for message tracking via SNMP. The
attributes
defined are identical to those defined for message tracking via e-mail,
except
for those attributes that are required purely to enable SNMP-specific
semantics.

When making use of SNMP, it is expected that the following mode of
operation
will be used. The entity acting in the manager role issues one or more
"SET"
operations filling in a row in a request table. The variables set in
the request
table together comprise a message tracking query. The entity acting in
the agent
role reads the values set in the request table, queries the local
message store
(or usage logs), and returns information regarding messages that satify
the query
criteria in a response table. The entity acting as the manager then
reads the
response table and notifies an administrator or performs additional
queries as
required.

In the message tracking MIB that follows, there are three tables:

1. the mtaInformationTable
2. the msgTrackRequestTable
3. the msgTrackResponseTable

The mtaInformationTable contains one entry for each MTA that is
monitored
by this agent. The table contains information about the MTA as a
whole, such
as: the name of the MTA and the length of time that the MTA has been
recording
information. This last item is important to know, since if the MTA
indicates that
it only has information about messages that have passed through it in
the last two
days, and the administrator wishes to track a message that was sent
four days ago,
then there will be no need to attempt to track the message through this
MTA.

The msgTrackRequestTable is used by a manager to specify a query to be
made
of the agent. It is not required that the manager have any knowledge
of a unique
message identifier, but knowledge of some information pertaining to the
message
in question is recommended. Since the query information may be matched
by a
number of potential matches, it is possible to find out information
about several
different messages.

The msgTrackResponseTable is a parallel to the msgTrackRequestTable in
that it
holds the response(s) to the queries posed in the msgTrackRequestTable.
The
manager reads this table to retrieve information about the messages
that match
the input query information. The two tables share a common index to
facilitate
navigation between them.

Expires: September 1, 1998 [Page 3]

Internet Draft March 1998

MESSAGE-TRACKING-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 OBJECT-TYPE, MODULE-IDENTITY, Counter32
 FROM SNMPv2-SMI
 DisplayString, TimeInterval, DateAndTime
 FROM SNMPv2-TC;

-- Note that in SNMPv1 the IMPORTS section should look like the
following:
-- IMPORTS
-- OBJECT-TYPE, enterprises, Counter, Gauge, TimeTicks
-- FROM RFC1155-SMI
-- DisplayString
-- FROM RFC1213-MIB;

-- OBJECT IDENTIFIERS
 MsgTracking OBJECT IDENTIFIER ::= { experimental 73 2 }

-- MODULE IDENTIFICATION use in V2 version only
mta-message-track MODULE-IDENTITY
 LAST-UPDATED "9704110000Z"
 ORGANIZATION "IETF"
 CONTACT-INFO
 "Gordon Jones
 Postal: 1820 Dolly Madison Boulevard
 Mc Lean, VA 22102-3481
 Tel: +1 703 883 7670
 Fax: +1 703 883 7670
 E-mail: gbjones@mitre.org"
 DESCRIPTION
 "The MIB module describing message tracking"
 ::= { MsgTracking 1 }

-- Note that the MODULE-IDENTITY macro does not exist in SNMP version 1,
-- for a V1 implementation, replace the above macro with the following
line :
-- mta-message-track OBJECT IDENTIFIER ::= {MsgTracking 1 }

-- Note that the textual conventions DateAndTime and TimeInterval
-- do not exist in SNMPv1, for a V1 implementation include the following
-- 2 lines:
-- DateAndTime ::= DisplayString
-- TimeInterval ::= INTEGER (0..2147483647)

https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1213

Expires: September 1, 1998 [Page 4]

Internet Draft March 1998

-- Define the NameForm textual convention for originator and recipient
-- names in this MIB
NameForm ::= INTEGER {
 freeForm(1),
 x400(2),
 smtp(3)
 }

-- Define the DispositionStatus textual convention which indicates the
-- disposition of a message by the MTA for a particular recipient.
Values
-- are:
-- unknown - The disposition of the message could not be determined
-- transferred - The message was forwarded to another MTA for
-- delivery without name or content transformation.
-- delivered - The message was delivered to the intended recipient.
-- non-delivered - The message could not be delivered to the intended
-- recipient.
-- redirected - The message was forwarded to another MTA for
-- delivery. The recipient name and/or messageId
-- may have changed as a result of this process.
-- dlist-expanded - The intended recipient was a distribution list
-- which was expanded by the MTA.
-- in-queue - The message for this recipient is currently being
-- processed by the MTA.

DispositionStatus ::= INTEGER {
 unknown(1),
 transferred(2),
 delivered(3),
 non-delivered(4),
 redirected(5),
 dlist-expanded(6),
 in-queue(7)
 }

-- Define the MsgType textual convention. Values are:
--
-- data
-- status
-- probe

MsgType ::= INTEGER {
 any(1),
 data(2),
 status(3),
 probe(4)
 }

Expires: September 1, 1998 [Page 5]

Internet Draft March 1998

-- How this mib works :
-- Most message tracking MIBs operate on the presupposition that the
manager
-- entering a query knows the unique message ID for the message being
tracked.
-- In practice, this is often not the case. This MIB allows for a
2-step
-- query process - find the appropriate message, then track it.

