Network Working Group B. Linowski

Internet-Draft M. Storch
Intended status: Standards Track M. Lahdensivu
Expires: September 12, 2008 M. Ersue (ed.)

Nokia Siemens Networks
March 11, 2008

Kalua - A Data Modeling Language for NETCONF
draft-ersue-netconf-kalua-dml-01

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 12, 2008.

Linowski, et al. Expires September 12, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Kalua DML

Abstract

March 2008

This document specifies a Data Modeling Language (Kalua DML), which
is designed to be used as a specification language for the payload of
the IETF NETCONF protocol [RFC4741] as well as to specify other
management related data models. The Kalua DML aims to fit
requirements specified in draft-linowski-netconf-dml-requirements
[Linowski] and supports most of the requirements in RCDML [RCDML].

the

Comments can be sent to ngo@ietf.org.

Table of Contents

W N [

4.

Introduction .
Conventions used in thlS document
Documentation conventions

3.1 Terminology .
3.2 Model element descriptions
3.3 Constraints

Language Introduction .
Language Design Fundamentals

4.1
4.2. Language Overview . . .
4.2.1. Network resource conflguratlon modellng
4.2.2 Network Modeling and Network Management Support
4.2.3 Notifications .o
4.2.4 Simplicity and Ease of Use .
4.2.5 Straightforward and Lossless Mapplng
4.2.6 Kalua as Metamodel
4.2.7. Release Management

4.3. Use of XML and XML Schema
Kalua Elements
.1. Common Kalua Elements

5.1.1 name .

5.1.2 presentation

5.1.3 description .
5.1.4. References to KALUA elements
5.1.5. Types

2. module

5.2.1 Element Attrlbutes

5.2.2. Leaf Sub-Elements

5.2.3 Sub-Elements

5.2.4. XsD

5.2.5. Element Examples
5.3 import

5.3.1. Leaf Sub- Elements

5.3.2. Sub-Elements
3

5.3.3. Constraints

BB D (W W [[W [W [(W (W (W W [w [w [W I[NNI NINR R R R R
‘o‘o‘o‘m‘m‘m‘m‘ﬂ‘m‘m‘b‘w‘w‘w‘M‘M‘M‘o‘@‘m‘m‘ﬂ‘b‘m‘w‘w‘m‘m‘p‘o\@\@\m\m

https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements

Linowski, et al. Expires September 12, 2008 [Page 2]

Internet-Draft Kalua DML March 2008

5.3.4. XSD o e e

5.3.5. Element Examples
5.4. attribute

5.4.1. Attributes

5.4.2. Leaf Sub-Elements

5.4.3. Sub-Elements

5.4.4. XSD e e e

5.4.5 Element Examples .

5.4.6. NETCONF Payload Examples
5.5. attribute-group

5.5.1. Attributes

5.5.2. Leaf Sub-Elements

5.5.3. Sub-Elements

5.5.4. XSD e e e

5.5.5 Element Examples .

5.5.6. NETCONF Payload Examples
5.6. structure .

5.6.1. Leaf Sub- Elements

5.6.2. Sub-Elements

5.6.3. XSD e

5.6.4 Element Examples .

5.6.5 NETCONF Payload Examples

7. sequence .
Attributes

5.7.1.

5.7.2. Leaf Sub-Elements

5.7.3 Sub-Elements

5.7.4. XSD o e

5.7.5. Element Examples .

5.7.6. NETCONF Payload Examples
5.8 simple-type

5.8.1 Leaf Sub- Elements
5.8.2. Sub-Elements
5.8.3 XSD
9 e
Sub-Elements
XSD o e
Element Examples .
NETCONF Payload Examples
5.10. enum-literal

5.10.1. Attributes
Leaf Sub-Elements
Sub-Elements
XSD o e
Element Examples .
.6. NETCONF Payload Examples
5.11. union

5.11.1. Sub- Elements

5.11.2. XSD

HwIN -

ol o jo1 fon
[Y
o @

o x e v

(63}

e

(o]
(9230 (e300 (o> I (o) TN o Il e p TN o W [N 6 I [5 W 15 N6 N 6 12 6 1 0 I (3 0 I 0 o T 0 0 I 1@ 0 1@ [I 1 5 1 0 B S ¥ I S I e I e e o e Y I S I N e e e O F o F S N
RRRR2EEBEBEBIEESEESILEEEEEEEERRERIEEEEEEEEREEEEEEERRIKSEIERE

Linowski, et al. Expires September 12, 2008 [Page 3]

Internet-Draft

5.

5.11.3. Element Examples
5.11.4. NETCONF Payload E

12. restriction

5.

5.12.1. Sub-Elements

5.12.2. Restriction Facet-

5.12.3. XSD
5.12.4. Element Examples

13. typedef

5.

.14.1.

1
2.
.14.3. XSD
.14.4.
.14.5.
1.
.15.2.
.15.3. Sub-Elements
4
5

.15.5.
.15.6. NETCONF Payload E

.13.1. Attributes
.13.2. Sub-Elements
.13.3. e e e
.13.4. Element Examples
.13.5.

[

XSD

NETCONF Payload E

= |o1 o1 o1 ot

Attributes
.14, Sub-Elements
Element Examples
NETCONF Payload E

B o1 o1 (o o1 ot

Attributes
Leaf Sub-Elements

.15.

.15. XSD

Element Examples

o1 o1 |jon |or o

[

16. constraint

5

5.

.17.4.

.17.6.
.17.7. NETCONF Payload E

.16.1. Attributes

.16.2. Leaf Sub-Elements

.16.3. Sub-Elements

.16.4. XSD

.16.5. Element Examples
5.17. class .

.17.1. Attrlbutes

L17.2.

o1 o1 |jor [or o

[

Leaf Sub-Elements
Sub-Elements
Constraints

XSD e e
Element Examples

A7,

LA7.

o1 o1 o1 |or |on
o (O [W N

)]

18. relationship

5.18.1. Attributes
5.18.2. Leaf Sub-Elements
5.18.3. Sub-Elements
5.18.4. Source and Target
5.18.5. Constraints
5.18.6. XSD o e
5.18.7. Element Examples

Kalua DML March 2008

xamples

Elements

xamples

xamples

xamples

xamples

Leaf Sub Elements

0 [0 00 [00 |00 |0 [0 NNNNNMNNNNMNMNNNNNNMNNNNMNOGOGOOBGIOGDIID O[O O[O [[0 [O |0
REREEERRELSEERRBGREREIERRRAEERIBBBIEERZIRBEBERRIES ISR

Linowski, et al. Expires September 12, 2008 [Page 4]

Internet-Draft

Kalua DML March 2008

5.18.8. NETCONF Payload Examples
5.19. annotation

U'I(ﬂ()'IU'I

U'I

5.19.1. Element Attrlbutes

5.19.2. Sub-Elements
.19.3. Constraints

5.19.4. XSD

5.19.5. Element Examples

5.20. annotation-property
5.20.1. Element Attributes
5.20.2. Constraints
5.20.3. XSD

5.20.4.

Element Examples

5.21. annotation-type

5.21.1. Element Attributes
5.21.2. Leaf Sub-Elements
5.21.3. Sub-Elements
5.21.4. XSD .o
5.21.5. Element Examples
5.22. annotable-type

5.22.1. XSD .
5.22.2. Element Examples

5.23. annotation-property-type

5.23.1. Leaf Sub-Elements
5.23.2. Sub-Elements
5.23.3. XSD
5.23.4. Element Examples
6. TIANA Considerations
7. Security Considerations
8. Acknowledgements
9. References .
9.1. Normative References
9.2. Informative References
Appendix A. Kalua XML Schema e
Appendix B. Module Example: RFC1213-MIB
Appendix C. Netconf Payload Example
Appendix D. NETCONF Notification Example e
Appendix E. DHCP example from RCDML Requirements Document
Appendix F. DHCP augmentation example from RCDML Requirements
Document .
Appendix G. Example for Partlal Lock RPC for NETCONF
Appendix H. Support of RCDML Requirements in Kalua
Appendix I. Support of Use Cases for SMI and MIB Modules

Authors' Addresses .
Intellectual Property and Copyrlght Statements

© [© [© |[© [0 [0 [0 N NN oo o o o1 o1 |01 [D [_Id D Ww-

[y

[N
o
[y

[
(O]
N

=
(o]
w

=
(o]
IS

[y H‘
©
IS

=
(o]
6]

=
[y
\l

https://datatracker.ietf.org/doc/html/rfc1213

Linowski, et al. Expires September 12, 2008 [Page 5]

Internet-Draft Kalua DML March 2008

1.

Introduction

This document specifies a Data Modeling Language (Kalua DML), which
is designed to be used as a specification language for the payload of
the IETF NETCONF protocol [RFC4741] as well as to specify other
configuration management (CM) related data models. The Kalua DML
aims to fit the requirements specified in draft-linowski-netconf-dml-

requirements [Linowski] and supports most of the requirements in
RCDML [RCDML].

XML-based data exchange and management has become increasingly
important because of its flexibility, readability, and ease of use.
XML supports hierarchical data structures and is supported by a large
number of management applications. The NETCONF Working Group has
completed the standardization of the XML-based configuration
management protocol and its notification mechanism supporting
asynchronous notifications.

However, a standardized way of configuration data modeling for
Netconf is missing. There is a need to define a standard content
layer based on a data-modeling framework for the development of
standard and vendor defined data model modules.

The necessary Data Modeling Language should address the requirements
of the Netconf protocols fully. However, the optimal case would be
if the DML can be used also for management fragments other than the
Configuration Management. We need to take into consideration the
increasing need for extensibility and the opportunity of providing
one data modeling language solution for different IETF problems also
other than 0&M issues e.g. application servers. The aim for a new
DML solution at the IETF should be to support extensibility, broader
applicability to different kind of management issues and
harmonization of data models for manifold management applications.

Having this in mind the definition of a common 0&M meta-model seems
to be sensible where diverse management fragments, such as
configuration management, can derive or inherit commonly used data
modeling structures and do not define these themselves if already
available. For the achievement of such flexibility, we propose an
object-oriented approach where attribute groups and meta class
definitions can be inherited to avoid data redundancy and to enable
data model design flexibility.

In the following chapters the KALUA Data Modeling Language fitting to
the requirements defined in draft-linowski-netconf-dml-requirements
[Linowski] is specified. The specification defines the model
elements of the KALUA language.

https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements

Linowski, et al. Expires September 12, 2008 [Page 6]

Internet-Draft Kalua DML March 2008

KALUA language defines how one can model basic concepts which apply
to a specific management fragment, such as fragment identifiers,
annotations, content trees, and common principles that apply to
fragments of the metamodel (such as identifiers of model objects and
references between the objects).

KALUA language is designed to model the operation and maintenance
interface, that is, the crossing point where the network equipment
and management system meet. Kalua defines how one can model
configuration management concepts and can use and combine the
features of Kalua to create expressive and concise data models.

Kalua language provides built-in abstract and concrete object
classes, attributes, attribute groups and data types that the data
models may use by inheritance. This approach harmonizes concepts,
which are widely used in operations and maintenance data models.

Linowski, et al. Expires September 12, 2008 [Page 7]

Internet-Draft Kalua DML March 2008

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Linowski, et al. Expires September 12, 2008 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Kalua DML March 2008

3. Documentation conventions
3.1. Terminology

0 abstract class: abstract class is a class, which cannot be
instantiated. That is, an object instance cannot be created with
an abstract class as its class. However, abstract classes as a
super-class of a class does not prevent the non-abstract class to
be instantiated.

0o annotation: Additional metadata that refines semantics of a model
element. A typed annotation consists of properties, which have a
type and a value.

o attribute: A named data element that can hold a value (structural
feature).

o attribute group: Group of attributes supposed to be used only to
define the contents of classes (or structures).

0 attribute container: A model element that contains attributes.
Abstraction of attribute groups, structures and classes.

o base type: The type from which a refined type was derived, which
may be a built-in type or another derived type.

0 built-in type: A data type defined in the Kalua, such as
'unsignedInt' or string.

0o class: A language construct used to describe the structural
features of instances with an own identity and life-cycle.

o data model: A mapping of the contents of an information model into
a form that is specific to a particular type of data store or
repository. A "data model" is the rendering of an information
model according to a specific set of mechanisms for representing,
organizing, storing and handling data.

0 enumeration: Data type with an enumerated set of values.

o identifier: Used to identify a model element (class, attribute,
etc.) in the containing namespace in a unique way.

o information model: An abstraction and representation of the
entities in a managed environment, their properties, attributes
and operations, and the way that they relate to each other. It is
independent of any specific repository, software usage, protocol,
or platform.

Linowski, et al. Expires September 12, 2008 [Page 9]

Internet-Draft Kalua DML March 2008

w

o list: Sequence of elements of the same type.

o managed object: An abstract representation of network resources
that are managed. A managed object may represent a physical
entity, a network service, or an abstraction of a resource that
exists independently of its use.

o management fragment: category of management tasks. For example
configuration management, performance management, and fault
management are management fragments.

o model element: A building block of the Kalua language.
o module: A set of related definitions
0 object: Instance of a class

o relationship: Definition of an association between instances of
two classes.

o struct: Set of attributes without own identity

0 super class or superclass: A class from which the derived class is
directly derived.

Model element descriptions

Each model element is described in its own section, with the model
element name as a title. Attributes of a model element are described
in an attributes section. Model elements, which are contained in a
model element, are listed in a sub-elements section. XML elements,
which are not model elements, are described in a leaf sub-elements
section.

In the sub-elements section, a minimum and maximum number of
occurrences per containing model element are defined for each sub-
element. If maximum number of occurrences is 'unbounded',6 there is
no upper limit on how many times the sub-element may be repeated.
The status of the elements has been stated as M(andatory or
O(ptional).

The model element sections give a definition example of that model
element type in Kalua language, the relevant part of the Kalua XML
schema, and if applicable, an example of the Netconf payload model by
using the model element definition.

Linowski, et al. Expires September 12, 2008 [Page 10]

Internet-Draft Kalua DML March 2008

3.3. Constraints
In case of complex restrictions on sets of acceptable values for

features of a Kalua element, the constraints are listed in a separate
constraints section.

Linowski, et al. Expires September 12, 2008 [Page 11]

Internet-Draft Kalua DML March 2008

4.

4.1.

Language Introduction

Language Design Fundamentals

Kalua is an XML-based language for configuration data modeling and
network respectively system information modeling.

Using XML as a technological foundation for Kalua was chosen since:

(o}

NETCONF is an XML passed protocol in which protocol elements as
well as payload is encoded in XML. So using XML also as a basis
for the language that is supposed to define the structure of
NETCONF avoids technological fragmentation.

XML is well known in the IT industry. Using it as a basis for a
language decreases the barrier for adoption on the syntax level.
People can mainly focus on understating the language concepts and
their semantics instead of learning an entirely new syntax that
requires new tools for validation and processing.

XML and the specification language for XML documents (XML schema)
have almost ubiquitous support in all kinds of IT systems. So
creating, validating and processing of language documents should
only require low to modest effort.

Kalua combines concepts of data modeling (such as structures,
sequences, attribute groups etc.) with concepts from object-oriented
domain modeling (classes, relationships and class inheritance). This
was done because of several reasons:

Network management in particular but also system management in
general is often done in a hierarchical manner. That means some
kind of manager, a network management system, a mediator but also
network elements with management functions have to deal with plain
configuration data as well as with some form of data represented
by more or less generic models. Being able to express both types
of data in Kalua helps to keep the integration and mediation
effort low when integrating different systems, operating at
different levels in the abstraction hierarchy. Even if other
modeling languages like UML (at the highest levels) or SMI (at the
lower levels) are used in different layers, being able to
represent core concepts of such languages in Kalua helps to avoid
"semantic gaps" that require cumbersome and costly "bridges" (in
form of mediators, model transformers, etc.)

Enhanced expressiveness: It is very useful to be able to specify
plain data structures and links as well as concepts with a more
refined semantics like classes and relationships (associations).

Linowski, et al. Expires September 12, 2008 [Page 12]

Internet-Draft Kalua DML March 2008

H

Being able to choose the most appropriate modeling construct
ensures correctness, maintainability, and reusability.

Flexibility: Managed systems with individual elements are in a
continuous change, i.e. new types of network elements are
introduced, new versions of such elements are created, and
additional ways of connecting (relating) elements need to be
represented. The challenge here is to integrate new parts into
the picture without having to alter the models for existing parts.
Object oriented modeling provides mechanisms to address this
challenge. Abstract classes allow defining and relating generic
concepts. For example, this facilitates implementing generic
management functionality that can be applied to instances of all
concrete classes which specialize particular abstract classes.
Inheritance allows to add new enhanced or otherwise refined
without touching the base class. Relationship refinement allows
detailing how newly created resources (represented by classes)
participate in already defined relationships.

TM Forum NGOSS SID (Shared Information/Data) model, which is the
basis of 0SS/J API data models, and the DMTF CIM (Common
Information Model) are examples of data models in the network
management domain that make use of object- oriented concepts.

Language Overview

This section introduces the core concepts of Kalua, puts them in
perspective to common problems in configuration and network modeling,
and illustrates their use and interrelations with examples.

4.2.1.

Network resource configuration modeling

As a language that is supposed to specify the structure of the
payload of the Netconf protocol, Kalua has various language features
for specifying the data structures representing configuration
elements and state description elements of systems.

4.2.1.1. Property modeling

As a DML for configuration management, it must be possible to
describe the properties of manageable resources that are subject of
configuration. In addition, it must be possible to specify
properties that represent the actual state of such a manageable
resource. Such properties are modeled in Kalua in form of
attributes.

Linowski, et al. Expires September 12, 2008 [Page 13]

Internet-Draft Kalua DML March 2008

<attribute name="1linkSpeed">
<type>kalua:long</type>

</attribute>

An attribute is simply a property of some manageable entity, which
has a name and a type, among some other features that control how the
attribute can be used. Attributes can have primitive types (int,
boolean, string, etc.), refined simple types, as well as complex
types (structures, sequences, etc.).