-- +==============+
-- | Manager | = 1 => +=====================================+
-- +==============+ = 6 => | msgTrackRequestTable |
-- ^ +=====================================+
-- | |
-- | 2 +=========+
-- | + => | Agent |
-- | +=========+
-- 5 |
+======================+
-- | + 3 => | Message
Store |
-- | += 4 ==========
+======================+
-- | |
-- | v
-- | +==+
-- ===============> | msgTrackResponseTable |
-- +==+
--
-- STEP 1:
-- Using the index obtained from 'msgTrackNextRequestIndex', a manager
-- creates a conceptual row in the 'msgTrackRequestTable', filling in
-- as many message attributes as are known. The manager also specifies
-- in 'reqMaxResponses', the maximim number of possible 'hits' for an
-- underspecified query.
-- STEP 2:
-- When the agent detects a new conceptual row in
'msgTrackRequestTable',
-- it forms a query to be executed against the message store(s).
-- STEP 3:
-- The agent issues the query against the message store and receives
some
-- response(s).
-- STEP 4:
-- The agent then transfers up to 'reqMaxResponses' possible responses
-- to newly created conceptual rows in the 'msgTrackResponseTable'. The
agent

-- then sets the value of 'reqResponseStatus' in the
'msgTrackRequestTable'
-- to notify the manager of the results of the query.
-- STEP 5:
-- The manager, having detected a change in 'reqResponseStatus', knows
that
-- the query is complete. It reads the potential responses from the
-- 'msgTrackResponseTable' and presents them to the end-user.

Expires: September 1, 1998 [Page 6]

Internet Draft March 1998

-- STEP 6:
-- The manager then instructs the agent to destroy the conceptual row
-- created in the 'msgTrackRequestTable', which causes the agent to
-- destroy the corresponding entries in the 'msgTrackResponseTable'.
-- STEP 7: (optional, not illustrated)
-- If the original query did not produce an adequate response, a new
entry
-- is created in the 'msgTrackRequestTable'. Entries in this table are
-- never reused!
--
--

-- MESSAGE TRACKING REQUEST TABLE:

mtaInformationTable OBJECT-TYPE
 SYNTAX SEQUENCE OF mtaInformationEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table holding information about the MTA being queried. A table
 is used because there may be multiple MTAs at a single host."
 ::= { mta-message-track 1 }

mtaInformationEntry OBJECT-TYPE
 SYNTAX mtaInformationEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "One entry in the table holding information about the MTA being
 queried"
 INDEX { mtaIndex }
 ::= { mtaInformationTable 1 }

mtaInformationEntry ::= SEQUENCE {
 mtaIndex
 INTEGER,
 mtaName
 DisplayString,
 mtaMessagingType
 DisplayString,
 startTimeforRecordedInformation
 DateAndTime,
 alternativeAgent
 DisplayString
}

Expires: September 1, 1998 [Page 7]

Internet Draft March 1998

mtaIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The integer index into this table."
 ::= { mtaInformationEntry 1 }

mtaName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The name of the MTA described in this row of the table."
 ::= { mtaInformationEntry 2 }

mtaMessagingType OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 " Common name of the messaging system of this MTA (e.g. X.400,
SMTP)."
 ::= { mtaInformationEntry 3 }

mtaStartTimeforRecordedInformation OBJECT-TYPE
 SYNTAX DateAndTime
 ACCESS read-only
 STATUS current
 DESCRIPTION
 " The date/time of the oldest message tracking information
 available from this MTA."
 ::= { mtaInformationEntry 4 }

mtaAlternativeAgent OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The name (or address) of another agent that may have message
 tracking information concerning this MTA."
 ::= { mtaInformationEntry 5 }

Expires: September 1, 1998 [Page 8]

Internet Draft March 1998

msgTrackNextRequestIndex OBJECT-TYPE
 SYNTAX Counter32 -- Note that in SNMPv1, the syntax is simply
'Counter'
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The index that may be used by a manager (requestor) on a
'set-request' PDU
 to create a new conceptual row in the msgTrackRequestTable table
(and
 thereby issue a message tracking query)."
 ::= { mta-message-track 2 }

msgTrackRequestTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MsgTrackRequestEntry
 ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table holding all active message tracking requests."
 ::= { mta-message-track 3 }

msgTrackRequestEntry OBJECT-TYPE
 SYNTAX MsgTrackRequestEntry
 ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The entry associated with each request for message information."
 INDEX { reqEntryIndex }
 ::= { msgTrackRequestTable 1 }

MsgTrackRequestEntry ::= SEQUENCE {
 reqEntryIndex
 INTEGER,
 reqRowStatus
 INTEGER,
 reqResponseStatus
 INTEGER,
 reqMaxResponses
 INTEGER,
 reqUniqueMsgId
 DisplayString,
 reqInboundMsgId
 DisplayString,
 reqOutboundMsgId
 DisplayString,
 reqInboundOriginator
 DisplayString,

Expires: September 1, 1998 [Page 9]