4.2.1.2. Primitive Types and Refinement of Primitive Types

Manageable resources typically have many attributes of primitive
type, for example numeric parameters, string type parameters, boolean
flags or configuration items with an enumerable set of values.

Kalua therefore supports all non-XML specific and not date-related
primitives and build-in types defined in [XML schema 1.1 Part 2:
Datatypes]. In effect that means that all signed integer types
(short, int, long etc.), all unsigned integer types ("unsignedInt",
"unsignedLong" etc.), "float" and "double" as well as other basic
primitives like "string" and "boolean" are supported. Predefined
types are used by referring to them in type elements.

<type>kalua:int</type>

Also "dateTime" and "duration" are supported in order to express
points in time or periods of time. Other XML schema data types that
deal with time related values are not part of Kalua in order to avoid
that systems interpreting Kalua defined contents have to cope with
many types that only provide little additional value (XML schema 1.1
Part 2: Datatypes defines 11 different time related types). 1In
addition, the XML centric types like "NCName" or "QName" are left out
from Kalua as their use would require detailed XML knowledge and
their value outside XML centric applications is questionable.

Since many network resource parameters accept only a subset of the
range of values that can be hold by a primitive type instance, it is
quite essential that such restrictions can be exactly yet easily
expressed.

For example, for an attribute that specifies an angle in degrees, it
should be possible to limit the range of acceptable values to start
from 0.0 inclusive and end at 360.0 exclusive. In Kalua, restricting
the set of values that can be applied to an attribute is done by
refining an existing primitive type with constraints.

Linowski, et al. Expires September 12, 2008 [Page 14]

Internet-Draft Kalua DML March 2008

<attribute name="angle">
<simple-type>
<restriction>
<type>kalua:double</type>
<minInclusive" value="0.0">
<maxExclusive" value="360.0">
</restriction>
</simple-type>

</attribute>
4.2.1.3. Complex Datatype Modeling

Apart from creating new types by refining primitive types, Kalua also
supports the construction of complex types, namely structures,
sequences, and enumerations.

Many network element parameters accept only a few distinct value
representing different configuration options. Also, the state of
resources is often described with a few distinct literals. The
operational state as defined in ITU-T X.721 is a typical example. 1In
order to be able to define attributes that accept only a value from a
fixed set of alternatives, Kalua supports enumerations.

<attribute name="operationalState" ... >
<simple-type>
<enum>
<enum-literal name="enabled"/>
<enum-literal name="disabled"/>
</enum>
</simple-type>

</attribute>

Many network elements have some kind of data that is organized in
lists, arrays or tables, simply because some basic set of data has to
present in multiple instances in order to describe configuration or
state data properly and completely.

Kalua support this kind of data structures in form of sequences.
Depending on the properties of the sequence, it can represent arrays
(sequences with a fixed length), list (sequences with a variable
length) or even bags (sequences in which the actual position of an
element has no meaning).

<sequence minLength="32" maxLength="32" elementName="timeslot">
<type>kalua:boolean</type>

Linowski, et al. Expires September 12, 2008 [Page 15]

Internet-Draft Kalua DML March 2008

</sequence>

In order to represent the configuration or state data of network
resources accurately, it is often needed to group various attributes
with probably different types into an own organization unit. Kalua
allows defining structures in order to address this need.

<structure>
<attribute name="host">
<type>kalua:string</type>
</attribute>
<attribute name="port">
<type>kalua:unsignedShort</type>
</attribute>

</structure>

Apart from consolidating attributes into a bigger unit, structures
are also useful to structure the namespace for properties of a
manageable resource.

The full potential of sequences and structures is only unleashed when
they are combined. Many network elements and other kinds of
configurable systems have some kind of data tables. 1In Kalua, a
table can be modeled as a sequence of structures. The member
attributes of the structure define the columns, the properties of the
sequence define the extend of the table.

<sequence>
<structure>
<attribute name="host'">
<type>kalua:string</type>

</attribute>
<attribute name="port">
<type>kalua:unsignedShort</type>
</attribute>
</structure>
</sequence>
It is allowed to nest complex type definitions in an arbitrary

fashion. Therefor it is possible to define structures that contain
sequence-type attributes, sequences of sequences, etc.

Linowski, et al. Expires September 12, 2008 [Page 16]

Internet-Draft Kalua DML March 2008

4.2.1.4. Named Data Types

In the examples above, the structures, sequences and enumerations
were not given a name. 1In case a complex datatype is defined inside
an attribute, a name is not needed as the name of the attribute is
used to address the element of the datatype. 1In case a complex
datatype is defined inside a sequence, an index-number is used.

Often complex types can be reused in various different places of the
configuration of a configurable system (network element). For
example, many IP-based network elements must deal with several IP-
addresses as part of their configuration. It is useful to create a
structure, which combines the attributes, e.g. describing an IP-
address, and to give it a name enabling the usage wherever needed.
Kalua introduces the typedef element for this purpose.

A type definition (typedef) simply gives a datatype a name. The name
specified as part of the typedef is applied to the datatype defined
inside the type definition element.

<typedef name="ipAddress'">
<structure>

<attribute name="host">
<type>kalua:string</type>

</attribute>
<attribute name="port" ...>
<type>kalua:unsignedShort</type>
</attribute>
</structure>
</typedef>

Such a user-defined data type can now be in each context where a type
is expected. For example, such a type can be used inside attribute

definitions and sequence definitions.

<attribute name="eventReceiver'>
<type>ipAddress</type>

</attribute>

Type definitions can only appear in the scope of a module (they are
top-level elements).

Linowski, et al. Expires September 12, 2008 [Page 17]

Internet-Draft Kalua DML March 2008

4.2.2. Network Modeling and Network Management Support

Manageable network elements do not exist in isolation. Almost any
kind of manageable network resource is in some form related to other
network resources. This web of network elements connected via all
kinds of relationships - the network topology - is one of the
cornerstones of effective network management. It has even
significant impact on the management of individual network elements
as many of their configuration elements realize or depend on the
topology and typically a large portion of their state data can only
be interpreted with respect to its place in the network topology.

0 A network resource is contained in another resource. Containment
means that a manageable resource is physically contained in
another one, for example a card that is plugged into a rack.
However, containment could also mean that a resource is only
conceptually enclosed in another resource. This is often
synonymous with being dependent in terms of manageability on the
containing resource.

0 A network element is connected to another network element. For
example, data transmission channels like PCM links can be seen as

connections.

0 Network resources are in some form related to conceptual entities
like maintenance regions or locations.

o Network resources use functionality of another resource.

Being able to model network resources as well as conceptual resources
and the relationships between them is quite essential for many
management tasks. Kalua therefore supports two concepts form object
oriented domain modeling, namely classes and relationships.

4.2.2.1. Classes

The main purpose of classes is to represent configurable entities
that share the following characteristics:

o they have an own identity,
o they have an own, independent life cycle, and
o they are often treated as being a more abstract entity.

o Instances are often related to instances of other classes in some
form.

Linowski, et al. Expires September 12, 2008 [Page 18]

Internet-Draft Kalua DML March 2008

In Kalua, classes are containers of attributes. That makes them
similar to structures. But in contrast to structures:

0o Classes can have a superclass. A class inherits all attributes
(and involvement in relationships) from its superclass. The same
applies for the superclass of the superclass and further ancestor
classes.

o Instances of classes can be used wherever instances of the
superclass can be used (Liskov substitution principle). So an
is-a relationship is established between the derived class and its
superclass.

0 Classes can be abstract. That is useful to define concepts that
serve as a blueprint for concrete derived classes. 1In addition,
relationships can be defined that involve an abstract with a
concrete class or even with another abstract class.

o Classes must have a key in case they are asscoiated to other
classes by reference relationships. As instances of such classes
have to have an own identity, it must be possible to address class
instances uniquely by a key value. That is also needed in order
to realize relationships between classes respectively between
instances of related classes.

Classes are a vehicle to model "first-class network resources type"
like types of network resources with an own 0&M interface as well as
independent conceptual entities like regions, sites, policies, plans
etc.

4.2.2.2. Relationships

Kalua also supports the concept of relationships. A relationship
associates instances of two classes, which can be two distinct
classes or the same class. The two endpoints of the relationship are
called source and target. The naming of the endpoints should lead to
a consistent usage of relationship definitions. This does not mean
that a relationship can only be navigated from source to target.

An important aspect of relationships in Kalua are that they are
defined outside the classes they connect. That has several
advantages:

o It is not necessary to anticipate and define all kinds of
relationship that might be needed in the future. Instead,
relationship can be added "on top" of the classes they connect
later when really needed. That also prevents having to deal with
relationships that were once introduced because it was assumed

Linowski, et al. Expires September 12, 2008 [Page 19]

Internet-Draft Kalua DML March 2008

they would be needed but actually are not used.

0o Relationships and classes can be separated into different modules.
Therefore, it is possible to define classes and their inner
structure (by using and defining all kinds of data types) in one
module and put relationships and supplementary definitions for
network modeling in another module. While a network element agent
only deals with the first module, a higher-level management system
can use the second module, which includes the first.

0o They are very much decoupled. 1In case the definition of a
relationship would be owned by one of its endpoints (or the
definition would be even shared between both endpoints),
introducing a new relationship would require that the modules that
contain the classes to be related have to be changed. That might
not be a big technical problem, but is often more an
organizational issue.

<class name="Manager'">
</class>
<class name="ManagedObject">
</class>
<relationship name="manages">
<source>
<class>Manager</class>
</source>
<target>
<class>ManagedObject</class>
</target>
</relationship>
Kalua also supports relationship refinement. 1I.e. it is possible to
define relatively high- level (abstract) relationships, which are

refined by relationships that connect more concrete classes.

<relationship name="controllerFunctionOf">
<base-relationship name='"core:manages">

</relationship>

A typical use case for this feature is the proper modeling of

Linowski, et al. Expires September 12, 2008 [Page 20]

Internet-Draft Kalua DML March 2008

containment relationships, especially such that define the management
hierarchy of network resources. The parent-child relationship is
then defined at the root of the class hierarchy for managed objects
(managed object contains an arbitrary number of other managed
objects).

In order to properly define the relationship semantics as well as to
enhance flexibility and expressiveness, three kinds of relationships
are supported in Kalua:

o Reference relationships. They simply associate two classes.

0o Containment relationships. This kind of relationship defines a
strict existence dependency between the contained object (target
end) and the containing end (source end). It means that if the
container object is deleted all contained objects are deleted as
well.

0 Calculated relationships. Here, it is defined which instances of
the source and target end class (and their subclasses) are
actually related by a relationship expression. 1In effect, the
contents of the relationship are actually defined by the state of
the instances at the source and target end. Such relationships
have to be evaluated "online" whenever they are queried.

Two important aspects of relationships as defined in Kalua deserve
some explicit discussion.

When specifying the containment of class instances in Kalua, this has
to be done by defining containment relationships between them. While
this requires some effort for explicit specification of the
containment relationships, it has several advantages:

0 Especially, it is possible to specify more than one containment
relationship that has the same contained class at the target end.
I.e. a class (respectively their instances) can be contained in
multiple different classes.

o It is possible to specify in a common way that a previously
defined class can be contained in a new class, so that the
definition of containment is not constrained by any other
organizational aspect.

0 The multiplicity of instances of the contained class (target end)
can be exactly specified.

Kalua supports the specification of prescriptive reference
relationships and containment relationships. 1In addition, it allows

Linowski, et al. Expires September 12, 2008 [Page 21]

Internet-Draft Kalua DML March 2008

the specification of descriptive calculated relationships. It is
important to support both types of relationships as they address
different use cases:

o In many cases references to resources in the same or other network
elements are realized with attributes that contain some kind of
implicit key value or a part of a composite key.

For example, in order to describe an "is-connected-to"
relationship associating two network elements that are physically
connected via PCM links, the reference to the other end of the
association could be represented by a numerical id of the PCM link
terminated in the network element plus the index of the timeslot
in that PCM link. The PCM id as well as the timeslot index is
then represented as two numerical attributes.

This kind of association is best represented with a calculated
relationship with an expression that compares tuples of instances
of the class at the target end and instances of the class at the
source end by checking if they have the same PCM link id and
timeslot index stored in two particular attributes.

Realizing such a descriptive relationship with a reference
relationship typically leads to the problem of keeping track with
the configuration changes.

o Now if such network elements should be associated to a maintenance
region, a conceptual entity that groups resources based on their
geographical or even logical location in a network, using a
descriptive approach does not work, respectively is rather
inappropriate.

Many network elements do not have configuration elements that can
be used to store a key of a maintenance region, even putting this
information directly into a resource in the network is not a good
idea in the first place. This kind of association is best
realized in a prescriptive way by defining a reference
relationship. It is then left to the system that in managing
relationships specified in Kalua where and how the actual
relationship information is stored. The key specification
feature, which is part of Kalua, just describes which attributes
of a resource could be used for storing relationships.

4.2.2.3. Information Modeling with Classes and Relationships
The example below illustrates some of the essential aspects of

classes and relationships. First, network elements and locations are
modeled as abstract classes because network elements and sites

Linowski, et al. Expires September 12, 2008 [Page 22]

Internet-Draft Kalua DML March 2008

obviously have an independent 1life cycle. A network element comes
into existence terms of management at the latest when it is deployed
into the network and switched on. A location comes into existence
when somebody creates it in some kind of management system.

Network element as well as location is abstract concepts. By itself
they do not contain enough information to be usable for most (but not
necessarily all) concrete management operations. However, defining
them allows the establishment of a relationship between them, which
provides already some value. For example, it is possible to tell if
two network elements are placed at the same location and get the
description of the location of a network element.

As instances of '"ManagedObject" are related to the instance of
"Location", they can be also related to instances of "Site" as a
specific type of location. It is even possible to define another
class that derives from "Location", e.g. one that uses geographical
coordinates to describe a location, and uses instances of that class
to represent the location for any type of network elements.

<class name="Location">
<abstract>
<attribute name="locationId">
<type>kalua:long"</type>

</attribute>
<attribute name="description">
<type>kalua:string"</type>

</attribute>
<key>
<member>locationId</member>
</key>
</class>

<class name="NetworkElement">
<super-class>ManagedObject</super-class>
<attribute name="vendor">
<type>kalua:string</type>

</attribute>
</class>

<relationship name="locatedAt">
<source>

<class>ManagedObject</class>

</source>

Linowski, et al. Expires September 12, 2008 [Page 23]

Internet-Draft Kalua DML March 2008

<target>
<class>Location</class>

</target>
</relationship>

<class name="Site">
<super-class>Location</super-class>
<attribute name="contactDetails">
<type>kalua:string</type>

</attribute>
<attribute name="street'">
<type>kalua:string</type>

</attribute>
<attribute name="city">
<type>kalua:string</type>

</attribute>
<attribute name="postalCode">
<type>kalua:string</type>

</attribute>
</class>

4.2.3. Notifications

Same data model applies to change notifications, get (get-config,
get) and edit-config operations of Netconf.

In the context of Netconf protocol, operation attribute of a data
element within the notification indicates whether the data has been
merged, created, replaced, or deleted. The semantics of updating the
data with notification from server to the client are the same as
changing data with an edit-config from client to server. Default
behavior is to merge.

Several changes can be combined in the same notification, and changed
changes done with one edit-config may be sent as several

notifications.

The following example demonstrates how the same Kalua model is used
in get-config and edit-config requests and in a change notification.

The following is the definition of the module used in the example:

Linowski, et al. Expires September 12, 2008 [Page 24]

Internet-Draft Kalua DML March 2008

<module name="example profile"
xmlns="urn:ietf:params:xml:ns:kalua:1"
<ns-uri>http://www.example.com/profile</ns-prefix>
<ns-prefix>pr/<ns-prefix>
<release>1.0</release>

<class name="profile">
<attribute name="name'">
<type>kalua:string</type>
</attribute>
<attribute name="name">
<type>string</type>
</attribute>
<key>
<member>name</member>
</key>
</class>

</ module>

First, the client requested get-config shows the initial state of the
configuration:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
</get-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<profile>
<name>profile-1</name>
<type>auto</type>
</profile>
<profile>
<name>profile-2</name>
<type>manual</type>
</profile>
</top>
</data>
</rpc-reply>

Linowski, et al. Expires September 12, 2008 [Page 25]

Internet-Draft Kalua DML March 2008

Then, another Netconf client requests edit-config from the same
server to change the running configuration:

<rpc message-id="102"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<profile>
<name>profile-1</name>
<type>manual</type>
</profile>
</top>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="102"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Then, a change event notification is sent to all clients which have
subscribed the notifications for this part of the data:

<notification
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<profile xc:operation="create">
<name>profile-1</name>
<type>auto</type>
</profile>
</top>
</data>
</notification>

The client can also see the change in the get-config result. The
data parts of the data which are not included in the change
notification have not been changed.

Linowski, et al. Expires September 12, 2008 [Page 26]

Internet-Draft Kalua DML March 2008

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
</get-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<profile>
<name>profile-1</name>
<type>auto</type>
</profile>
<profile>
<name>profile-2</name>
<type>manual</type>
</profile>
</top>
</data>
</rpc-reply>

4.2.4. Simplicity and Ease of Use

While being complete in terms of expressive power, the DML should be
as simple as possible. The main reason for that is ease of use and
understandability.

Simplicity in the context of a modeling language means:

o As few language elements as possible. The more elements a
language has, the more time it takes to learn them.

o No complicated rules that restrict how and in which way language
elements can be used. Having the freedom to use language elements
wherever they make sense allows concentrating on the modeling
problem at hand.