Internet Draft March 1998

reqOutboundOriginator
 DisplayString,
 reqOriginatorNameForm
 NameForm,
 reqInboundRecipient
 DisplayString,
 reqOutboundRecipient
 DisplayString,
 reqRecipientNameForm
 NameForm,
 reqSubject
 DisplayString,
reqMinMsgSize
 INTEGER,
 reqMaxMsgSize
 INTEGER,
 reqEarliestArrivalTime
 DateAndTime,
 reqLatestArrivalTime
 DateAndTime,
 reqDispositionStatus
 DispositionStatus,
 reqFailureReason
 DisplayString,
 reqMsgType
 MsgType,
 reqCollapseRecipients
 INTEGER
}

reqEntryIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The integer index into the msgTrackRequestTable table."
 ::= { msgTrackRequestEntry 1 }

reqRowStatus OBJECT-TYPE
 SYNTAX INTEGER {
 active(1),
 notInService(2),
 notReady(3),

Expires: September 1, 1998 [Page 10]

Internet Draft March 1998

 createAndGo(4),
 createAndWait(5),
 destroy(6)
 }
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "The status of the conceptual row. These are mapped to the same
values as
 the RowStatus textual conversion in SNMPv2 and carry the same
semantics
 with one exception: the exception is that when a manager
(requestor) sets the
 value to destroy(6), this also has the added semantics of deleting
all
 conceptual rows in the msgTrackResponseTable table whose
respEntryIndex
 matches the reqEntryIndex of this conceptual row."
 ::= { msgTrackRequestEntry 2 }

reqResponseStatus OBJECT-TYPE
 SYNTAX INTEGER {
 unknown(1),
 inProgress(2),
 failedNoMatches(3),
 failedInvalidQuery(4),
 failedError(5),
 successUnderqualified(6),
 success(7)
 }
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Indicates the status of this query and its responses in the
 msgTrackResponseTable. Values are:
 unknown - The status of this query is not known.
 inProgress - The agent(responder) is still processing the request.
 failedNoMatches - The query has been processed and has produced
no
 matches.
 failedInvalidQuery - The query could not be processed due to
invalid or
 missing data in the original query.
 FailedError - The query could not be processed due to an error in
the
 agent(responder).
 successUnderqualified - The query was successfully processed, but
the query

 was found to be underqualified. That is, more reponses were found
than were
 specified in reqMaxResponses. reqMaxResponses entries were returned
in the
 msgTrackResponseTable.
 success - The query succeeded, returning from 1 to reqMaxResponse
 entries in the msgTrackResponseTable."
 ::= { msgTrackRequestEntry 3 }

Expires: September 1, 1998 [Page 11]

Internet Draft March 1998

reqMaxResponses OBJECT-TYPE
 SYNTAX INTEGER (1..100)
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies the largest number of responses to be returned in the
 msgTrackResponseTable on an underspecified query (i.e. the
 maximum value of respMsgIndex in the msgTrackResponseTable
 conceptual row whose respEntryIndex matches the reqEntryIndex of
this
 conceptual row)."
 ::= { msgTrackRequestEntry 4 }

reqUniqueMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies a unique message id used internally by the MTA for
identification
 of a message. This form of the message id may or may not be
identical to the
 inbound and/or outbound forms of the message id. If specified,
this may be
 the only search criteria required. If the entire unique message id
is not
 specified, prefix matching is assumed. Set to an empty (zero
length) string if
 unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 5 }

reqInboundMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies a unique message id as received by the MTA for
identification of
 a message. This form of the message id may or may not be identical
to the
 internal and/or outbound forms of the message id. If specified,
this may be the
 only search criteria required. If the entire inbound message id is
not specified,
 prefix matching is assumed. Set to an empty (zero length) string
if unknown or
 irrelevant to query."

 ::= { msgTrackRequestEntry 6 }

reqOutboundMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION

Expires: September 1, 1998 [Page 12]

Internet Draft March 1998

 "Specifies a unique message id as transmitted by the MTA for
identification
 of a message. This form of the message id may or may not be
identical to the
 internal and/or inbound forms of the message id. If specified,
this may be the
 only search criteria required. If the entire outbound message id
is not
 specified, prefix matching is assumed. Set to an empty (zero
length) string if
 unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 7 }

reqInboundOriginator OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
"Identifies the originator of the message in its received form,
expressed in
 string format. The style and format of this identifier varies
according to a
 specific messaging technology. As a result of potentially disparate
messaging
 technologies, this identifier is only guaranteed to be the name
known to the
 end-user on the first MTA in the delivery sequence. If
 reqOriginatorNameForm is set to 'x.400(2)' or 'smtp(3)', the
supplied
 attributes will be considered in the match. Any attributes not
supplied will be
 wildcarded. If reqOriginatorNameForm is set to 'freeForm(1)', this
value is
 assumed to be a substring of the originator name. Set to an empty
(zero
 length) string if unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 8 }

reqOutboundOriginator OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Identifies the originator of the message in its transmitted form,
expressed
 in string format. The style and format of this identifier varies
according to a

 specific messaging technology. As a result of potentially disparate
messaging
 technologies this identifier is only guaranteed to be the name
known to the
 end-user on the last MTA in the delivery sequence. If
 reqOriginatorNameForm is set to 'x.400(2)' or 'smtp(3)', the
supplied attributes
 will be considered in the match. Any attributes not supplied will
be
 wildcarded. If reqOriginatorNameForm is set to 'freeForm(1)', this
value is
 assumed to be a substring of the originator name. Set to an empty
(zero
 length) string if unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 9 }

reqOriginatorNameForm OBJECT-TYPE
 SYNTAX NameForm

Expires: September 1, 1998 [Page 13]