Kalua is an XML based language, because:
o The XML syntax is well known and the structure of basic syntax

elements like elements, attributes is quite simple. As long as
the overall structure of the DML language documents remains at a

Linowski, et al. Expires September 12, 2008 [Page 27]

Internet-Draft Kalua DML March 2008

decent level and the verbosity is minimized, the usage of XML
syntax is acceptable.

0 There are also a huge amount of tools available that allow
editing, validating, and processing XML. That compensates the
existing annoyances of XML as a language.

o Finally, usability needs to be seen from the point of view of an
engineer that is supposed to implement software that is reading,
writing, or transforming DML documents. In case of an XML-based
language, one can use existing, well-known software components
with standardized or at least widely accepted interfaces.

4.2.5. Straightforward and Lossless Mapping
4.2.5.1. Mapping to XML Schema

As Kalua is an XML-based language, which describes structural aspects
of network resources, it is possible to translate a Kalua model
(document) into an XML schema. That allows to use off the shelf XML
parsers to read Kalua model files, check their well- formedness and
validate their contents.

4.2.5.2. Mapping to UML2

As Kalua supports with classes, relationship (associations), and
inheritance some of the core object oriented design concepts,
translating Kalua models to UML2 models is done smoothly. Here the
integration of object oriented concepts and their distinction from
data modeling concepts pays back as it does not need to "guess" (by
using some formalized heuristics) by what UML2 metamodel element a
Kalua element is correctly represented.

4.2.5.3. Mapping from UML2

Also for mapping in the other direction, from UML2 to Kalua, the
integration of object- oriented concepts makes things easier. The
mapping from models specified with UML (version 2 as well as previous
1.Xx releases) is important as many standard models in the
telecommunication domain like TMF SID, CIM and 3GPP are specified in
UML.

4.2.6. Kalua as Metamodel

Models can also be seen as instances of a metamodel. This point of
view is especially important because the metamodel prescribes to a
large extend how models are represented in object oriented terms as
the predominant paradigm in programming languages today.

Linowski, et al. Expires September 12, 2008 [Page 28]

Internet-Draft Kalua DML March 2008

The language features of Kalua are designed so that they can be
easily mapped to metamodel classes and mix-in-classes (that can be
also represented as interfaces). That should foster a structurally
common representation of Kalua model elements in programming
environments.

4.2.7. Release Management

Managed resources change over time, new features are introduced,
existing features are removed. Thus their models must also change to
accurately reflect these changes. At the same time, existing data,
created with the old model, must be usable together with the new
data. Applications developed against old model should be usable
after upgrade. For example, views created in a management system
should not become unusable whenever there is a change in the managed
resources. They should be usable as long as the change is not
affecting the parts of the model that they rely on. For example,
adding an attribute to a class does not affect an application reading
the data, and adding an optional attribute to a class does not affect
the application writing the data.

Kalua allows any number of releases of a module. Each module release
may add or remove module elements compared to other releases. Model
elements with the same name appearing in different releases of the
same module are considered to represent the same type of managable
resources.

Multiple releases frequently occur when building systems that are
both in a manager and agent role. E.g. a management system manages
several agents via the NETCONF protocol, and exposes its own
configuration data to an upper level management system via the
NETCONF protocol, including the configuration data from the managed
agents. Each agent defines its configuraton data as a Kalua module.
The management system imports each of these modules into one
composite Kalua module. This composite module defines the
configuration data the management system exposes towards any upper
level management system via the NETCONF protocol.

In the upper scenario, the need for multiple releases occurs when
there are Kalua modules of different releases but same type among the
modules of the agents.

Hierarchies of NETCONF interfaces may appear in the following system
architectures:

0 A controller device providing a NETCONF interface manages several
subdevices via NETCONF.

Linowski, et al. Expires September 12, 2008 [Page 29]

Internet-Draft Kalua DML March 2008

(0]

(0]

4.3.

An element management system providing a NETCONF interface manages
several devices via NETCONF.

A regional management system providing a NETCONF interface manages
several element management systems via NETCONF.

A global management system manages several regional management
systems via NETCONF.

<module name='"com.example.controller">
<presentation>Example Controller</presentation>
<ns-uri>http://www.example.controller.com/</ns-uri>
<ns-prefix>controller</ns-prefix>
<release>2.1</release>
<organization>Example</organization>
</module>
<import>
<ns-uri>http://www.subdevice.com/</ns-uri>
<ns-prefix>subdevicel.0</ns-prefix>
<release>1.0</release>
</import>
<import>
<ns-uri>http://www.subdevice.com/</ns-uri>
<ns-prefix>subdevice2.0</ns-prefix>
<release>2.0</release>
</import>

Use of XML and XML Schema

Kalua is an XML-based language. The Kalua syntax and basic part of
its semantics are specified in an XML schema - the Kalua schema (see

Appendix A.).

The syntax of Kalua was designed along the following guidelines:

(o]

Primary language concepts that can contain other language concepts
are realized as XML elements.

Properties of primary language elements that potentially have long
text values are represented as leaf XML elements with simple type
contents.

Only the name of definitions and properties that always have short
values are realized as XML attributes.

Linowski, et al. Expires September 12, 2008 [Page 30]

Internet-Draft Kalua DML March 2008

0 Mixed content is prohibited.

Linowski, et al. Expires September 12, 2008 [Page 31]

Internet-Draft Kalua DML March 2008

5.

5.1.1. name

Kalua Elements

KALUA specification introduces a set of language elements. Many of
the concepts defined in KALUA contain a set of common attributes or
features defined in the sub- chapters below. Each concept definition
specifies which of these attributes, if any, are applicable to the
concept and whether the attribute is mandatory or not in this
context.

.1. Common Kalua Elements

The elements in this section are commonly used by Kalua language
elements that define model elements. The value for each of the
elements is provided as element body text.

Type: string [a-zA-Z][_A-Za-z0-9]{0,29}
Description:

"name" is a unique and permanent identifier of the KALUA element
within a single module. "name" cannot be changed during the lifetime
of the element (that is, across releases of a module); if the
identifier changes, the element is considered to be new and the old
element is considered to be deleted. Thus, the old data
corresponding to this object is no longer accessible through the
adaptation.

The case of characters does not play a role in the uniqueness
criteria. This means 'BTS' and 'bts' are overlapping identifiers.
However, references to the "name" use the same case as in the
definition of the element (see Section 5.1.4.).

"name" is used to refer to the KALUA element in KALUA files, database
schemata, data files, other metadata/configuration files, APIs, and
everywhere where references to elements need to be interpreted by
applications. However, "presentation" (described below) should be
used in user interfaces to identify the elements.

In context of adaptation development for each NE type, the uniqueness
criteria of identifiers needs to be defined so that uniqueness
constraints described in this specification and KALUA fragment
specifications are met.

Elements of different type may have the same "name".

Specific model element types may have additional constraints for

Linowski, et al. Expires September 12, 2008 [Page 32]

Internet-Draft Kalua DML March 2008

uniqueness of the "name" for a specific concept, defined separately
for each model element type.

5.1.2. presentation
Type: string, maximum length 100
Description:

A short name visible to the end-user in application user interfaces.
"presentation" is not used to refer to a KALUA element in data or
metadata. Only end-user documentation should refer to the elements
using "presentation". "presentation" can be changed without breaking
the compatibility of existing data or other parts of metadata.

"presentation" included in the model files is just a default.
Default presentation could be overridden by language specific
"presentation". If "presentation" is omitted it defaults to the
value of name.

"presentation" does not need to be unique within an adaptation or
across adaptations. However, as "presentation" normally serves as an
identifier of the element for the user, you should avoid overlapping
values where two elements may be used in the same context (for
example, in AttributeDef sub-elements of one ClassDef).

5.1.3. description
Type: string, maximum length 2000
Description:

"description" is a longer text, which helps end users to understand
the purpose and other details of the element. It can span multiple
lines, and can contain any characters.

Applications displaying the "description" are also capable of
deriving and displaying such information directly from metadata.

5.1.4. References to KALUA elements

KALUA language specifies references from model elements to other
model elements. For each reference, a target model element type, for
example attribute-group, is defined. While the semantics of a
reference depend on model element type, and are definied for each
model element type separately, KALUA uses a common syntax for the
references to the model elements. The reference consists of a
namespace prefix, a colon, and a model element name, that is, ns-

Linowski, et al. Expires September 12, 2008 [Page 33]

Internet-Draft Kalua DML March 2008

prefix:name.

Each reference has one target model element. The module where the
model element is defined is considered target module of the
reference.

If the target module is the module containing the reference, the ns-
prefix part of the reference must equal to the ns-prefix element of
the module.

If the target module is another module, there must exist an import
element, within the module containing the reference or some modules
imported by the module containing the reference, where value of the
ns-prefix element equals to the ns-prefix part of the reference and
ns-uri element equals to the ns-uri element of the target module.

The name part of a reference must be equal to the value of the name
attribute of the target model element.

5.1.5. Types

KALUA supports a subset of the primitive types respectively build-in
types defined in 'XML Schema 1.1 Part 2: Datatypes'. Most of the
numeric types are supported, the types for specifying a point in time
and a duration, string and boolean as well as a selection of name
types.

The table below lists all primitive types supported by Kalua. Their
value range, support for special values (like NaN, INF, -0), and
lexical mapping is supported as defined in 'XML Schema Part 2:
Datatypes' [XSD-TYPES].

In addition:

o a value for type dateTime can also be specified in seconds from
Epoch 00:00:00 on January 1, 1970, encoded as non-negative,
decimal integer.

o A value for type duration can also be specified in seconds,
encoded as non-negative, decimal integer.

In effect, values matching the regular expression '\+?[1-9][0-9]*'
has to be interpreted as seconds from Epoch (dateTime) respectively
duration in seconds (duration).

Linowski, et al. Expires September 12, 2008 [Page 34]

Internet-Draft Kalua DML March 2008

string String of characters. 1In case no length or
max-length restriction is specified, it is not
guaranteed that strings longer than 250
characters can be stored in attributes that use a
the string type or a type that is based on string

without any length restriction..

I I I
I I I
I I |
I I I
I I I
I I I
I I |
| boolean | Boolean value |
I I I
| byte | Signed 8 bit integer.

I I I
| short | Signed 16 bit integer

I I I
| int | Signed 32 bit integer |
I I I
| long | Signed 64 bit integer

I I I
| unsignedByte | Unsigned byte |
I I I
| float | IEEE 754 compliant, 32 bit floating point value |
I I I
| double | IEEE 754 compliant, 64 bit floating point value |
I I I
| unsignedShort | Unsigned 16 bit integer |
I I I
| unsignedInt | Unsigned 32 bit integer |
I I I
| unsignedLong | Unsigned 64 bit integer |
I I I
| dateTime | Date and time value

I I I
| duration | A duration of time

I I |
decimal	Fixed point decimal with p decimal digits before
	the decimal point and s digits behind the decimal
	point. p is the precision and s the scale. The
	default precision is 10 and the default scale is
	6. Specify precision and scale with a precision
	constraint.

I I I
| integer | Signed integer up to p decimal digits, where p is |
I I I

the precision. The default precision is 10..

Linowski, et al. Expires September 12, 2008 [Page 35]

Internet-Draft

5.2.

"module"

module

Kalua DML March 2008

is the root element of the Kalua definitions. Each Kalua

document must contain exactly one "module" element. All other
definitions of the model are contained in a module element.

"module" is a logical grouping of definitions. However, the split of
definitions to separate modules also implies the following semantics:

(o}

implies the version of the definitions

implies the namespace of the definitions

applicability of annotation types are limited to those "modules"

references to model elements can occur only to definitions in the
"module" itself, or any directly or indirectly imported module

Unique identifier of the module
within systems using this module.

To select globally unique
identifiers, identifiers should
begin with an inverse domain name of
the entity defining the module.

"module"
"module"
which define or import them
.1. Element Attributes
----------- Fommmmm oo oo
| Attribute | Type |
| [Default] |
----------- Fommmm oo oot
name | xsd:string |
I I
I I
I I
| I
I I
----------- Fomm e e e oot

Linowski, et al. Expires September 12, 2008 [Page 36]

Internet-Draft Kalua DML March 2008

5.2.2. Leaf Sub-Elements

o m e e, e +---+
| Sub-Element | Type [Default] | Description | S |
B S e e e oo oo o e e e +---+
| presentation | xsd:string | See Section 5.1.2 | 0 |
I I I I I
| description | xsd:string | See Section 5.1.3 | 0 |
I | I I I
ns-uri	xsd:string	Defines the target	M
		namespace of the all	
		definitions in this	
[module. 1In Kalua, this		
		uniquely identifies the	
		module.	
I I I I I			
ns-prefix	xsd:string	Defines the prefix used to	M
		attach the namespace to	
		the model element names.	
I I I I I			
release	xsd:string	Indicates the release	M
	maximum length	version of this specific	
	20. [a-zA-Z0-9]+	definition of the module.	
	(\.[a-zA-Z0-9]+)*		
I I I I			
organization	xsd:string	Name of the organization	M
	maximum length	responsible for the	
	100	module.	
o m e o e e e e e oo g +-- -+

Linowski, et al. Expires September 12, 2008 [Page 37]

<xsd:element name="module">
<xsd:complexType>
<xsd:sequence>

March 2008

Internet-Draft Kalua DML
5.2.3. Sub-Elements
Fomm e e e e o o m e e e o m e o - o e e e e e e m e oo
| Sub-Element | MinOccurs | MaxOccurs | Description
B S SF S RS e e e e e e
| annotation [0 | unbounded | See Section 5.19
I I I I
| import | 0 | unbounded | See Section 5.3
I | I |
| typedef | 0 | unbounded | See Section 5.13
I I I I
| attribute-group | 0 | unbounded | See Section 5.5
I | I |
| class | 0 | unbounded | See Section 5.17
I I I I
| relationship | 0 | unbounded | See Section 5.18
I I I I
| annotation-type | 0 | unbounded | See Section 5.21
Fom e e e e e o - Fomm e e e o m e - o m e e e e e e e e mao o
5.2.4 XSD

<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:ModuleIdentityProperties"/>
<xsd:element name="organization">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="import"
type="kalua:importType" minOccurs="0"
max0ccurs="unbounded" />
<xsd:sequence>
<xsd:choice minOccurs="0"
max0ccurs="unbounded">
<xsd:element
name="typedef"
type="kalua:typedefType"
minOccurs="0"
max0ccurs="unbounded" />
<xsd:element
name="attribute-group"

Linowski, et al. Expires September 12, 2008 [Page 38]

Internet-Draft Kalua DML March 2008

type="kalua:AttributeGroup"
minOccurs="0"
maxOccurs="unbounded" />

<xsd:element name="class"
type="kalua:Class"
minOccurs="0"
maxOccurs="unbounded" />

<xsd:element
name="relationship"
type="kalua:Relationship"
minOccurs="0"
max0ccurs="unbounded" />

<xsd:element
name="annotation-type"
type="kalua:annotation-typeType"
minOccurs="0"
max0ccurs="unbounded" />

</xsd:choice>
</xsd:sequence>
</xsd:sequence>
<xsd:attributeGroup
ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
</xsd:element>

5.2.5. Element Examples

<module name="com.example.ethernetInterface">
<presentation>Example Ethernet Interface</presentation>
<ns-uri>http://www.example.com/</ns-uri>
<ns-prefix>example</ns-prefix>
<release>2.1</release>
<organization>Example</organization>

</module>

5.3. import

"import" element makes all definitions from another module available
in the module containing the "import" element. All definitions
imported to that other module from any other modules are imported as

well.

Linowski, et al. Expires September 12, 2008 [Page 39]

Internet-Draft Kalua DML March 2008

5.3.1. Leaf Sub-Elements

| Sub-Element | Type [Default] | Description | S |

Selects the imported
module.

Defines the namespace
prefix used in the module
containing the import
element to attach the
namespace to the model
element names. When
writing a module, ns-prefix
of the imported module
should be used as the ns-
prefix of the import
element, unless there is a
conflicting ns-prefix
already in use in the
module.

Selects from which release
of the module the
definitions are imported.

xsd:string
maximum length
20. [a-zA-Z0-9]+
(\.[a-zA-Z0-9]+)*

xsd:string See Section 5.1.3

| Sub-Element | MinOccurs | MaxOccurs | Description |

| annotation | 0] | unbounded | See Section 5.19 |

5.3.3. Constraints

Model element references are only allowed to model elements in
modules, which are directly or indirectly imported by the module in
which the reference is given.

A module must not directly or indirectly import definitions from
several releases of a module.

Linowski, et al. Expires September 12, 2008 [Page 40]

Internet-Draft Kalua DML March 2008
A module must not directly or indirectly import itself. That 1is,
circular imports between modules are not allowed.

All namespace prefixes, including the prefix of the module itself,
must be unique within the module.

5.3.4. XSD

<xsd:complexType name="importType">
<xsd:sequence>
<xsd:group ref="kalua:ModuleIdentityProperties"/>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
</xsd:complexType>

5.3.5. Element Examples

<import>
<ns-uri>http://www.example.com/</ns-uri>
<ns-prefix>example</ns-prefix>
<release>2.1</release>

</import>

5.4. attribute

An "attribute" represents structural features of some kind of
manageable resource. As such, "attributes" can be part of an
attribute group, a class, or a structure.

An "attribute" can be addressed via its name. Each "attribute" name
must be unique with respect to all "attributes" defined in the
containing element (class, structure or attribute group) and the
"attributes" inherited from superclasses and incorporated "attribute"
groups.

The most important property of an "attribute" is its type.
"Attributes" can have a primitive type (for example, string, long, or
boolean) as well as a constructed data type, that is, a sequence
type, structure type or an enumeration. It is possible to refer to
named types (see Section 5.13.) via the type element as well as to
define the type inline by using sequence, structure or primitive
elements inside the attribute element.

Linowski, et al. Expires September 12, 2008 [Page 41]

Internet-Draft

5.4.

Attributes

| Attribute | Type [Default]

name | name-string
| (see

| Section 5.1.1)

Sub-Element

presentation

description

mandatory

optional

read-only

Type
[Default]

xsd:string

xsd:string

none

none

none

is read only. It neither
possible to provide a
value during creation of
the owning object
creation nor to change
the value afterwards.

Kalua DML March 2008

Fom e e e e e e o m e e oo +

| Description | Use |

e e e e e e e oo Fommmmo oo - +

| The name of the | required |
| attribute. |

I I I

o m e o e o e Fommmmm oo +

----- S

| min | max | Description |

oc. | oc. | |

----- S

@ | 1 | The presentation name |

| | used for the attribute. |

| | This name should be used |

[| in GUI's when presenting |

[| the attribute to human |

| | end users. |

I I I

@ | 1 | The description of the |

[| attribute |

I I I

@ | 1 | If present must be |

| | provided during creation |

| | of the owning entity. |

| | Otherwise providing a |

| | value is optional |

| I I

@ | 1 | If present, a value might |

| | be provided during |

[| creation of the owning |

[| object. This is the |

[| default behavior. |

I I I

@ | 1 | if present, the attribute |

I I I

I I I

I I I

| I I

I I |

I I I

I I I

Linowski, et al. Expires September 12, 2008 [Page 42]

Internet-Draft Kalua DML March 2008

read-write If present, the attribute
can be read and written.
This is the default
behavior.

unchangeable none If present, the attribute
might be or must be
assigned a value during
creation of the owning
object (depending on the
presence of "mandatory"
or "optional"), but
cannot be changed

afterwards.

I I I I I I
I I I I I I
I I I I I I
I I I I I I
I | I | I I
I I | I I |
I I I I I I
I I I I I I
I | I | I I
I I | I I |
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
default	xsd:string	©	1	Specifies the default
ValueLiteral		[value for the attribute.	
		[Default values can only	
				be specified for
				primitive types. If the
				type is not 'string', a
				valid value literal must
				be used.
I	I	I I		
unit	xsd:string			Specifies the unit in
				which the value for this
				attribute is measured.
		[In case a unit is	
		[specified for the	
				attribute type, this is
		[overwritten by this unit.	
Only one of the elements "read-write", "read-only" or "unchangeable"
might be present in an attribute element. Only "mandatory" or
"optional" might be present (but not both). 1In case "read-only" is
present, neither "mandatory" nor "optional" could be present.

Linowski, et al. Expires September 12, 2008 [Page 43]

Internet-Draft

5.4.3. Sub-Elements

o m e e - .
| Sub-Element | min

| | occurs
D RS- S SRSy
| annotation | 0

I I

| constraint | 0]

I I

I I

| type I 0

I I

I I

| primitive | 0]

I I

I I

| structure | 0]

I I

I I

| sequence | 0]

I I
S Fommm -

5.4.4. XSD

Kalua DML
___________ oo o o e e e e e e f e e e e e e e e e e e mmmem o=
max | Description
occurs |
___________ e e e e e e e e e e e e e e e e e mmmmm -
unbounded | See Section 5.19
I
unbounded | Constraints applied in the
| context of the attribute.
I
1 | The named type of the
| attribute.
I
1 | The inline defined primitive
| type of this attribute
I
1 | The inline defined structure
| type of this attribute.
I
1 | The inline defined sequence
| type of this attribute.
___________ e e e e e e e e e e e e mmmmcmmemmmeaa—

March 2008

Linowski, et al. Expires September 12, 2008 [Page 44]

Internet-Draft Kalua DML March 2008

<xsd:element name="attribute" type="kalua:Attribute" minOccurs="0"
max0ccurs="unbounded"/>

<xsd:complexType name="Attribute">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="mandatory" minOccurs="0">
<xsd:complexType>
<xsd:attribute name="value"
type="xsd:boolean" default="true"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="readonly" minOccurs="0">
<xsd:complexType>
<xsd:attribute name="value"
type="xsd:boolean" default="true"/>
</xsd:complexType>
</xsd:element>
<xsd:group ref="kalua:Datatype'"/>
<xsd:element name="defaultValuelLiteral"
type="xsd:string" minOccurs="0"/>
<xsd:element name="unit"
type="xsd:string" minOccurs="0"/>
<xsd:group ref="kalua:ConstrainableElementProperties'"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

5.4.5. Element Examples

Linowski, et al. Expires September 12, 2008 [Page 45]

Internet-Draft Kalua DML March 2008

<attribute name="frequency'">
<presentation>Frequency</presentation>
<type>kalua:int</type>
<defaultValuelLiteral>1800<defaultValuelLiteral>

<description>
Bearer channel frequency.

</description >

</attribute>

<attribute name="location">
<structure>
<attribute name="x">
<type>kalua:float</type>
</attribute>
<attribute name="y">
<type>kalua:float</type>
</attribute>
</structure
</attribute>

5.4.6. NETCONF Payload Examples
<frequency>1900</frequency>

<location>
<x>120.87</x>
<y>97.334</y>
</location>

5.5. attribute-group

"attribute groups" are a means to bundle a set of attributes that are
typically used together. For example, an "attribute group" for
describing an IP address would bundle a string-typed attribute for
the hostname and a short-typed attribute for the port. The main
purpose of "attribute groups" is to be incorporated (used) by model
elements that can contain attributes, so classes, structures and
other attribute groups. Using an "attribute group" means that all
the attributes that belong to the attribute group are imported into
the using element. Attributes incorporated from an attribute group
are otherwise treated as if they were directly inside incorporating
element.

No 'is-a' relationship is established between the "attribute group"
and a using class or structure. As the "attribute group" concept is

Linowski, et al. Expires September 12, 2008 [Page 46]

Internet-Draft

only addressing organizational purposes,

5.

5.

Kalua DML

instantiated.

1. Attributes

oo oo - S o e e Fommmmm oo
| Feature | Type | Description | Use

[Fom e e e e e o - o m e e e e e e m oo - S
| name | name-string | The name of the attribute | required
| | (see | group. It must be unique |

| | Section 5.1.1) | within the containing |

| | | module. |

oo oo S o e e Fommmmm oo
2. Leaf Sub-Elements

B E SE S +----- +-o---- e oo e o e
| Sub-Element | Type | min | max | Description

| | | oc. | oc. |

B RS B pp—— B e o m e e e e ma oo
| presentation | xsd:string | © | 1 | The presentation name

| | | | | used for the attribute

I I I I | group.

I I I I I

| description | xsd:string | © | 1 | The description of the

| | | [| attribute group.

o Fomm e e pep—— e Fom e e e e e e e e e
3 Sub-Elements

o m e e o - Feomm e o= Fomm e e - e e e e e e mm e e m oo o
| Sub-Element | min | max | Description

| | occurs | occurs |

o mm e e e - oo e o - o m e e o - e e e e e e e e e e e m oo
| constraint | 0] | unbounded | Constraints that apply in the

| | | | context of this attribute

I I I | group.

I I I I

| attribute | 0] | unbounded | The attributes belonging to

| | | | this attribute group.

I I I I

| use | 0 | unbounded | The attribute groups used by

| | | | this attribute group

I I I I

| key | 0] | unbounded | Key definitions

o m e e o - Feomm e o= Fomm e e - e e e e e e mm e e m oo o

March 2008

"attribute groups" cannot be

Linowski, et al. Expires September 12, 2008 [Page 47]

Internet-Draft Kalua DML March

5.5.4. XSD

<xsd:element name="attribute-group"
type="kalua:AttributeGroup" minOccurs="0"
maxOccurs="unbounded" />

<xsd:complexType name="AttributeGroup">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group ref="kalua:ConstrainableElementProperties'"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

5.5.5. Element Examples

<attribute-group name="IpAddressable">
<presentation>IP Address</presentation
<description>
IP address attributes
</description>
<attribute name="host">
<type>kalua:string</type>
</attribute>
<attribute name="port">
<type>kalua:unsignedShort</type>
</attribute>
</attribute-group>

5.5.6. NETCONF Payload Examples

<host>www.example.com</host>
<port>30100</port>

2008

Linowski, et al. Expires September 12, 2008 [Page 48]

Internet-Draft Kalua DML March 2008

5.6. structure

5.6.

"structures" define cohesive sets of named properties of potentially
varying type. In Kalua, "structure" elements define ordered sets of
attribute elements. Each member attribute must have a name that is
unique with respect to the other attributes contained in the
"structure" or incorporated from used attribute groups.

A "structure" itself has no name. A "structure" can be either a sub-
element of an attribute definition, sequence definition or a sub-
element of a type definition. 1In case a structure is defined inside
an attribute or sequence, the structure can be addressed only by the
name of the owning attribute respectively the element index in the
sequence.

In case a structure is part of a type definition, the type name is
applied to the structure. Such structure types can be reused
(referred to) in all contexts where a data type is expected.

Since structures are attribute containers, structures can use or
incorporate attribute groups. All attributes defined in used
attribute groups become members of the "structure" and can be treated
as any other attribute directly defined in the structure.

Also keys can be defined for structures. 1In case the scope is
global, the key attributes uniquely identify each "structure"
instance within all instances of this "structure" definition. Keys
with local scope identify "structure" instances only within the
context of the containing object. Such keys are primarily used for
structures that are used as elements of sequences. This allows to
also addressing them via a key value.

1. Leaf Sub-Elements
o m e e o - o e e e oo oo e e o e e e e a oo +
| Sub-Element | Type | min | max | Description |
I I | oc. | oc. | I
o mm e e e - o e e e oo oo . +omm o - o e e e e e oo o= +
| description | name-string | © | 1 | The description of the |
| | (see | | | structure type. |

| | Section 5.1.1) | | | |

Linowski, et al. Expires September 12, 2008 [Page 49]

Internet-Draft Kalua DML March 2008

5.6.2. Sub-Elements

o m e e - . o m e e e e e e e e e e e e mm oo
| Sub-Element | min | max | Description
| | occurs | occurs |
D RS- S SRSy tommmee s R
| annotation | 0] | unbounded | Annotations attached to the
| | | | structure.
I I | I
| constraint | 0 | unbounded | Constraints that apply in the
| | | | context of this attribute
I I I | group.
I I | I
| attribute | 0 | unbounded | The attributes belonging to
| | | | this attribute group.
I I I I
| use | ©..n | unbounded | The attribute groups used by
| | | | this attribute group
I I I I
| key | ©..n | unbounded | Key definitions
D RS- tommmema D SRUpp R o m e e eeeie e eaaaaaas
5.6.3 XSD

<xsd:element name="structure">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group
ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

5.6.4. Element Examples

<structure name="Point">
<presentation>(x,y)</presentation>
<attribute name="x">
<type>kalua::double</type>
</attribute>
<attribute id="y">
<type>kalua:double</type>
</attribute>
</structure>

Linowski, et al. Expires September 12, 2008 [Page 50]

Internet-Draft Kalua DML March 2008

5.6.

7.

5. NETCONF Payload Examples

<point>
<x>441.2</x>
<y>172.5</y>

</point>

sequence

A "sequence" is a data structure that contains several objects of the
same type that can be addressed by their position in the "sequence".
Sequences are therefore an ordered collection.

Each "sequence" has a base type that determines the type of its
elements. Constraints have a minimum length and a maximum length.
By setting the maximum length to unbounded, it is possible to define
sequences with arbitrary length.

Sequences are also constrainable elements. Constraints defined
within a "sequence" are applied in the context of the "sequence"
object, they are not implicitly applied to each member. However,
since the member type can be defined inline, it is no problem to
refine an exiting data type with additional constraints.

Sequence types have no name. A '"sequence" can be either a sub-
element of an attribute definition, another "sequence" definition, or
a sub-element of a type definition. 1In case a "sequence" is defined
inside an attribute or "sequence'", the "sequence" type cannot be
reused in another context. Instances can be addressed by the name of
the owning attribute respectively the element index in the
"sequence".

In case a '"sequence" is part of a type definition, the type name is
applied to the "sequence". Such "sequence" types can be reused
(referred to) in all contexts where a data type is expected.

When representing sequence contents as XML elements, two cases have
to be distinguished:

0 In case the elementName attribute of the sequence element is
specified, the contents of each element of the sequence is wrapped
into an XML element with the given name. Making the "boundaries"
of a sequence element value explicit in the serialized form is

Linowski, et al. Expires September 12, 2008 [Page 51]

Internet-Draft Kalua DML March 2008

sometimes needed in order to make sure that the original structure
of the contents can be reconstructed from the serialized form.

For example, a serialized form of a sequence of sequence of
unbounded maximum length that does not demarcate the start and
beginning of the elements of the inner sequence does not allow
reconstructing the original input.

0 In case elementName is not defined, each element is serialized as
if it was directly contained in the owning element (typically an

attribute). 1In effect, the sequence is "flattened".

5.7.1. Attributes

D RS- S RO e S S +
| Attribute | Type [default] | Description | Use |
S oo - e e e e e e Feommmme oo +
| minLength | xsd:unsignedInt | The minimum sequence | optional |
I | [0] | length I |
I I I I I
| maxLength | xsd:unsignedInt | The maximum sequence | optional |
| | [unbounded] | length |
I I I I I
| elementName | name-string | The name used for | optional |
| | (see | elements in the | |
| | Section 5.1.1) | sequence data | [
| | | representation. | |
I I I I I
ordered	xsd:boolean	Tells if the sequence	optional
	[false]	represents an ordered	
		collection or rather a	
		bag of elements. 1In	
		the second case, the	
		ordering of the	
		elements is arbitrary	
		and therefore has no	
		meaning.	
o m e e - oo e oo Fomm e e e e e o m e e oo +

5.7.2 Leaf Sub-Elements
o m e e - o m e . e S +
| Sub-Element | Type | min | max | Description |
I I | oc. | oc. | I
D RS- S SO +----- +----- S +
| description | xsd:string | © | 1 | The description of the |

| | | | | sequence type. |

Linowski, et al. Expires September 12, 2008 [Page 52]

Internet-Draft Kalua DML March 2008

5.7.3. Sub-Elements

o m e e - . o m e e e e e e e e e e e e mm oo +

| Sub-Element | min | max | Description |

| | occurs | occurs |

D RS- S SRSy tommmee s R +
annotation 0 unbounded Annotations attached to the

attribute group.

I I I I I
I I I I I
I I I I I
| constraint | 0 | unbounded | Constraints that apply in the |
| | | | context of this attribute |
I I I | group. I
I I I I I
| type | 1 | 1 | The element type |
f SRS Fomm e oo o [R o m e e e e e e e memaomo - +
5.7.4 XSb

<xsd:element name="sequence'">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:group ref="kalua:Datatype'"/>
<xsd:group ref="kalua:ConstrainableElementProperties'"/>
</xsd:sequence>
<xsd:attribute name="minLength"
type="xsd:nonNegativeInteger" default="0"/>
<xsd:attribute name="maxLength" default="unbounded">
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativeInteger'">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="ordered" type='"xsd:boolean"
default="true"/>
<xsd:attribute name="elementName" type="xsd:NCName"/>
</xsd:complexType>
</xsd:element>

Linowski, et al. Expires September 12, 2008 [Page 53]

Internet-Draft Kalua DML

5.7.5. Element Examples
<typedef name="point">

</typedef>

<attribute name="path">
<sequence minLength="2" elementName="point">
<structure>
<presentation>(x,y)</presentation>
<attribute name="x">
<type>kalua::double</type>
</attribute>
<attribute name="y">
<type>kalua:double</type>
</attribute>
</structure>
</sequence>

</attribute>

<attribute name="usedSlots">
<sequence maxLength="16" elementName="slot">
<type>kalua:int</type>
</sequence>
</typedef>

<attribute name="serialNumber">
<sequence minLength="1" maxLenegth="3">
<type>kalua:string</type>
</sequence>
</typedef>

5.7.6. NETCONF Payload Examples

March 2008

Linowski, et al. Expires September 12, 2008 [Page 54]

Internet-Draft

5.8.

<path>
<point>

<xX>441.
<y>172.

</point>
<point>

<xX>441.
<y>198.

</point>
<point>

<X>343.
<y>198.

</point>
<path>

<usedSlots>

2</x>
5</y>

2</x>
3</y>

8</x>
3</y>

<slot>2</slot>
<slot>3</slot>
<slot>8</slot>
<slot>15</slot>

</usedSlots>

Kalua DML March 2008

<serialNumbers>r6687120-01</serialNumber>
<serialNumbers>r6687124-07</serialNumber>
<serialNumbers>r6687201-03</serialNumber>

simple-type

"simple-type" elements are used to define new types that have simple
values. However, like definitions of complex types (structures,
sequences), they can be described and annotated. The unit in which a
value of this simple type is measured can be stated and constraints

can be specified for them.

The set of legal values for the "simple-type" is defined by
enumeration named values (enumeration element), by restricting
existing simple types (restriction), by combining simple types
(union) or by referring to an existing named "simple-type" (type).

Linowski, et al. Expires September 12, 2008 [Page 55]

Internet-Draft Kalua DML March 2008

5.8.1. Leaf Sub-Elements

o m e e - o m e . e S +
| Sub-Element | Type | min | max | Description |
I I | oc. | oc. | I
D RS- S SO +----- +----- S +
unit	xsd:string	©	1	The unit in which values
				of simple types is
				measured.
D RS- S ISR +----- +----- - +

D RS- eyt S SR o e e eeeieeeaamaaas +

| Sub-Element | min | max | Description |

| | occurs | occurs |

S toom oo Fommmm oo - o e e e e e ooooo--o- +
annotation 0] unbounded Annotations attached to the

attribute group.

constraint unbounded Constraints that apply in the
context of this attribute

group.

I |
I I
I I
I I
I I
I I
I I
type | Reference to an existing |
| simple type. Allowing to |
| refer to a complex datatype |
| (structure, sequence) is not |
| allowed in the scope of a |
| simple type. |
I I
enum | Enumeration of simple type |
| values. |
I I
I I
I I
I I
I I

union Union of simple types.

restriction Restriction of another simple

type.