Internet Draft March 1998

ACCESS read-write
 STATUS current
 DESCRIPTION
 "Identifies the name form of originator strings supplied in the
 reqInboundOriginator and/or reqOutboundOriginator values. This
value is
 used by the agent to perform name form dependant parsing of these
values.
 If neither of these strings are supplied, this name form value is
irrelevant to
 the query. A value of 'any(1)' implies that no special parsing
should be
 performed on the originator names supplied."
 ::= { msgTrackRequestEntry 10 }

reqInboundRecipient OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Identifies one of the recipients (the one to be tracked) of the
message in
 its received form, expressed in string format. The style and
format of this
 identifier varies according to a specific messaging technology. As
a result
 of potentially disparate messaging technologies, this identifier is
only
 guaranteed to be the name an end-user knows the recipient by on
the first
 MTA in the delivery sequence. If reqRecipientNameForm is set to
'x.400(2)'
 or 'smtp(3)', the supplied attributes will be considered in the
match. Any
 attributes not supplied will be wildcarded. If reqRecipientNameForm
is set to
 'freeForm(1)', this value is assumed to be a substring of the
recipient name.
 Set to an empty (zero length) string if unknown or irrelevant to
query."
 ::= { msgTrackRequestEntry 11 }

reqOutboundRecipient OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION

 "Identifies one of the recipients (the one to be tracked) of the
message in
 its transmitted form, expressed in string format. The style and
format of this
 identifier varies according to a specific messaging technology. As
a result of
 potentially disparate messaging technologies, this identifier is
only guaranteed
 to be the name an end-user knows the recipient by on the last MTA
in the
 delivery sequence. If reqRecipientNameForm is set to 'x.400(2)' or
'smtp(3)',
 the supplied attributes will be considered in the match. Any
attributes not
 supplied will be wildcarded. If reqRecipientNameForm is set to
'freeForm(1)',
 this value is assumed to be a substring of the recipient name. Set
to an empty
 (zero length) string if unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 12 }

Expires: September 1, 1998 [Page 14]

Internet Draft March 1998

reqRecipientNameForm OBJECT-TYPE
 SYNTAX NameForm
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Identifies the name form of recipient strings supplied in the
 reqInboundRecipient and/or reqOutboundRecipient values. This value
is
 used by the agent to perform name form dependant parsing of these
values.
 If neither of these strings are supplied, this name form value is
irrelevant to
 the query. A value of 'any(1)' implies that no special parsing
should be
 performed on the recipient names supplied."
 ::= { msgTrackRequestEntry 13 }

reqSubject OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Identifies a substring of the text of the 'Subject' attribute of
the message.
 Since some messaging technologies make it difficult for an MTA to
preserve
 this data, it may not be supported by all agents. Set to an empty
(zero length)
 string if unknown or irrelevant to query."
 ::= { msgTrackRequestEntry 14 }

reqMinMsgSize OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies the minimum size of a message to be tracked (content,
excluding
 envelope), expressed in kilo-octets. Set both reqMinMsgSize and
 reqMaxMsgSize to zero if message size is irrelevant to the query."
 ::= { msgTrackRequestEntry 15 }

reqMaxMsgSize OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-write
 STATUS current
 DESCRIPTION

 "Specifies the maximum size of a message to be tracked (content,
excluding
 envelope), expressed in kilo-octets. Set both reqMinMsgSize and
 reqMaxMsgSize to zero if message size is irrelevant to the query."
 ::= { msgTrackRequestEntry 16 }

Expires: September 1, 1998 [Page 15]

Internet Draft March 1998

reqEarliestArrivalTime OBJECT-TYPE
 SYNTAX DateAndTime
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies the earliest arrival time, at this MTA, for a message to
be
 tracked. Set to an empty (zero length) string if unknown or
irrelevant to
 query."
 ::= { msgTrackRequestEntry 17 }

reqLatestArrivalTime OBJECT-TYPE
 SYNTAX DateAndTime
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies the latest arrival time, at this MTA, for a message to be
 tracked. Set to an empty (zero length) string if unknown or
irrelevant to
 query."
 ::= { msgTrackRequestEntry 18 }

reqDispositionStatus OBJECT-TYPE
 SYNTAX DispositionStatus
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "Specifies the disposition status of the message for a particular
 recipient. Set to 'unknown(1)' if unknown or irrelevant to the
query."
 ::= {msgTrackRequestEntry 19 }

reqMsgType OBJECT-TYPE
 SYNTAX MsgType
 ACCESS read-write
 STATUS current
 DESCRIPTION
 "The type of message to be tracked.
 Set to 'any(1)' if message type is unknown or irrelevant to the
query."
 ::= {msgTrackRequestEntry 20 }

reqCollapseRecipients OBJECT-TYPE
 SYNTAX INTEGER {
 false(1),
 true(2)

 }
 ACCESS read-write
 STATUS current

Expires: September 1, 1998 [Page 16]

Internet Draft March 1998

 DESCRIPTION
 "If a value of 'true(2)' is specified, a single msgTrackResponseEntry
 will be created for each matching message regardless of the
 number of recipients. If not specified or set to 'false(1)',
 a msgTrackResponseEntry will be created for each matching message
 and/or recipient. This variable may be used in the case of a
 distribution list or a message with a large number of
 recipients."
 ::= { msgTrackRequestEntry 21 }

reqFailureReason OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of why a message tracking request failed.
 This variable may be set by an agent when the reqResponseStatus
 is set to either 'failedInvalidQuery(4)', or 'failedError(5)'."
 ::= {msgTrackRequestEntry 22 }

-- MESSAGE RESPONSE TABLE (QUERY RESULTS)

msgTrackResponseTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MsgTrackResponseEntry
 ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table holding the response to all active message tracking
requests."
 ::= { mta-message-track 4 }

msgTrackResponseEntry OBJECT-TYPE
 SYNTAX MsgTrackResponseEntry
 ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The entry associated with each response to a request for message
 information."
 INDEX { respEntryIndex, respMsgIndex }
 ::= { msgTrackResponseTable 1 }

MsgTrackResponseEntry ::= SEQUENCE {
 respEntryIndex
 INTEGER,
 respMsgIndex
 INTEGER,

Expires: September 1, 1998 [Page 17]

Internet Draft March 1998

respDispositionStatus
 DispositionStatus,
 respDispositionTime
 INTEGER,
 respNextHopMta
 DisplayString,
 respPrevHopMta
 DisplayString,
 respNonDeliveryReason
 DisplayString,
 respMsgArrivalTime
 DateAndTime,
 respMsgSize
 INTEGER,
 respMsgPriority
 DisplayString,
 respUniqueMsgId
 DisplayString,
 respInboundMsgId
 DisplayString,
respOutboundMsgId
 DisplayString,
 respInboundOriginator
 DisplayString,
 respOutboundOriginator
 DisplayString,
 respInboundRecipient
 DisplayString,
 respOutboundRecipient
 DisplayString,
 respSupplementalInformation
 DisplayString,
 respSubject
 DisplayString,
 respMsgType
 MsgType
}

respEntryIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The primary integer index into the msgTrackResponseTable table. It
matches
 the value of reqEntryIndex for the original request. "
 ::= { msgTrackResponseEntry 1 }

Expires: September 1, 1998 [Page 18]

Internet Draft March 1998

respMsgIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The secondary integer index into the msgTrackResponseTable table.
For each
 value of respEntryIndex in the table, there may be multiple
conceptual rows
 indexed by respMsgIndex, each denoting a possible response to the
tracking
 query. The maximum number of entries should have an upper bound of
the
 value of reqMaxResponses in the conceptual row of
msgTrackRequestTable
 that represents the original query request. "
 ::= { msgTrackResponseEntry 2 }

respDispositionStatus OBJECT-TYPE
 SYNTAX DispositionStatus
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Indicates the disposition of this message by this MTA for this
recipient."
 ::= { msgTrackResponseEntry 3 }

rspDispositionTime OBJECT-TYPE
 SYNTAX DateAndTime
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Time at which this MTA disposed of this message for this recipient."
 ::= { msgTrackResponseEntry 4 }

respNextHopMta OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Name of the MTA to which this message was sent. MADMAN-compliant
 MTA's should be addressed in the form '(<host-id>::<mtaName>)'."
 ::= { msgTrackResponseEntry 5 }

respPrevHopMta OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only

 STATUS current
 DESCRIPTION

Expires: September 1, 1998 [Page 19]

Internet Draft March 1998

 "Name of the MTA from which this message was received. MADMAN-
 compliant MTA's should be addressed in the form
 '(<host-id>::<mtaName>)'."
 ::= { msgTrackResponseEntry 6 }

respNonDeliveryReason OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual representation representing the reason for non-delivery to
 this recipient. No attempt is made to normalize these non-delivered
 reasons across systems, since this indicates a terminal condition."
 ::= { msgTrackResponseEntry 7 }

respMsgArrivalTime OBJECT-TYPE
 SYNTAX DateAndTime
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Represents the time at which this message for this recipient
arrived at
 this MTA."
 ::= { msgTrackResponseEntry 8 }

respMsgSize OBJECT-TYPE
 SYNTAX INTEGER(1..2147483647)
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Size of the message in kilo-octets."
 ::= { msgTrackResponseEntry 9 }

respMsgPriority OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Textual representation of the priority of the message. No attempt
is
 made to normalize these values across disparate messaging
technologies."
 ::= { msgTrackResponseEntry 10 }

respUniqueMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only

 STATUS current

Expires: September 1, 1998 [Page 20]