Exactly one of the type, enum, union, or restriction elements must be
present in a "simple- type".

5.8.3. XSD

Linowski, et al. Expires September 12, 2008 [Page 56]

Internet-Draft Kalua DML March 2008

<xsd:element name="simpleType'">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:group ref="kalua:simpleTypeDefinition"/>
<xsd:element name="unit" type='"xsd:string"
minOccurs="0"/>
<xsd:group
ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:group name="simpleTypeDefinition">
<xsd:sequence>
<xsd:choice>
<xsd:element name="restriction"
type="kalua:restrictionType"/>
<xsd:element name="union" type="kalua:unionType"/>
<xsd:element name="enum" type="kalua:enumType"/>
<xsd:group ref="kalua:simpleTypeReference'"/>
</xsd:choice>
</xsd:sequence>
</xsd:group>

5.9. enum

Enum elements define enumeration types, so types that are
characterized by a fixed of named values. Each legal enumeration
value is specified by an enum-literal element.

As a simple-type, enumerations do not have an own description,
annotations or constraints, the ones defined inside the owning
simple-type element apply implicitly to the enumeration type.

5.9.1. Sub-Elements

f o R [[R oo e e oo
| Sub-Element | min | max | Description

| | occurs | occurs |

E [S i
| enum-literal | 0 | unbounded | The enumeration values.

Linowski, et al. Expires September 12, 2008 [Page 57]

Internet-Draft Kalua DML March 2008

5.9.2. XSD

<xsd:complexType name="enumType">
<xsd:sequence>
<xsd:element name="enum-literal"
type="kalua:enum-literalType"
max0ccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

5.9.3. Element Examples

<typedef name="AdministrativeState'">
<simple-type>
<enum>
<enum-literal name="unknown'"/>
<enum-literal name="locked"/>
<enum-literal name="shuttingDown"/>
<enum-literal name="unlocked"/>
</enum>
</simple-type>
</typedef>

<attribute name="adminState">
<type>AdministrativeState</type>

</attribute>

5.9.4. NETCONF Payload Examples

<adminState>locked</adminState>

5.10. enum-literal

An "enum-literal" defines one of the values that can be assigned to
an enumeration that is defined by the containing enum element Each
"enum literal" must have a different name.

Linowski, et al. Expires September 12, 2008 [Page 58]

Internet-Draft Kalua DML March 2008

In addition to the name and presentation that can be specified for
the literal, also a value may be provided. This value is used to
represent the enum value in the implementing system.

This could be useful in case a simple network element represents
enumeration values as numbers. However, "enum literal" values should
not be used when an enumeration type is defined that is standardized
or otherwise implementation agnostic. E.g., the administrative state
as defined in X.731 defines the values "unknown", "locked" ,
"shuttingbDown" and "unlocked", so these terms are best used as
literal names. However, is does not mandate any particular storage
representation, so none should be given in the definition of the
according "enum literals".

The presence of the value attribute also controls the enum value
representation:

0 In case the value attribute is not used, the name of the "enum
literal" is used to represent the enum value

o In case the value attribute was assigned a value, that value is
used to represent the literal.

The value attribute must be used consistently. Either all "enum-
literal" elements have a value attribute or none.

5.10.1. Attributes

The name of the attribute. It
must be unique within the set
of attributes which is the
union of the attributes defined
in the same attribute container
(class, structure,
attribute-group), the
attributes inherited from
superclasses (class) and the
set of attributes incorporated
from attribute groups (class,
structure, attribute-group).

The string representation of
the storage value of the enum
literal

Linowski, et al. Expires September 12, 2008 [Page 59]

Internet-Draft Kalua DML March 2008

5.10.2. Leaf Sub-Elements

o m e o m e . +omm o - Fom e e e e e e
| Sub-Element | Type | min | max | Description
| | | oc. | oc. |
B Y tommmme e +-o---- +-o---- -
| presentation | xsd:string | © | 1 | The presentation name
| [| | | used for the attribute
I | I | | group.
I I | I I
| description | xsd:string | © | 1 | The description of the
| | | | | attribute group.
B E SE S +----- +-o---- e oo o o e
5.10.3. Sub-Elements
S toom oo Fommmm oo - o e e e e e ooooo--o-
| Sub-Element | min | max | Description
| | occurs | occurs |
S Fommm oo E SF S o e e e e oo oo
| annotation | 0 | unbounded | Annotations attached to the
| | | | attribute group.
o m e e o - Feomm e o= Fomm e e - e e e e e e mm e e m oo o

5.10.4. XSD

<xsd:element name="enum-literal"
type="kalua:enum-literalType" maxOccurs="unbounded"/>

<xsd:complexType name="enum-literalType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
</xsd:sequence>
<xsd:attribute name="value'"/>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

5.10.5. Element Examples

Linowski, et al. Expires September 12, 2008 [Page 60]

Internet-Draft Kalua DML March 2008

<attribute name="processState'">
<simple-type>
<enum>
<enum-literal name="notStarted" value="0">
<presentation>Not started</presentation>
</enum-literal>
<enum-literal name="running" value="1">
<presentation>Running</presentation>
</enum-literal>
<enum-literal name="suspended" value="2">
<presentation>Suspended</presentation>
</enum-literal>
<enum-literal name="stopped" value="8">
<presentation>Stopped</presentation>
</enum-literal>
</enum>
</simple-type>

</attribute>

5.10.6. NETCONF Payload Examples

<processState>1</processState>

<processState>8</processState>

5.11. union

A "union" combines two or more simple types. The set of legal values
of this type is the "union" of all sets of legal values of each
included simple type.

As a simple type, "unions" do not have an own description,
annotations or constraints, the ones defined inside the owning
simple-type element apply implicitly to the enumeration type.

Linowski, et al. Expires September 12, 2008 [Page 61]

Internet-Draft Kalua DML March 2008

5.11.1. Sub-Elements

o m e e - . o m e e e e e e e e e e e e mm oo +

| Sub-Element | min | max | Description |

| | occurs | occurs |

D RS- S SRSy tommmee s R +
type 0 unbounded A named simple type that is

part of the union type.

I I I I I
I I I I I
I I I I I
| enumeration | 0 | unbounded | An enumeration that is part of |
| | | | the union type. |
I I I I I
| restriction | 0] | unbounded | A restricted simple type that |
| | | | is part of the union type. |
I I I I I
| union | 0] | unbounded | A subordinate union type that |
| | | | is part of this union type. |
S Fommme oo o S oo e e e emaoo-o- +

<xsd:complexType name="unionType'">
<xsd:sequence>
<xsd:group
ref="kalua:simpleTypeDefinition"
max0ccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

5.11.3. Element Examples

Linowski, et al. Expires September 12, 2008 [Page 62]

Internet-Draft Kalua DML March 2008

<attribute name="voltage'>
<simple-type>

<union>
<restriction>
<type>kalua:int</type>
<minInclusive value="100">
<maxInclusive value="240">
<restriction>
<enum>
<enum-literal name="none" value="0">
</enum>
</union>

</simple-type>

</attribute>

5.11.4. NETCONF Payload Examples

<voltage>110</adminState>
<voltage>230</adminState>

<voltage>0</adminState>

5.12. restriction

A "restriction" element specifies a restricted simple type. That is

done by applying restriction facets to the contained or referred base
simple type.

It is possible to apply multiple restriction facets. A legal value
for the restricted type must comply with all "restrictions",
including the "restrictions" already applied to the base type.

The restriction facets supported by Kalua are a subset of the
restriction facets as defined in 'XML Schema 1.1 Part 2: Datatypes'.

Linowski, et al. Expires September 12, 2008 [Page 63]

Internet-Draft Kalua DML March 2008
5.12.1. Sub-Elements

o m e e - . Fommm o g

| Sub-Element | min | max | Description

| | occurs | occurs |

D RS- S SRSy tommman T

| type | 0 | 1 | The restricted named base type

I I I I

| enumeration | 0 [1 | The restricted enumeration base

I I I | type

I I I I

| restriction | 0 | 1 | The further restricted base type.

I I | I

| union | 0 | 1 | The restricted union type.

o m e e e o - Fommme o= Fommmm oo - o m e e e e e e e e e e e e e oo
5.12.2. Restriction Facet-Elements

o m e e e o - Fommme o= o m e e o m e e e e e moo o

| Sub-Element | min | max | Description

| | occurs | occurs |

Fom e e e o - . o m e e e e e e e e e e e e ao o

| minInclusive | 0 | unbounded | Inclusive lower bound for

| | [| numerical base type.

I I I I

| minExclusive | 0 | unbounded | Exclusive lower bound for

| | | | numerical base type

I I | I

| maxInclusive | 0 | unbounded | Inclusive upper bound for

| | | | numerical base type.

I I I I

| maxExclusive | 0 | unbounded | Exclusive upper bound for

| | | | numerical base type

I I I I

| totalDigits | 0 | unbounded | The total digits of a

| | [| decimal base type

I I I I

| fractionDigits | 0 | unbounded | The fraction digits of a

| | [| decimal base type

I I I I

| length | 0 | unbounded | The length of a string base

I I I | type

I I | I

| minLength | 0 | unbounded | The minimum length of a

| | | | string base type

I I I I

| maxLength | 0 | unbounded | The maximum length of a

I I I I

string base

type

Linowski, et al. Expires September 12, 2008 [Page 64]

Internet-Draft Kalua DML March 2008

pattern | unbounded | A regular expression that |
| | must be matched. Applies |
I I

| to string base type

<xsd:element name="restriction" type="kalua:restrictionType"/>

<xsd:complexType name="restrictionType">
<xsd:sequence>
<xsd:group ref="kalua:simpleTypeDefinition"/>
<xsd:group ref="kalua:facets"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:group name="facets'">
<xsd:choice>

<xsd:element name="minExclusive" type="kalua:facet"
id="minExclusive"/>

<xsd:element name="minInclusive" type="kalua:facet"
id="minInclusive"/>

<xsd:element name="maxExclusive" type="kalua:facet"
id="maxExclusive"/>

<xsd:element name="maxInclusive" type="kalua:facet"
id="maxInclusive"/>

<xsd:element name="totalDigits" id="totalDigits">

<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="kalua:numFacet">
<xsd:attribute name="value"
type="xs:positivelnteger"
use="required"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

</xsd:element>

<xsd:element name="fractionDigits" type="kalua:numFacet"
id="fractionDigits"/>

<xsd:element name="length" type="kalua:numFacet" id="length"/>

<xsd:element name="minLength"
type="kalua:numFacet" id="minLength"/>

<xsd:element name="maxLength"
type="kalua:numFacet" id="maxLength"/>

<xsd:element name="pattern" type="kalua:facet" id="pattern"/>

</xsd:choice>

Linowski, et al. Expires September 12, 2008 [Page 65]

Internet-Draft Kalua DML

</xsd:group>

5.12.4. Element Examples

<attribute name="voltage'>
<simple-type>

<union>
<restriction>
<type>kalua:int</type>
<minInclusive value="100">
<maxInclusive value="240">
<restriction>
<enum>
<enum-literal name="none"
</enum>
</union>

</simple-type>

</attribute>

5.13. typedef

value="0">

March 2008

The "typedef" element is used to give otherwise anonymous datatypes a
name which can be used to refer to this type wherever a datatype is
required. This is done by using the type name as body value of the

type element.

5.13.1. Attributes

oo oo S e oo o o e oo
| Feature | Type | Description

[o mm e e - Fmm e e e e e e e e e e mm o=
| name | name-string | The name of the type.

| | | be unique within the

| | | containing module.

[o m e e e - Fomm e e e e e e e e e oo

Linowski, et al. Expires September 12, 2008 [Page 66]

Internet-Draft Kalua DML March 2008

5.13.2. Sub-Elements

o m e e - . Fommm o g +
| Sub-Element | min | max | Description |
| | occurs | occurs |

D RS- S SRSy tommman T +
| structure | 0 | 1 | The structure type to give a |
| | [| name. |
I I | I I
| sequence | 0 | 1 | The sequence type to give a name. |
I I I I I
| simple-type | 0 | 1 | A simple-type that is given a |
| | | | name. |
I I I I |
| type | 0 | 1 | Provides an alias for the |
I I I I I

referred named type.

Exactly one of the structure, sequence, simple-type or type elements
must be specified as child of the typedef element.

5.13.3. XSD

<xsd:element name="typedef"
type="kalua:typedefType"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:complexType name="typedefType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:Datatype'"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

5.13.4. Element Examples

Linowski, et al. Expires September 12, 2008 [Page 67]

Internet-Draft Kalua DML March 2008

<typedef name="complex">
<structure>
<attribute name="real">
<type>kalua:double</type>

</attribute>
<attribute name="imag">
<type>kalua:double</type>

</attribute>
</structure>
</typedef>

5.13.5. NETCONF Payload Examples

5.

<phaseAmplitude>
<real>0.73001</real>
<imag>0.239</imag>
</phaseAmplitude>

14. use

"use" elements specify what attribute groups are used in the owning
attribute container.

All attributes of the used (incorporated) attribute group become part
of the containing element. Using an attribute from an attribute
group is equivalent with defining an attribute directly as part of
the container.

Therefore, it is not allowed that attributes incorporated from an
attribute group have the same name as an attribute that is already
part of the container namespace.

Since attribute groups are only organizing facilities, no "is-a
relationship" is established between the used attribute group and the

using container (class, structure).

Note that also attribute groups themselves can use other attribute
groups.

"use" elements are processed in the order as they are defined in

Linowski, et al. Expires September 12, 2008 [Page 68]

Internet-Draft Kalua DML March 2008

their attribute container.

5.14.1. Attributes

S S e e e oo Fommmmo oo -
| Feature | Type | Description | Use

Fomm e e e e o - Fom e e e e - Fom e e e e e e o m e e oo
| attribute-group | name-string | The reference of the | required
| | | used attribute group. |

T - S SR - e S S

5.14.2. Sub-Elements

TS, Fommeemaa S - e e e e me e eeememaaaa
| Sub-Element | min | max | Description

| | occurs | occurs |

S E R SR oo e e e oo oo -
| description | 0 | 1 | The description of the use

| | | | element.

I I I I

| annotation | 0 | unbounded | Annotations attached to the

| | | | use element.

f SRS Fomm e oo o [R o m e e e e e e e memaomo -

5.14.3. XSD

<xsd:element name="use" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
<xsd:attribute name="attribute-group"
type="kalua:ModelElementReference'"/>
</xsd:complexType>
</xsd:element>

5.14.4. Element Examples

Linowski, et al. Expires September 12, 2008 [Page 69]

Internet-Draft Kalua DML March 2008

<attribute-group name="IpAddressable">
<presentation>IP Address</presentation>
< description >
IP address attributes
</description >
<attribute name="host'">
<type>kalua:string</type>
</attribute>
<attribute name="port">
<type>kalua:unsignedShort</type>
</attribute>
</attribute-group>

<class name="router">
<use attribute-group="IpAddressable">

<attribute name="connectedPorts" ...>

</class>
5.14.5. NETCONF Payload Examples

<router>

<host>www.example.com</host>
<port>30100</port>
<connectedPorts>12</connectedPorts>

</router>

5.15. key

"key" elements specify which attributes belonging to an attribute
container (class, structure, attribute group) form a "key". A "key"
is a set of one or more distinct member attributes. Member
attributes could be all attributes that cannot be left unset.
Attributes directly defined in the scope of a class or group can be
combined with attributes inherited from superclasses or incorporated
from attribute groups. An attribute could be part of multiple keys.

One important aspect of a "key" is its scope:

Linowski, et al. Expires September 12, 2008 [Page 70]

Internet-Draft Kalua DML March 2008

o global: indicates a globally unique key

o local: indicates that the key only identified instances in the
scope of their containing (scoping) object

"Keys" can have slightly different semantics depending in which
context they are defined respectively used. 1In effect, the context
of use also determines which scopes can be used:

o A "key" that is part of a class uniquely identifies the instances
of that class any meaningful context of use. For example, a "key"
of a network element class must identify its instances (NE's) in
the whole network. A "key" for a mobile equipment class must
uniquely identify the equipment among all other mobile equipments
(so an attribute capable of holding the 15 digit IMEI might do the
job).

o In contrast to that, "keys" that are part of structures may only
uniquely identify the structure instance inside its containing
object. 1In this case the scope of the key is 'local'. It is also
possible that a "key" uniquely identifies the structure instance
among all other instances. In this case, the scope of the "key"
is 'global'.

o0 In case a "key" is defined in an attribute group, its exact
semantics is undefined. A concrete semantics is applied by using
the attribute group in a class or structure.

The member attributes of a "key" are enumerated by the member
elements contained in the "key" element.

5.15.1. Attributes

| scope | xsd:enumeration | The reference of the | required |
| | | used attribute group. | |

Linowski, et al. Expires September 12, 2008 [Page 71]

Internet-Draft Kalua DML March 2008

5.15.2. Leaf Sub-Elements

o m e e - o e e oo oo . o m e e e o e e e e
| Sub-Element | Type | min | max oc. | Description
I I | oc. | I
D RS- S PRSP +-o---- S S S R -
| description | xsd:string | © | 1 | The description of
| | | | | the key.
I I I | I
| member | name-string | © | unbounded | The names of the
| | | | | member attributes.
Y S B pp—— S o e oo

5.15.3. Sub-Elements
Y Fommm - SF S o e e e e e mmm oo o
| Sub-Element | min | max | Description
| | occurs | occurs |
o m e e o - Fommme o= o m e e e o m e e e e e e mmm e e —mo -
| annotation | 0 | unbounded | Annotations attached to the
| | | | use element.
I I I I
| member | 1 | unbounded | The members of the key
Y Fomm e E SF S o e e e e e ooooo oo

<xsd:element name="key" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties'"/>
<xsd:element name="member" type="xsd:string"
max0ccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="scope" default="local">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="local"/>
<xsd:enumeration value="global"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

Linowski, et al. Expires September 12, 2008 [Page 72]

Internet-Draft Kalua DML

5.15.5. Element Examples
<class name="MobileEquipment">
<description>Mobile Equipment</description>

<attribute name="vendor'">

</attribute>

<attribute name="serialNr'">
<mandatory>
<type>kalua:string</type>
</attribute>

<attribute name="imei'">
<mandatory>
<type>kalua:string</type>
</attribute>

<key scope="global">
<member>imei</member>

</key>

<key scope="global">
<member>vendor</member>
<member>serialNr</member>

</key>

</class>

5.15.6. NETCONF Payload Examples

<MobileEquipment>

<vendor>SpaceMobil</vendor>
<serialnr>23-2308263673</serialnr>
<imei>800282737266302</imei>

</MobileEquipment>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 73]

Internet-Draft

5.16. constraint

"constraint"

Kalua DML

March 2008

elements can be used to formulate constraints that are

applied in the scope of the containing element.