Internet Draft March 1998

DESCRIPTION
 "The unique message identifier that the MTA assigned internally
 to the message."
 ::= { msgTrackResponseEntry 11 }

respInboundMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The unique message identifier that the 'previous hop' MTA assigned
 to the message. If the 'previous' MTA uses a different messaging
technology
 or identifier scheme, this identifier serves to correlate the
message from
 MTA to MTA. If the 'previous' MTA uses the same technology, this
value
 is generally superfluous. If this is the first MTA in the delivery
 sequence, or if the previous message id is unknown, this variable
is null-
 valued."
 ::= { msgTrackResponseEntry 12 }

respOutboundMsgId OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The unique message identifier that the 'next hop' MTA assigned
 to the message. If the 'next' MTA uses a different messaging
technology
 or identifier scheme, this identifier serves to correlate the
message from
 MTA to MTA. If the 'next' MTA uses the same technology, this value
 is generally superfluous. If this is the last MTA in the delivery
sequence,
 or if the next hop message id is unknown, this variable is
null-valued."
 ::= { msgTrackResponseEntry 13 }

respInboundOriginator OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Textual representation identifying the originator of the message as
it was

 received from the 'previous hop' MTA. The style of this variable
varies
 according to a specific messaging technology."
 ::= { msgTrackResponseEntry 14 }

respOutboundOriginator OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current

Expires: September 1, 1998 [Page 21]

Internet Draft March 1998

DESCRIPTION
 "Textual representation identifying the originator of the message as
it
 was (or will be) presented to the 'next hop' MTA. The style of this
 variable varies according to a specific messaging technology."
 ::= { msgTrackResponseEntry 15 }

respInboundRecipient OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Textual representation identifying the recipient of the message as
it was
 received from the 'previous hop' MTA. The style of this variable
varies
 according to a specific messaging technology.."
 ::= { msgTrackResponseEntry 16 }

respOutboundRecipient OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Textual representation identifying the recipient of the message as
it
 was (or will be) presented to the 'next hop' MTA. The style of this
 variable varies according to a specific messaging technology."
 ::= { msgTrackResponseEntry 17 }

respSupplementalInformation OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "Contains information provided by the agent to the manager that may
be
 of use in identifying or tracking this message. No formal structure
for
 this information is specified. Knowledge of the contents of this
field
 is by bilateral agreement."
 ::= { msgTrackResponseEntry 18 }

respSubject OBJECT-TYPE
 SYNTAX DisplayString

 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The full text of the subject of the tracked message"
 ::= { msgTrackResponseEntry 19 }

Expires: September 1, 1998 [Page 22]

Internet Draft March 1998

respMsgType OBJECT-TYPE
 SYNTAX MsgType
 ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of the tracked message"
 ::= { msgTrackResponseEntry 20 }

-- CONFORMANCE INFORMATION
-- Used ONLY in V2 MIBs
messageTrackingConformance OBJECT IDENTIFIER ::= {
 mta-message-track 5 }
messageTrackingGroups OBJECT IDENTIFIER ::= {
 messageTrackingConformance 1 }
messageTrackingCompliances OBJECT IDENTIFIER ::= {
 messageTrackingConformance 2 }

-- COMPLIANCE STATEMENTS
-- Used ONLY in V2 MIBs
limitedCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The basic levels of compliance for SNMPv2 entities that implement
this MIB
 for message tracking requiring the knowledge of a message Id."
 MODULE -- this module
 MANDATORY-GROUPS { msgIdGroup }
 ::= { messageTrackingCompliances 1 }

basicCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The basic levels of compliance for SNMPv2 entities that implement
this MIB
 for message tracking without requiring the knowledge of a message
Id."
 MODULE -- this module
 MANDATORY-GROUPS { msgIdGroup, basicGroup }
 ::= { messageTrackingCompliances 2 }

enhancedCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The basic levels of compliance for SNMPv2 entities that implement
this MIB
 for message tracking without requiring the knowledge of a message

Id and
 allowing an enhanced level of query capabilities."
 MODULE -- this module

Expires: September 1, 1998 [Page 23]

Internet Draft March 1998

MANDATORY-GROUPS { msgIdGroup, basicGroup, enhancedGroup }
 ::= { messageTrackingCompliances 3 }

gatewayCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The basic levels of compliance for SNMPv2 entities that implement
this MIB
 for message tracking across mta's that perform a gateway
function."
 MODULE -- this module
 MANDATORY-GROUPS { msgIdGroup, basicGroup, enhancedGroup,
 gatewayGroup }
 ::= { messageTrackingCompliances 4 }

-- UNITS OF CONFORMANCE
-- Used ONLY in V2 MIBs
msgIdGroup OBJECT-GROUP
 OBJECTS {
 msgTrackNextRequestIndex, reqRowStatus,
 reqResponseStatus, reqMaxResponses, reqUniqueMsgId,
 reqFailureReason, respDispositionStatus, respDispositionTime,
 respNonDeliveryReason, respMsgArrivalTime, respUniqueMsgId,
 respInboundOriginator, respInboundRecipient
 }
 STATUS current
 DESCRIPTION
 " A collection of objects for tracking messages where the
messageId is
 known with responses containing basic message information."
 ::= { messageTrackingGroups 1 }

basicGroup OBJECT-GROUP
 OBJECTS {
 reqInboundOriginator, reqInboundRecipient, reqOriginatorNameForm,
 reqRecipientNameForm, reqEarliestArrivalTime,
reqLatestArrivalTime
 }
 STATUS current
 DESCRIPTION
 " A collection of objects for tracking messages where the
messageId is not
known
 with responses containing basic message
information."
 ::= { messageTrackingGroups 2}

Expires: September 1, 1998 [Page 24]

Internet Draft March 1998

enhancedGroup OBJECT-GROUP
 OBJECTS {
 reqSubject, reqMinMsgSize, reqMaxMsgSize,
 reqDispositionStatus, reqMsgType, reqCollapseRecipients,
 respMsgSize, respMsgPriority,
respSupplementalInformation,
 respSubject, respMsgType
 }
 STATUS current
 DESCRIPTION
 " A collection of objects for tracking messages where the messageId
is not
 known with responses containing enhanced message information as
 well as enhanced query capabilities."
 ::= { messageTrackingGroups 3}

gatewayGroup OBJECT-GROUP
 OBJECTS {
 reqInboundMsgId, reqOutboundMsgId,
reqOutboundOriginator,
 reqOutboundRecipient, respNextHopMta, respPrevHopMta,
 respInboundMsgId, respOutboundMsgId,
respOutboundOriginator,
 respOutboundRecipient
 }
 STATUS current
 DESCRIPTION
 " A collection of object for tracking messages that have passed
through a
 gateway mta."
 ::= { messageTrackingGroups 4}

END

4 Usages

A general model of message flow between MTAs has to be presented before
a MIB can be described. Generally speaking, message flow occurs in
three
steps. We use the term "MTA" loosely to refer to any processing entity
that is
responsible for message delivery:

(1) Messages are received by the MTA from user agents, message stores,
other

MTAs, and gateways.
(2) The "next hop" for the each message is determined. This is simply
the
destination the message is to be transmitted to; it may or may not be
the final
destination of the message. Next hop is established on a per-recipient
basis.
Next hop may be a User Agent, a Message Store, another MTA, or a
gateway.

Expires: September 1, 1998 [Page 25]

Internet Draft March 1998

(3) Information about the message and the next hop are written out to a
log in
some format. Messages are transmitted to the appropriate destination,
which
may be a user agent, message store, another MTA, or another gateway.

In terms of message tracking, the key step is step number 3, the
logging of
information. Once information about a message is written to a log, it
can be
subsequently queried by any number of means. It is the intent of this
specification to support the following general message tracking usages.

Tracking an Individual Message

It is often necessary for messaging operations to track down the
whereabouts
and/or history of an individual message managed object. This is
typically in
response to a particular user tracking request regarding a previously
sent
message. It might also be used by messaging operations to verify that
one or
more message paths are operating properly.

Entire Path or Current Status

For some inquiries, it is desired that the entire path taken by the
message to
date be discovered, including the current disposition of the message
(for one
or more recipients). For others, it is necessary only to discover the
current
disposition of the message. Note however that it may be necessary to
uncover
its entire path to date in order to determine its current disposition.
To discover a message's entire path, it will be necessary to query the
Management Agent (MA) of each MTA and/or gateway encountered by the
message, beginning with the originating MTA, to discover the status of
the
message from that MTA or gateway's perspective.
Dispositions include: Transferred-to another MTA or gateway, In-queue
within an MTA or gateway, Delivered, Non-delivered, Redirected, or
Dlist-
expanded. If a message was relayed to another MTA or gateway, then the
MA
of that MTA or gateway must be queried in turn. This must be repeated

until
the MTA or gateway which currently has responsibility for the message
is
reached.

To discover a message's current disposition, it might in fact be
necessary to track
the message's entire path, since typically the current status can only
be
discovered by a forward traversal through the message path.
Alternatively, to
minimize expense, the MA of any MTA/gateway which is estimated to be in
the
message path can be queried; if the message is shown to have reached
this
estimated point, then previous points in the path are irrelevant. Best
estimate
may therefore be the MA of the destination MTA, if known. Other
estimates
are made based on arbitrary intelligence which may be available.

Expires: September 1, 1998 [Page 26]

Internet Draft March 1998

For a message with multiple recipients, a different path/ disposition
may be
relevant for each recipient. Thus, message tracking queries must be
made to
discover the path/disposition of each recipient of the message, or for
each
recipient explicitly identified in the tracking request. For cases in
which multiple
recipient message copies are transferred-to the same MTA or gateway,
these
queries may be combined into a single query, for convenience.

Identifying Messages to Track

In some cases, the user may have retained some sort of a unique
identifier for
the message of interest. This will be true, for example, because an
explicit
trackability service was requested for the message, or because the
user logs all
outgoing messages. In such cases, a message query can be made simply
on the
basis of providing this unique identifier to the message tracking
system.

Optionally, this query can be bounded by:

o specific recipient(s) of interest;
o time range of interest;
o or other bounding information.