For example, "constraints"

defined as child elements of an attribute

element constrain the set of values that can be assigned to that

attribute. "Constraints"

defined as sub- elements of attribute

containers (structures, attribute groups, classes) can express

restrictions that values of one
attributes in that container.

attribute can have to other
"Constraints" defined as part of

relationships allows narrowing the set of instances that can actually

be associated by that relationship.

"Constraints" defined in classes

could even navigate via relationship ends to other object in order to
express constraints between instances of different classes.

The "constraint" expression is specified as body value of the

expression element.
be present.

Therefore,

5.16.1. Attributes

| name-string

.16.2.

| Sub-Element

| Type

5.16.3. Sub-Elements

| The name of the constraint. |

exactly one expression element must

The description of
constraint

Linowski, et al. Expires September 12, 2008 [Page 74]

Internet-Draft Kalua DML March 2008

S Fomm o - - S SR ——— o e e e e e oo oo - +
| Sub-Element | min | max | Description |
| | occurs | occurs |

f RS Fomm e a oo [U o m e e e e e e e e mmammo - +
| annotation | 0 | unbounded | Annotations attached to the |
| | | | attribute group. |
F RS Fommmm oo o U o m e e e e e e e memao-o- +

5.16.4. XSD

<xsd:element name='"constraint"
minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:element name="expression"
type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="kind"
type="xsd:string"/>
</xsd:complexType>
</xsd:element>

5.16.5. Element Examples

<constraint name="PermittedPowerConsumption">
<expression>@voltage * @ampere <= @maxPower</expression>
</constraint>

5.17. class

"Classes" are used to describe objects that have an own identity and
a potentially independent life cycle. "Classes" can represent
concrete manageable resources in the network such as specific types
of network elements or abstract concepts (e.g. managed objects or
network resources).

A "class" can have one superclass at the maximum. From the
superclass a '"class" does not only inherit all attributes and
relationships, but also an implicit 'is-a' relationship is
established between the "class" and its super class. This means that
wherever the super class is used or referred to, also the derived
"class" can be used.

Kalua supports only single inheritance. This is to avoid the huge
complexity caused by inheriting from multiple base classes.

Linowski, et al. Expires September 12, 2008 [Page 75]

Internet-Draft Kalua DML March 2008

For reusing sets of attribute definitions that describe a certain
aspect of an object, a "class" can use 0..n attribute groups (see
Section 5.5). This means that all attributes of a used attribute
group become members of the using "class". This does NOT mean that
an 'is-a' relationship is established between the "class" and its
base attribute groups.

Instance of classes must be uniquely identifiable in case they are
associated by reference relationships, so some kind of key needs to
be available. Such a key is obtained in the following way:

o If a key with global scope is defined in the "class" directly,
inherited from a super class, or incorporated from an attribute
group, this key is used.

o In case a class is contained in another class and a key with local
scope is defined, the global scope key for the actual class is
composed from the key of the owing class and the own local scope
key.

o In case the class not contained in any another class and has a
local key, this is used, as it is assumed that a NETCONF agent is
able to uniquely identify the instance in its given context.

In order to describe how class instances can be accessed, class
definitions can contain a max-access element. Its body text value
can have one of the following values:

0 not-accessible: The class is used only for internal purposes.
Instances cannot be accessed in any way.

0 accessible-for-notify: Only notifications are generated when
instances are created, modified or deleted.

o read-only: It is only possible to read the actual state of
instances of this class.

0 read-write: Instances of this class can be read and written, but
not created.

0 read-create: It is possible to create, write, and read instances.

In case instances of a class are readable, notifications might also
be send when they are created, changed or deleted.

Linowski, et al. Expires September 12, 2008 [Page 76]

Internet-Draft Kalua DML March 2008

5.17.1. Attributes
F o m e e e o o m e e e e e e e mm - o m e e oo +
| Feature | Type | Description | use |
Fommmm oo S e e e e e e e oo Fommmmo oo - +
| name | name-string | The name of the class. | required |
R o m e e e - gy . +

5.17.2. Leaf Sub-Elements
o m e o m e e o= e . Fom e e e e oo o +
| Sub-Element | Type | min | max | Description |
I | | oc. | oc. | I
B YU - O +----- +o---- R +
| description | xsd:string | © | 1 | The description of |
| | | | | the class |
I | I | | I
presentation	xsd:string	©	1	The presentation
				name used for the
				class respectively
				instances of the
				class.
I I I I I I				
abstract	xsd:boolean	©	1	If present, the
				class is abstract.
I I I I I I				
superclass	name-string	©	1	The name of the
				superclass.
I I I I I				
max-access	xsd:enumeration			Specifies how class
				instances can be
				accessed.
T e +----- +o---- e +

Linowski, et al. Expires September 12, 2008 [Page 77]

Internet-Draft Kalua DML March 2008

5.17.3. Sub-Elements

o m e e - . o m e e e e e e e e e e e e mm oo +
| Sub-Element | min | max | Description |
| | occurs | occurs |
D RS- S SRSy tommmee s R +
annotation 0 unbounded Annotations attached to the
class.
constraint 0 unbounded Constraints that apply in the

context of this class.

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
| attribute | 0] | unbounded | The attributes directly |
| | | | declared in the class. |
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

use 0 unbounded The attribute groups used by
the class.
key 0 unbounded Key definitions
Y Fomm e E SF S o e e e e e ooooo oo +

5.17.4. Constraints

A class must not be its own super class - neither directly nor
indirectly. This implies a cycle in the inheritance graph and does
not have well-defined semantics.

If a class is abstract and inherits from a superclass, this
superclass must be abstract as well.

A class must not inherit from an attribute group that is already
inherited by one of its ancestor classes (that is, its super class or
the super class of the super class, and so on).

5.17.5. XSD

Linowski, et al. Expires September 12, 2008 [Page 78]

Internet-Draft Kalua DML March

<xsd:element name="class" type="kalua:Class" minOccurs="0"
max0ccurs="unbounded"/>

<xsd:complexType name="Class'">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="abstract" minOccurs="0">
<xsd:complexType/>
</xsd:element>
<xsd:element name="superClass"
type="kalua:ModelElementReference"
minOccurs="0">
</xsd:element>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group ref="kalua:ConstrainableElementProperties'"/>
</xsd:sequence>
<xsd:attributeGroup
ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

5.17.6. Element Examples

2008

Linowski, et al. Expires September 12, 2008 [Page 79]

Internet-Draft Kalua DML March 2008

<class
id="Site"
presentation="Site">
<description>
A site at which some network resources are located
</description >
<attribute name="name'">
<type>kalua:string</type>

</attribute>

<attribute name="street">
<mandatory>
<type>kalua:string</type>

</attribute>

<attribute name="city">
<type>kalua:string</type>
</attribute>
<attribute name="zipCode'">
<type>kalua:unsigedInt</type>
</attribute>
<attribute name="location">
<struct>
<attribute id="longitude">
<type>kalua:string</type>
</attribute>
<attribute id="latitude" type="kalua:double'">
<type>kalua:string</type>
</attribute>
<attribute id="altitude" type="kalua:double">
<type>kalua:string</type>
</attribute>
</struct>
</attribute>
<key>
<member>name</member>
</key>
</attribute-group>

5.17.7. NETCONF Payload Examples

Linowski, et al. Expires September 12, 2008 [Page 80]

Internet-Draft Kalua DML March 2008

<Site>

<name>RANC</host>

<street>Alphabet street 123</street>

<city>Megalopolis</city>

<zipCode>65432</zipCode>

<location>
<longitude>23048'7''</longitude>
<latitude>56023'45"'"'</latitude>
<altitude>125m</altitude>

</location>
</Site>
5.18. relationship

"relationship" elements specify associations between two classes or
an attribute group and a class. With "relationships", it is possible
to describe the way instances of particular classes relate to each
other. This covers the simple 'is-used-by' or 'is-managed-by'
"relationship" as well as containment "relationships," such as the
well-known parent-child "relationship" between managed objects.

Three different types of relationships are distinguished:

(o}

reference: Simple bi-directional references between instances of
two classes. For example, a 'managed-by' "relationship" indicates
that the instance at the source end is managed by the instance at
the target end.

containment: A containment "relationship" in which the instance at
the source end contains all instances at the target end. This
also means that if the containing object is deleted, all contained
objects are also deleted.

calculated: Dynamically calculated "relationships". 1Instances of
the classes at the source and target end are related if they are
in the result set produced by the evaluation of a "relationship"
expression at runtime. With this type of "relationship" you can
define that two objects are related if they have the same parent
in the containment tree and a particular attribute has the same
value in both instances.

A "relationship" can also refine an existing "relationship". This
feature is usually used to narrow down the usage of a generic

Linowski, et al. Expires September 12, 2008 [Page 81]

Internet-Draft Kalua DML March 2008

"relationship" inherited by the source and target end class. For
example, an abstract class 'Resource' has a relationship
'managedResources' that refers to all resources managed by a
particular resource. If two concrete classes, 'ProtectionGroup' and
'Protectionunit', inherit from 'Resource', you can refine the generic
relationship 'managedResources' by creating a "relationship"
definition 'managedUnits' between 'ProtectionGroup' and
'ProtectionuUnit' that has 'managedResource' as its base relationship.
This would mean that a protection group could only manage protection
units and no other types of resources.

There are two main reasons to specify abstract relationships that are
refined by concrete relationships:

0 The generic "relationship" can be used to navigate between object
instances without needing to know what type of refined
relationships exist for each concrete class. 1In the example
above, this means that an application that only deals with
resources can find out the managed units of a protection group
instance by following the 'managedResources' relationship.

o The system that has to store and restore class instances can take
advantage of the fact that a "relationship" refines another one by
reusing storage space.

In the example above this means that if 'ProtectionGroup' and
'"ProtectionUnit' instances are stored in a relational database, the
foreign key columns that are used to address the managing resource
can be reused for addressing the controlling protection group.

5.18.1. Attributes

Linowski, et al. Expires September 12, 2008 [Page 82]

Internet-Draft

5.18.2. Leaf Sub-Elements

description

kind

readonly

base
Relationship

.18.3. Sub-Elements

Sub-Element

annotation

constraint

source

Kalua DML March 2008

o m e e o - e Fom - Fom e e e e e e e oo +

| Type | min | max | Description |

| | oc. | oc. | |

R +----- +-o---- R +

| xsd:string | © | 1 | The description of |

| | | | the relationship. |

| I | | I

| xsd:enumeration | 1 | 1 | The kind of |

| | | | relationship |

| | | | (reference, |

| | | | containment, |

| | | | calculated) |

I I I I I

| xsd:boolean | © | 1 | Tells if |

| | | | relationship can be |

| | | | modifier, which is |

| | | | the default, or only |

| | | | read. |

I I I | I

| name-string | © | 1 | The name of the base |

| | | | relationship |

S +----- +o---- e oo e e oooo oo +

-------- ey

min | max | Description |
occurs | occurs |

-------- T

0] | unbounded | Annotations attached to the |

| | relationship |

I I I

0] | unbounded | Constraints that apply in the |

| | context of this attribute |

I | group. I

I I I

1 | 1 | The specification of the |

| | source-end of the |

| | relationship. |

I I I

1 | 1 | The specification of the |

| | target-end of the relationship |

-------- i

Linowski, et al. Expires September 12, 2008 [Page 83]

Internet-Draft Kalua DML March 2008

5.18.4. Source and Target Leaf Sub-Elements

The table below describes the simple typed XML elements that have to
appear in source and target elements of a relationship element.

| Sub-Element | Type | min | max | Description |
| | | oc. | oc. | |

The class at one of
the ends of the
relationship.

name-string

The role name of a
relationship-end-class

role name-string

The minimum number of
objects that are
addressed at the
source or target end
of this relationship.
Typical values for the
minimum cardinality
are 0 (the target

| |

| |

| |

| |

| |

| |

| |
minCardinal | |
| |
| |
| |
| |
| |
| |
| |
| endpoint can remain |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

ity

xsd:unsignedLo
ng

undefined) or 1 (the
target endpoint must
be defined).

The maximum number of
objects that are
addressed at the
source or target end
of this relationship.
The value "unbounded"
can be used to denoted
an unlimited number of
objects at the given
relationship end.

maxCardinal
ity

xsd:unsignedLo
ng

5.18.5. Constraints
Several constraints must be fulfilled by an relationship:
o A valid source end multiplicity requires that either the maximum

cardinality is unbounded or the minimum cardinality is not greater
than the maximum cardinality.

Linowski, et al. Expires September 12, 2008 [Page 84]

Internet-Draft Kalua DML March 2008

0 The source end multiplicity specification must allow that at least
one object can be addressed at the source end, so source-end max
cardinality must be greater than zero.

o A valid target end multiplicity requires that either the maximum
cardinality is unbounded or the minimum cardinality is not greater
than the maximum cardinality.

o The target end multiplicity specification must allow that at least
one object can be addressed at the source end, so target-end max
cardinality must be greater than zero.

0 An object can only be contained in another object at the same
point in time. So in case of an containment relationship, it
implies that the source-end max cardinality is one.

When refining relationships, several constraints have to be

considered:

o If the relationship
class must be equal
end class.

refines a base relationship, the source end
or derived from the base relationship source

o If the relationship
class must be equal
end class.

refines a base relationship, the target end
or derived from the base relationship target

o If the relationship refines a base relationship, the relationship
type must be the same as for the base relationship.

o If the relationship refines a base relationship, the target

minimum cardinality
minimum cardinality

If the relationship
maximum cardinality
maximum cardinality

If the relationship
minimum cardinality
minimum cardinality

If the relationship
maximum cardinality
maximum cardinality

must be equal or greater than the target
at the base relationship.

refines a base relationship, the target
must be equal or smaller than the target
at the base relationship.

refines a base relationship, the source
must be equal or greater than the source
at the base relationship.

refines a base relationship, the source
must be equal or smaller than the source
at the base relationship.

Linowski, et al. Expires September 12, 2008 [Page 85]

Internet-Draft Kalua DML March 2008

5.18.6. XSD

<xsd:element name="relationship"
type="kalua:Relationship" ="0" maxOccurs="unbounded"/>

<xsd:complexType name="Relationship">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="baseRelationship"
type="kalua:ModelElementReference"
minOccurs="0"/>
<xsd:choice minOccurs="0">
<xsd:element name="read-only">
<xsd:complexType/>
</xsd:element>
<xsd:element name="read-write">
<xsd:complexType/>
</xsd:element>
</xsd:choice>
<xsd:element name="kind">
<xsd:complexType>
<xsd:choice>
<xsd:element name="containment"/>
<xsd:element name="reference"/>
<xsd:element name="calculated">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="condition">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension
base="xsd:string">
<xsd:attribute
name="language"
type="xsd:normalizedString"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="source" type="kalua:RelationshipEnd"/>
<xsd:element name="target" type="kalua:RelationshipEnd"/>
<xsd:group ref="kalua:ConstrainableElementProperties"/>

Linowski, et al. Expires September 12, 2008 [Page 86]

Internet-Draft Kalua DML March 2008

</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

<xsd:complexType name="RelationshipEnd">
<xsd:sequence>

<xsd:element name="class" type="kalua:ModelElementReference"/>
<xsd:element name="role" type="kalua:nameType"/>
<xsd:element name="minCardinality"
type="xsd:nonNegativeInteger" default="0" minOccurs="0"/>
<xsd:element name="maxCardinality"

default="unbounded" minOccurs="0">

<xsd:simpleType>

<xsd:union memberTypes="xsd:nonNegativeInteger">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration
value="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>

</xsd:simpleType>

</xsd:element>
</xsd:sequence>
</xsd:complexType>

5.18.7. Element Examples

<relationship name="ip_interface">
<kind>
<calculated>
<condition>$source/ipAdEntIfIndex=$target/ifIndex</condition>
</calculated>
</kind>
<source>
<class>ipAddrEntry</class>
<role>ipAddress</role>
<minCardinality>0</minCardinality>
<maxCardinality>1</maxCardinality>
</source>
<target>
<class>ifEntry</class>
<role>interface</role>
<minCardinality>1</minCardinality>
<maxCardinality>1</maxCardinality>
</target>
</relationship>

Linowski, et al. Expires September 12, 2008 [Page 87]

Internet-Draft Kalua DML

<l--
Small fraction of
TMF GB922 - SID Consolidated Model

Version 7.0, 2006 Telemanagement Forum
-->

<class name="RootEntity">
<attribute name="objectID">

<mandatory/>
<type>kalua:string</type>

</attribute>

<attribute name="commonName">
<mandatory/>
<type>kalua:string</type>

</attribute>

<attribute name="description">
<optional/>
<type>kalua:string</type>

</attribute>

<key scope="global">
<member>objectId</member>
</key>
<key scope="local">
<member>commonName</member>
</key>
</class>

<class name="Entity">
<abstract/>
<super-class>RootEntity</super-class>
<attribute name="version">
<optional/>
<type>kalua:string</type>
</attribute>
</class>

<typedef name'"ManagementMethod">
<simple-type>
<enum>

<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
</enum>
</simple-type>

name="Unknown" value="0"/>
name="None" value="1"/>
name="CLI" value="2"/>
name="SNMP" value="3"/>
name="TL1" value="4"/>
name="CMIP" value="5"/>

name="Proprietary" value="6"/>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 88]

Internet-Draft Kalua DML

</typedef>

<class name="ManagedEntity">
<abstract/>
<super-class>Entity</super-class>
<attribute name="managementMethodCurrent'">
<type>ManagementMethod</type>
</attribute>
<attribute name="managementMethodSupported">
<sequence minLength="1" maxLength="5">
<type>ManagementMethod</type>
</sequence>
</attribute>
</class>

<class name="Resource'">
<abstract/>
<super-class>ManagedEnity</super-class>
<attribute name="usageState'">
<simple-type>
<enum>
<enum-literal name="Unknown" value=""/>
<enum-literal name="NotInstalled" value=""/>
<enum-literal name="Installed" value=""/>
<enum-literal name="Inactive" value=""/>
<enum-literal name="Idle" value=""/>
<enum-literal name="Active" value=""/>
<enum-literal name="Busy" value=""/>
</enum>
</simple-type>
</attribute>
</class>

<class name="PhysicalResource">
<abstract/>
<super-class>Resource</super-class>
<attribute name="manufactureDate'">
<type>kalua:dateTime</type>
</attribute>
<attribute name="otherIdentifier">
<type>kalua:string</type>
</attribute>
<attribute name="powerState">
<simple-type>
<enum>
<enum-literal name="" value=""/>
</enum>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 89]

Internet-Draft Kalua DML March 2008

</simple-type>

</attribute>

<attribute name="serialNumber'">
<mandatory/>
<type>kalua:string</type>

</attribute>

<attribute name="versionNumber">
<type>kalua:string</type>

</attribute>

</class>

<class name="LogicalResource">
<abstract/>
<super-class>Resource</super-class>
<attribute name="lrStatus">
<simple-type>
<enum>
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
<enum-literal
</enum>
</simple-type>
</attribute>
<attribute name="serviceState'">
<simple-type>
<enum>
<enum-literal
<enum-literal
<enum-literal

name="Unknown" value="0"/>

name="0K" value="A1"/>
name="Initializing" value="2"/>
name="Starting" value="3"/>
name="Paused" value="4"/>
name="Stopping" value="5"/>
name="Stopped" value="6"/>
name="Degraded" value="7"/>
name="Stressed" value="8"/>
name="PredictedFailure" value="9"/>
name="ErrorGemeral" value="10"/>
name="ErrorNotRecoverable" value="11"/>
name="NotInstalledOrNotPresent" value="12"/>
name="InMaintenance" value="13"/>
name="UnableToContact" value="14"/>
name="LostCommunications" value="15"/>

name="Unkown" value="0"/>
name="InService" value="1"/>
name="0utO0fService" value="2"/>

<enum-literal
<enum-literal
<enum-literal
<enum-literal

</enum>

name="Testing" value="3"/>
name="InMaintenance" value="4"/>
name="NotAvailable" value="5"/>
name="NotApplicable" value="6"/>

Linowski, et al. Expires September 12, 2008 [Page 90]

Internet-Draft Kalua DML

</simple-type>
</attribute>
<attribute name="isOperational">
<mandatory/>
<type>kalua:boolean</type>
</attribute>
</class>

<relationship name="PResourceSupportsLResource'">
<kind>
<reference/>
</kind>
<source>
<class>PhysicalResource</class>
<role>physicalResource</role>
<minCardinality>0</minCardinality>
<maxCardinality>unbounded</maxCardinality>
</source>
<target>
<class>LogicalResource</class>
<role>logicalResource</role>
<minCardinality>0</minCardinality>
<maxCardinality>unbounded</maxCardinality>
</target>
</relationship>

5.18.8. NETCONF Payload Examples

<!-- Card is a PhysicalResource -->
<Card>

<objectId>NwW-Card-11783</objectId>
<commonName>C12</commonName>

<serialNumber>N-737362183-34</serialNumber>

<PResourceSupportsLResource>
<logicalResource kalua:type="TerminationPoint">
<objectId>TP-83838</0bjectId>
</logicalResource>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 91]

Internet-Draft Kalua DML

<logicalResource>
<!-- Kalua:type is optional -->
<objectId>TP-83845</0bjectId>
</logicalResource>
</PResourceSupportsLResource>

</Card>

<!-- TerminationPoint is a LogicalResource -->

<TerminationPoint>

<objectId>TP-83838</0bjectId>
<commonName>IP-TP-3</commonName>

<isOperational>true</isOperational>

<PResourceSupportsLResource>
<physicalResource kalua:type="Card">
<objectId>NwW-Card-11783</objectId>
</Card>
</PResourceSupportsLResource>

</TerminationPoint>

<TerminationPoint>

<objectId>TP-83845</0bjectId>
<commonName>IP-TP-10</commonName>

<isOperational>false</isOperational>

<PResourceSupportsLResource>
<physicalResource kalua:type="ManagedHardware">
<!-- ManagedHardware is superclass of Card -->
<objectId>Nw-Card-11783</objectId>
</physicalResource>
</PResourceSupportsLResource>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 92]

Internet-Draft Kalua DML March 2008

</TerminationPoint>

5.19. annotation

Kalua supports an "annotation'" mechanism to allow extensions to the
model language, "annotation" is a set of additional properties
associated with a model element. There can be several "annotations"
associated with the same model element.

"Annotations" are 'typed', that is, each "annotation" must
instantiate a particular annotation type also defined in the module
or in a directly or indirectly imported module. The annotation type
specifies which entries can be or must be present in an "annotation".
The annotation type also implies semantics of the annotation data;
however, semantics are not modeled and are conveyed in the
description within the annotation-type definition only.

An annotation type is defined with an annotation-type element.
Reader of the module must not treat unrecognized annotation types as
errors.

A model element is annotated by adding an annotation sub-element to
the element definition. This element contains any number of
annotation-property elements, which are pairs made up of a name and a
value. The order of annotation-property elements has no semantic
value.

The name and values in the annotation-property elements must match a
corresponding element specification contained in the annotation-
property elements of the referred annotation-type element.

5.19.1. Element Attributes

Fommm e o m e e +---+
| Attribute | Type | Description | S |
| | [Default] | |

Fom e e o m e e e e e e e e e e e e e oo +---+
| name | xsd:string | Defines type of the annotation. | M|

Linowski, et al. Expires September 12, 2008 [Page 93]

Internet-Draft Kalua DML March 2008

5.19.2. Sub-Elements

o m e e - o m e o - o m e e e e e e e e e e e e ao o +
| Sub-Element | MinOccurs | MaxOccurs | Description |
Y RS S SF S o e e e oooo- +
e:	0]	unbounded	Defines values for the
annotation-	[properties of the	
property			annotation.
RS RS S SF S o e e oo +

5.19.3. Constraints

The annotation-type element, which is available in the module and
which has the same value for attribute name as the annotation element
has, must be applicable to the model element type which contains the
"annotation".

5.19.4. XSD

<xsd:complexType" name="annotationType'">
<xsd:sequence>
<xsd:element
name="e"
type="kalua:annotation-propertyType"
minOccurs="0" max0ccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type='"xsd:string"/>
</xsd:complexType>

5.19.5. Element Examples

<annotation>
<type>objectStorage</type>
<e name="cache">true</e>
<e name="persist">true</e>
</annotation>

5.20. annotation-property

"annotation-property" element defines value of a property within an
annotation. Semantics of the "annotation-property" values depend on
the annotation-type element referred to by the annotation element
containing the "annotation-property".

Linowski, et al. Expires September 12, 2008 [Page 94]

Internet-Draft Kalua DML March 2008

5.20.1. Element Attributes

| Attribute | Type | Description | S |
| | [Default] | |

A name of the annotation property.
The name must match with id
attribute of one of the Annotation
Entry Type elements within
Annotation Type element to which the
containing Annotation refers to.

Table 1: Annotation-property element attributes
5.20.2. Constraints

No two "annotation-property" elements within one annotation element
may have the same value for attribute name.

For each "annotation-property" element, there must be an annotation-
property-type element in the referred annotation-type element.

Content of the "annotation-property" element must match with the
pattern of the corresponding annotation-property-type element.

All annotation properties which are defined for the annotation-type
of the annotation must be present in the annotation, or must be
defined as optional in the annotation- type.

5.20.3. XSD

<xsd:complexType name="annotation-propertyType'">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

5.20.4. Element Examples

<e name="cache">true</e>

Linowski, et al. Expires September 12, 2008 [Page 95]

Inte

5.21.

rnet-Draft

annotation-type

Kalua DML March 2008

A module can define "annotation types" for use in that module, or

other modules that import the module.

"annotation-types" define the

structure of additional information that can be added to the Kalua

model elements.

of model elements.

5.21.1. Element Attributes

Each "annotation-type" applies to a selected subset

----------- L

Attribute | Type | Description | S |

| [Default] | | [

----------- T Y

Name | xsd:string | Identifies the annotation type. | M|

I I I

multiple | xsd:boolean | If true, multiple instances of the | 0 |

| [true] | annotation type can be attached to | [

| | a model element. If false, only | |

| | one instance with this annotation | |

| | type can be attached to a model | |

| | element. | |

----------- L
.21.2. Leaf Sub-Elements

-------------- e L &

Sub-Element | Type | Description | S |

| [Default] | | |

-------------- Fmm e e e e e e e e e e e e e e e e e o

presentation | xsd:string | See Section 5.1.2 | 0 |

I I I

description | xsd:string | See Section 5.1.3 | O |

-------------- T

.21.3. Sub-Elements

---------------- o e e et e e e e e e e e e e e e e oot

Sub-Element | MinOccurs | MaxOccurs | Description |

---------------- T

annotable-type | 1 | unbounded | Defines to which Kalua [

| | | element types |

| | | annotations with this |

| | | type can be added. |

I I I I

annotation | 0] | unbounded | See Section 5.19 |

I | I I

Linowski, et al. Expires September 12, 2008 [Page 96]

Internet-Draft Kalua DML March 2008

| annotation- | 0] | unbounded | Defines which properties
| property | | | must or may be present

| | | | in annotations of this

I I I | type.

B SRS S S

<xsd:complexType name="annotation-typeType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element
name="annotation-property-type"
type="kalua:annotation-property-typeType"
minOccurs="0" max0ccurs="unbounded"/>
<xsd:element
name="annotable-type"
type="kalua:annotable-typeType"
max0ccurs="unbounded"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>

<xsd:attribute name="multiple" type="xsd:boolean" default="true"/>

</xsd:complexType>

5.21.5. Element Examples

<annotation-type id="objectStorage">
<annotable-type>class</annotable-type>
<annotation-property-type name="cached">
<pattern>true|false</pattern>
</annotation-property>
<annotation-property-type name="persist">
<pattern>true|false</pattern>
</annotation-property-type>
</annotationType>

5.22. annotable-type

"annotable-type" defines that an annotation, of the type, which
contains this element, can be attached to the model elements of the
given type. The content of this element is the name of the model
element type.

Linowski, et al. Expires September 12, 2008 [Page 97]

Internet-Draft

5.22.1. XSD

Kalua DML March 2008

<xsd:simpleType name="annotable-typeType">
<xsd:restriction base="xsd:string">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration

</xsd:restriction>
</xsd:simpleType>

5.22.2. Element

Examples

value="module"/>
value="import"/>
value="attribute"/>
value="attribute-group"/>
value="structure"/>
value="sequence"/>
value="enum"/>
value="enum-literal"/>
value="typedef"/>
value="use"/>
value="key"/>
value="member"/>
value="constraint"/>
value="class"/>
value="relationship"/>
value="annotation-type"/>
value="annotation-property-type"/>

<annotable-type>class</annotable-type>

5.23. annotation-property-type

"annotation-property-type" defines a property within the annotation-

type element.

It defines

the allowed values for the property and

whether property is optional.

Linowski, et al. Expires September 12, 2008 [Page 98]

Internet-Draft Kalua DML March 2008

5.23.1. Leaf Sub-Elements

| Sub-Element | Type | Description
| | [Default] |

xsd:string See Section 5.1.2

description xsd:string See Section 5.1.3

optional none Defines whether a property is
optional or mandatory in the
annotation element. If the
element is present, the property
is optional. If the element is
not present, the property is
mandatory.

pattern xsd:string

[.*]

Language of the allowed values
for the property. The language
is defined using a regular
expression, according to regular
expression syntax and semantics
specified in the 'XML Schema Part
2: Datatypes Second Edition'
[XSD-TYPES].

5.23.2. Sub-Elements

S S R o e e e e oo oo
| Sub-Element | MinOccurs | MaxOccurs | Description
Fommem e e e - - T Fommem e e e e e e e e e aaao
| annotation | 0] | unbounded | See Section 5.19
S R SR oo e e o o -

5.23.3. XSD

<xsd:complexType name="annotation-property-typeType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="optional" minOccurs="0"/>

<xsd:element name="pattern" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>

Linowski, et al. Expires September 12, 2008 [Page 99]

Internet-Draft Kalua DML March 2008

5.23.4. Element Examples

<annotation-property-type name="cached">
<pattern>true|false</pattern>
</annotation-property-type>

<annotation-property-type name="persist">
<optional/>
<pattern>true|false</pattern>

</annotation-property-type>

<annotation-property-type name="organization">
</annotation-property-type>

Linowski, et al. Expires September 12, 2008 [Page 100]

Internet-Draft Kalua DML March 2008

6. IANA Considerations

A registry for standard Kalua modules needs to be set up. Each entry
shall contain the unique module name, the unique XML namespace from

the Kalua URI Scheme and some reference to the module's
documentation.

The URIs for the Kalua XML namespace will be registered in the IETF
XML registry RFC 3688 [RFC3688].

Linowski, et al. Expires September 12, 2008 [Page 101]

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688

Internet-Draft Kalua DML March 2008

7. Security Considerations

Kalua DML itself has no security impact on the Internet. Security
issues might be related to the usage of data, which is modeled with
Kalua. These issues need to be discussed in documents describing the
data models and related interfaces.

Linowski, et al. Expires September 12, 2008 [Page 102]

Internet-Draft Kalua DML March 2008

8. Acknowledgements

We would like to thank to David Kessens and Leo Hippelainen for their
contributions and review.

Linowski, et al. Expires September 12, 2008 [Page 103]

Internet-Draft Kalua DML March 2008

9. References
9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
January 2004.

[RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
December 2006.

[XSD-TYPES]
Biron, P V. and A. Malhotra, "XML Schema Part 2: Datatypes
Second Edition, W3C REC REC-xmlschema-2-20041028",
October 2004, <http://www.w3.0rg/TR/2004/
REC-xmlschema-2-20041028/datatypes.html>.

9.2. Informative References

[RFC3139] Sanchez, L., McCloghrie, K., and J. Saperia, "Requirements
for Configuration Management of IP-based Networks",
REC 3139, June 2001.

[RFC3216] Elliott, C., Harrington, D., Jason, J., Schoenwaelder, J.,
Strauss, F., and W. Weiss, "SMIng Objectives", RFC 3216,
December 2001.

[Linowski]
Linowski, B., "NETCONF Data Modeling Language
Requirements", February 2008,
<draft-linowski-netconf-dml-requirements-01>.

[RCDML] Presuhn, R., "Requirements for a Configuration Data
Modeling Language", February 2008,
<draft-presuhn-rcdml-03>.