In other cases, the user may only know some general descriptive
information
about the message. For example, the user may know who originated it,
to
whom it was sent, and roughly what time of day it was submitted. In
such
cases, it will be necessary to provide descriptive information to the
message
tracking system and allow it to respond with a list of matching
messages which
it knows about, along with their unique identifiers.

In either case, the query can specify or imply a list of information
which it
wishes the query response to return to the requester.

Query Responses

The query response must then return the requested information, or
return an
indication as to why it cannot return the requested information. If the
returned
information includes an indication that the message has been further
relayed,
then a subsequent query must made to the transferred-to MTA or gateway.
Specific response information must be provided/implied in order to
allow for
the creation of subsequent queries. For example:

o the name of the transferred-to MTA or gateway
o the name of the MA of the transferred-to MTA or gateway
o the names/addresses of the recipient(s) of interest which have taken
this relay
path. Note that this may be a "redirected" recipient.
o If this response comes from a gateway, the translated versions of key
identification fields.

Expires: September 1, 1998 [Page 27]

Internet Draft March 1998

This subsequent query can optionally be formulated automatically.
See next section on "Automating Follow-up Queries" for details on
follow-up
query creation.

Automating Follow-up Queries

In order to support a fully automated path search, it is convenient and
powerful
for a management agent to be able to automatically make all of the
queries
required to discover the full path of an individual message. The MC can
accomplish this by creating an initial query, and then creating a
follow-on query
utilizing information returned by the initial query, and repeating this
process
until the current disposition of the message is discovered.

Follow-on queries will need to be generated on a per-recipient basis.
For cases
in which multiple recipient message copies were transferred-to the same
MTA
or gateway, these queries may be combined into a single query, for
efficiency.

In general, a follow-on query will need to:

o Be directed at the MA which corresponds to the MTA or gateway to
which
the message (copy) was relayed.
o Include the names/addresses of the recipient(s) which have taken this
relay
path. Note that this may be a "redirected" recipient.
o Include the same bounding criteria as did the initial query, with the
addition of the unique message identification if that information was
not
previously available.
o If the just-completed query was to a gateway, then the new translated
formats for the following will need to be used, if applicable:
 - Message ID
 - Recipient address
 - Originator address
 - Priority value
 - Size.

Tracking Aggregates of Messages

It is sometimes desirable for messaging operations to be able to

determine
information about the history/status of all messages which match a
given set
of characteristics that have passed through their systems.

Identifying Messages to Track

In some cases, messaging operations may have retained some sort of a
unique
identifier for the messages of interest. More probably, messaging
operations is
simply interested in the set of messages which:

Expires: September 1, 1998 [Page 28]

Internet Draft March 1998

o went through its systems within a given time range, or
o were sent through its systems by a given originator, or
o were sent through its systems to a given recipient, or
o were sent through its systems with a given size or priority

In such cases, it will be necessary to provide descriptive information
to the
message tracking system and allow it to respond with information on all
of the
matching messages which it knows about. The query can specify or imply
a list
of information which it wishes the query response to return to the
requester.

Query Responses

The query response must then return the requested information, or
return an
indication as to why it cannot return the requested information.

4.1 Security

[TBD]

5. Future Considerations

A version of this information is also available in the Management
Information
Format (MIF) defined by the Desktop Management Task Force (DMTF).

As SNMP continues to evolve (e.g. SNMPv3),
the mechanisms in this document will leverage those new technologies.

6. Acknowledgements

This draft also incorporates the intellectual contributions of

 Bruce Greenblatt
 Niraj Jain
 Sue Lebeck
 Roger Mizumori
 Edward Owens

Expires: September 1, 1998 [Page 31]

Internet Draft March 1998

7. References

 [1] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Structure
 of Management Information for version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1902, SNMP Research,Inc.,
 Hughes LAN Systems, Dover Beach Consulting, Inc., Carnegie Mellon
 University, September 1996.

 [2] McCloghrie, K., and M. Rose, Editors, "Management Information
 Base for Network Management of TCP/IP-based internets: MIB-II",
 STD 17, RFC 1213, Hughes LAN Systems, Performance Systems
 International, March 1991.

 [3] Case, J., McCloghrie, K., Rose, M., and S, Waldbusser, "Protocol
 Operations for version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1905, SNMP Research,Inc., Hughes LAN
 Systems, Dover Beach Consulting, Inc., Carnegie Mellon
 University, September 1996.

 [MODEL] Case, J., McCloghrie, K., Rose, M., and S, Waldbusser,
"Protocol
 Operations for version 2 of the Simple Network Management

Authors' Addresses

 Bruce Ernst
 Lotus Development Corporation

 Phone: +1 610 251 3404
 E-Mail: bruce_ernst@lotus.com

 Gordon Jones
 MITRE Corporation
 1820 Dolley Madison Blvd.
 McLean, VA 22102-3481

 Phone: +1 703 883 7670
 E-Mail: gbjones@mitre.org

 Jonathan Weintraub
 Electronic Data Systems, Inc.

 +1 301 619 3101

https://datatracker.ietf.org/doc/html/rfc1902
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1905

Expires: September 1, 1998 [Page 32]