[I-D.bjorklund-netconf-yang]
Bjorklund, M., "YANG - A data modeling language for
NETCONF", draft-bjorklund-netconf-yang-02 (work in
progress), February 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc4741
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
https://datatracker.ietf.org/doc/html/rfc3139
https://datatracker.ietf.org/doc/html/rfc3216
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements-01
https://datatracker.ietf.org/doc/html/draft-presuhn-rcdml-03
https://datatracker.ietf.org/doc/html/draft-bjorklund-netconf-yang-02

Linowski, et al. Expires September 12, 2008 [Page 104]

Internet-Draft Kalua DML March 2008

Appendix A. Kalua XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:kalua="urn:ietf:params:xml:ns:kalua:1"
targetNamespace="urn:ietf:params:xml:ns:kalua:1" version="0.2">
<xsd:simpleType name="nameType">
<xsd:restriction base="xsd:normalizedString">
<xsd:pattern value="[a-zA-Z][_A-Za-z0-9]*"/>
<!--xsd:maxLength value="30"/-->
</xsd:restriction>
</xsd:simpleType>
<xsd:attributeGroup name="NamedElementAttributes">
<xsd:attribute name="name" type="kalua:nameType" use="required"/>
</xsd:attributeGroup>
<xsd:group name="ModelElementProperties">
<xsd:sequence>
<xsd:element name="description"
type="xsd:string" minOccurs="0"/>
<xsd:element name="annotation"
type="kalua:annotationType" minOccurs="0"
max0ccurs="unbounded" />
</xsd:sequence>
</xsd:group>
<xsd:group name="NamedElementOnlyProperties">
<xsd:sequence>
<xsd:element name="presentation" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:normalizedString">
<xsd:maxLength value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:group name="NamedElementProperties">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementOnlyProperties"/>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
</xsd:group>
<xsd:group name="ConstrainableElementProperties">
<xsd:sequence>
<xsd:element name="constraint" minOccurs="0"
max0ccurs="unbounded">
<xsd:complexType>
<xsd:sequence>

Linowski, et al. Expires September 12, 2008 [Page 105]

Internet-Draft Kalua DML March 2008

<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:element name="expression"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:group name="AttributeContainer">
<xsd:sequence>
<xsd:element name="use"
minOccurs="0" max0ccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
<xsd:attribute name="attribute-group"
type="kalua:ModelElementReference'"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="attribute" type="kalua:Attribute"
minOccurs="0" max0ccurs="unbounded"/>
<xsd:element name="key" minOccurs="0"
max0ccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
Keys on classes can be globally unique or locally
unique (i.e unique within the scope of their containing
element).
Keys on structures are always locally unique.
Keys on attribute-groups are merged to the set of keys
of the element using them. If a class uses the
attribute-group, the key can be globally unique.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:element name="member" type="xsd:string"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="scope" default="local">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="local"/>
<xsd:enumeration value="global"/>
</xsd:restriction>
</xsd:simpleType>

Linowski, et al. Expires September 12, 2008 [Page 106]

Internet-Draft Kalua DML March

</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:group name="ModuleIdentityProperties">
<xsd:sequence>
<xsd:element name="ns-uri" type="xsd:string"/>
<xsd:element name="ns-prefix" type="xsd:string"/>
<xsd:element name="release" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
<xsd:pattern
value="[a-zA-Z0-9]+(\.[a-zA-Z0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:element name="module">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:ModuleIdentityProperties"/>
<xsd:element name="organization">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="import"
type="kalua:importType" minOccurs="0"
max0ccurs="unbounded"/>
<xsd:sequence>
<xsd:choice minOccurs="0"
max0ccurs="unbounded">
<xsd:element name="typedef"
type="kalua:typedefType"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="attribute-group"
type="kalua:AttributeGroup"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="class"
type="kalua:Class"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="relationship"

2008

Linowski, et al. Expires September 12, 2008 [Page 107]

Internet-Draft Kalua DML March

type="kalua:Relationship"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="annotation-type"
type="kalua:annotation-typeType"
minOccurs="0" maxOccurs="unbounded"/>
<!--xsd:element name="augment"
type="kalua:augmentType"
minOccurs="0" max0ccurs="unbounded"/-->
</xsd:choice>
</xsd:sequence>
</xsd:sequence>
<xsd:attributeGroup
ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
</xsd:element>
<xsd:group name="Datatype">
<xsd:choice>
<xsd:group ref="kalua:simpleTypeReference'"/>
<xsd:element name="simple-type">
<xsd:complexType>
<xsd:sequence>
<xsd:group
ref="kalua:ModelElementProperties"/>
<xsd:group
ref="kalua:simpleTypeDefinition"/>
<xsd:element
name="unit" type="xsd:string"
minOccurs="0"/>
<xsd:group
ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="structure">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group
ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="sequence'">
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:group ref="kalua:Datatype"/>

2008

Linowski, et al. Expires September 12, 2008 [Page 108]

Internet-Draft Kalua DML March

<xsd:group ref="kalua:Accessibility"/>
<xsd:group
ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
<xsd:attribute name="minLength"
type="xsd:nonNegativeInteger"
default="0"/>
<xsd:attribute name="maxLength"
default="unbounded">
<xsd:simpleType>
<xsd:union
memberTypes="xsd:nonNegativeInteger'">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:enumeration
value="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="ordered"
type="xsd:boolean" default="true"/>
<xsd:attribute name="elementName"
type="xsd:NCName" />
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:group>
<xsd:simpleType name="ModelElementReference">
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:complexType name="AttributeGroup">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<xsd:group name="Accessibility">
<xsd:sequence>
<xsd:element name="max-access"
default="read-create" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="not-accessible"/>

2008

Linowski, et al. Expires September 12, 2008 [Page 109]

Internet-Draft Kalua DML March 2008

<xsd:enumeration value="accessible-for-notify"/>
<xsd:enumeration value="read-only"/>
<xsd:enumeration value="read-write"/>
<xsd:enumeration value="read-create"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:complexType name="Class">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:Accessibility"/>
<xsd:element name="abstract" minOccurs="0">
<xsd:annotation>
<xsd:documentation>
If present it means that this class cannot be
instantiated.</xsd:documentation>
</xsd:annotation>
<xsd:complexType/>
</xsd:element>
<xsd:element name="super-class"
type="kalua:ModelElementReference"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>
Do we really want a restriction to single
inheritance?</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:group ref="kalua:AttributeContainer"/>
<xsd:group ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<xsd:complexType name="Attribute">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:choice minOccurs="0">
<xsd:element name="mandatory">
<xsd:complexType/>
</xsd:element>
<xsd:element name="optional">
<xsd:complexType/>
</xsd:element>
</xsd:choice>
<xsd:choice minOccurs="0">
<xsd:element name="read-only">

Linowski, et al. Expires September 12, 2008 [Page 110]

Internet-Draft Kalua DML March 2008

<xsd:complexType/>
</xsd:element>
<xsd:element name="unchangeable">
<xsd:complexType/>
</xsd:element>
<xsd:element name="read-write'">
<xsd:complexType/>
</xsd:element>
</xsd:choice>
<xsd:group ref="kalua:Datatype"/>
<!-- some semantic changes w.r.t. 0CoS here ...-->
<!--xsd:attribute name="initialization"
type="cmb:InitializationKind"/-->
<!--xsd:attribute name="unsettable"
type="xsd:boolean"/-->
<xsd:element name="defaultValuelLiteral"
type="xsd:string" minOccurs="0"/>
<xsd:element name="unit"
type="xsd:string" minOccurs="0"/>
<xsd:group ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<xsd:complexType name="Relationship">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="baseRelationship"
type="kalua:ModelElementReference"
minOccurs="0"/>
<xsd:choice minOccurs="0">
<xsd:element name="read-only">
<xsd:complexType/>
</xsd:element>
<xsd:element name="read-write'">
<xsd:complexType/>
</xsd:element>
</xsd:choice>
<xsd:element name="kind">
<xsd:complexType>
<xsd:choice>
<xsd:element name='"containment"/>
<xsd:element name="reference"/>
<xsd:element name='"calculated">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="condition">
<xsd:complexType>
<xsd:simpleContent>

Linowski, et al. Expires September 12, 2008 [Page 111]

Internet-Draft Kalua DML March

<xsd:extension
base="xsd:string">
<xsd:attribute
name="language"
type="xsd:normalizedString"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="source" type="kalua:RelationshipEnd"/>
<xsd:element name="target" type="kalua:RelationshipEnd"/>
<xsd:group ref="kalua:ConstrainableElementProperties"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<xsd:complexType name="RelationshipEnd">
<xsd:sequence>
<xsd:element name="class"
type="kalua:ModelElementReference"/>
<xsd:element name="role" type="kalua:nameType"/>
<xsd:element name="minCardinality"
type="xsd:nonNegativeInteger"
default="0" minOccurs="0"/>
<xsd:element name="maxCardinality"
default="unbounded" minOccurs="0">
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativeInteger">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="annotation-typeType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="annotation-property-type"
type="kalua:annotation-property-typeType"

2008

Linowski, et al. Expires September 12, 2008 [Page 112]

Internet-Draft Kalua DML March

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="annotable-type"
type="kalua:annotable-typeType"
max0ccurs="unbounded" />
</xsd:sequence>
<xsd:attributeGroup
ref="kalua:NamedElementAttributes"/>
<xsd:attribute name="multiple"
type="xsd:boolean" default="true"/>
</xsd:complexType>
<xsd:complexType name="importType">
<xsd:sequence>
<xsd:group ref="kalua:ModuleIdentityProperties"/>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="annotation-propertyType'">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attributeGroup
ref="kalua:NamedElementAttributes"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="annotationType">
<xsd:sequence>
<xsd:element name="e"
type="kalua:annotation-propertyType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="annotation-property-typeType">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:element name="optional” minOccurs="0"/>
<xsd:element name="pattern" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<!--xsd:complexType name="augmentType'">
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
<xsd:element name="target"
type="kalua:ModelElementReference"/>
<xsd:element name="when" type='"xsd:string"
minOccurs="0"/>

2008

Linowski, et al. Expires September 12, 2008 [Page 113]

Internet-Draft

Kalua DML

<xsd:group ref="kalua:AttributeContainer"/>

</xsd:sequence>
</xsd:complexType-->

<xsd:complexType name="typedefType">

<xsd:sequence>

<xsd:group ref="kalua:NamedElementProperties"/>
<xsd:group ref="kalua:Datatype'"/>

</xsd:sequence>
<xsd:attributeGroup

ref="kalua:NamedElementAttributes"/>

</xsd:complexType>

<xsd:simpleType name="annotable-typeType">
<xsd:restriction base="xsd:string">

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>

value="module"/>
value="import"/>
value="attribute"/>
value="attribute-group"/>
value="structure"/>
value="sequence'"/>
value="enum"/>
value="enum-literal"/>
value="typedef"/>
value="use'"/>
value="key"/>
value="member"/>
value="constraint"/>
value="class"/>
value="relationship"/>
value="annotation-type"/>
value="annotation-property-type"/>

<!-- simple type definitions -->
<xsd:group name="facets'">

<xsd:choice>

<xsd:element

type="kalua:

<xsd:element

type="kalua:

<xsd:element

type="kalua:

<xsd:element

type="kalua:

<xsd:element

name="minExclusive"
facet" id="minExclusive'"/>
name="minInclusive"
facet" id="minInclusive'"/>
name="maxExclusive"
facet" id="maxExclusive'"/>
name="maxInclusive"
facet" id="maxInclusive'"/>
name="totalDigits"

id="totalDigits">
<xsd:complexType>
<xsd:complexContent>

<xsd:restriction base="kalua:numFacet'">

March 2008

Linowski, et al. Expires September 12, 2008 [Page 114]

Internet-Draft Kalua DML March

<xsd:attribute name="value"
type="xs:positiveInteger"
use="required"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="fractionDigits"
type="kalua:numFacet" id="fractionDigits"/>
<xsd:element name="length"
type="kalua:numFacet" id="length"/>
<xsd:element name="minLength"
type="kalua:numFacet" id="minLength"/>
<xsd:element name="maxLength"
type="kalua:numFacet" id="maxLength"/>
<xsd:element name="pattern"
type="kalua:facet" id="pattern"/>
</xsd:choice>
</xsd:group>
<xsd:group name="simpleTypeReference">
<xsd:sequence>
<xsd:element name="type"
type="kalua:ModelElementReference"/>
</xsd:sequence>
</xsd:group>
<xsd:group name="simpleTypeDefinition">
<xsd:sequence>
<xsd:choice>
<xsd:element name="restriction"
type="kalua:restrictionType"/>
<xsd:element name="union"
type="kalua:unionType"/>
<xsd:element name="enum"
type="kalua:enumType"/>
<xsd:group ref="kalua:simpleTypeReference"/>
</xsd:choice>
</xsd:sequence>
</xsd:group>
<xsd:complexType name="restrictionType">
<xsd:sequence>
<xsd:group ref="kalua:simpleTypeDefinition"/>
<xsd:group ref="kalua:facets" minOccurs="0"
max0ccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="unionType">
<xsd:sequence>
<xsd:group ref="kalua:simpleTypeDefinition"

2008

Linowski, et al. Expires September 12, 2008 [Page 115]

Internet-Draft Kalua DML March 2008

max0ccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="enumType">
<xsd:sequence>
<xsd:element name="enum-literal"
type="kalua:enum-literalType"
max0ccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="base"
type="xsd:QName" use="optional"/>
</xsd:complexType>
<xsd:complexType name="enum-literalType'">
<xsd:sequence>
<xsd:group ref="kalua:NamedElementProperties"/>
</xsd:sequence>
<xsd:attribute name="value"/>
<xsd:attributeGroup ref="kalua:NamedElementAttributes"/>
</xsd:complexType>
<xsd:complexType name="facet">
<xsd:sequence>
<xsd:group ref="kalua:ModelElementProperties"/>
</xsd:sequence>
<xsd:attribute name="value" use="required"/>
</xsd:complexType>
<xsd:complexType name="numFacet">
<xsd:complexContent>
<xsd:restriction base="kalua:facet">
<xsd:attribute name="value"
type="xs:nonNegativelInteger" use="required"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:schema>

Linowski, et al. Expires September 12, 2008 [Page 116]

Internet-Draft Kalua DML March 2008

Appendix B. Module Example: RFC1213-MIB

The example below shows how the contents of the MIB RFC1213-MIB is
represented in Kalua.

<?xml version="1.0" encoding="UTF-8"?>
<kalua:module name="rfc1213_mib"
xmlns:kalua="urn:ietf:params:xml:ns:kalua:1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:kalua:1
C:\Users\kalua\kalua.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- pame must not contain '-': rfc1213-mib -->
<presentation>RFC1213-MIB</presentation>
<description>Extracted from rfc1213.txt</description>
<ns-uri>iso.org.dod.internet.mgmt.mib-2.rfcl1213</ns-uri>
<!-- MIBs do not map to OID namespaces: MIBs contain overlapping
definitions, and define multiple namespaces -->
<ns-prefix>rfc1213</ns-prefix>
<release>1</release>
<organization>RFC</organization>
<import>
<ns-uri>iso.org.dod.internet.mgmt.mib-2.rfc1155-smi</ns-uri>
<ns-prefix>rfcli55-smi</ns-prefix>
<release>1</release>
<description>Structure of Management Information
</description>
</import>
<import>
<ns-uri>iso.org.dod.internet.mgmt.mib-2.rfcl1212</ns-uri>
<ns-prefix>rfci2i12</ns-prefix>
<release>1</release>
<description>0bject type definition macros</description>
</import>
<typedef name="DisplayString">
<description>This data type is used to model textual
information taken from the NVT ASCII character set.
By convention, objects with this syntax are declared
as having SIZE (0..255)</description>
<type>kalua:string</type>
</typedef>
<typedef name="PhysAddr">
<description>This data type is used to model media
addresses. For many types of media, this will be in
a binary representation. For example, an ethernet
address would be represented as a string of 6 octets.
</description>
<type>kalua:string</type>

https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1212

Linowski, et al. Expires September 12, 2008 [Page 117]

Internet-Draft Kalua DML March 2008

</typedef>
<class name="system'">
<presentation>System group</presentation>
<description>
Implementation of the System group is mandatory
for all systems. If an agent is not configured to have a
value for any of these variables, a string of length 0 is
returned.</description>
<attribute name="sysDescr">
<description>
A textual description of the entity.
This value should include the full name and version
identification of the system's hardware type,
software operating-system, and networking
software. It is mandatory that this only contain
printable ASCII characters.</description>
<read-only/>
<simple-type>
<restriction>
<type>DisplayString</type>
<!-- yet unsolved is how to reference a typedef
properly. In theory, the name of the typedef could
collide with the name of an attribute or class.

Potential solution: allow all named elements to
have explicit namespaces, which apply recursively
to all contained named elements? This may also solve
the issue of MIB - namespace mismatch ...-->
<minLength value="0"/>
<maxLength value="255"/>
</restriction>
</simple-type>
</attribute>
<attribute name="sysObjectID">
<description>
The vendor's authoritative identification
of the network management subsystem contained in the
entity. This value is allocated within the SMI
enterprises subtree (1.3.6.1.4.1) and provides an
easy and unambiguous means for determining “what
kind of box' is being managed. For example, if
vendor “Flintstones, Inc.' was assigned the
subtree 1.3.6.1.4.1.4242, it could assign the
identifier 1.3.6.1.4.1.4242.1.1 to its "Fred
Router'.
</description>
<read-only/>
<type>kalua:string</type>

Linowski, et al. Expires September 12, 2008 [Page 118]

Internet-Draft Kalua DML March 2008

<!-- this could as well be some kind of namespace type ... -->
</attribute>
<attribute name="sysUpTime'">
<description>

The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized.
</description>
<read-only/>
<type>rfcli55-smi:TimeTicks</type>
</attribute>
<attribute name="sysContact">
<description>
The textual identification of the contact person
for this managed node, together with information
on how to contact this person.
</description>
<simple-type>
<restriction>
<type>DisplayString</type>
<minLength value="0"/>
<maxLength value="255"/>
</restriction>
</simple-type>
</attribute>
<attribute name="sysName'">
<description>
An administratively-assigned name for this
managed node. By convention, this is the node's
fully-qualified domain name.
</description>
<simple-type>
<restriction>
<type>DisplayString</type>
<minLength value="0"/>
<maxLength value="255"/>
</restriction>
</simple-type>
</attribute>
<attribute name="sysLocation">
<description>
The physical location of this node (e.g.,
'telephone closet, 3rd floor').
</description>
<simple-type>
<restriction>
<type>DisplayString</type>
<minLength value="0"/>

https://datatracker.ietf.org/doc/html/rfc1155

Linowski, et al. Expires September 12, 2008 [Page 119]

Internet-Draft Kalua DML March 2008

<maxLength value="255"/>
</restriction>
</simple-type>
</attribute>
<attribute name="sysServices">
<description>
A value which indicates the set of services that
this entity primarily offers.

The value is a sum. This sum initially takes the
value zero, Then, for each layer, L, in the range
1 through 7, that this node performs transactions
for, 2 raised to (L - 1) is added to the sum. For
example, a node which performs primarily routing
functions would have a value of 4 (2A(3-1)). 1In
contrast, a node which is a host offering
application services would have a value of 72
(2n(4-1) + 27 (7-1)). Note that in the context of
the Internet suite of protocols, values should be
calculated accordingly:

layer 1 physical (e.g., repeaters)

layer 2 datalink/subnetwork (e.g., bridges)
layer 3 internet (e.g., IP gateways)

layer 4 end-to-end (e.g., IP hosts)

layer 7 applications (e.g., mail relays)

For systems including OSI protocols, layers 5 and
6 may also be counted."
</description>
<read-only/>
<simple-type>
<restriction>
<type>kalua:integer</type>
<maxInclusive value="127"/>
</restriction>

</simple-type>

</attribute>

<key scope="global">
<member>sysName</member>

</key>

</class>
<class name="interfaces">

<attribute name="ifNumber">
<description>
The number of network interfaces
(regardless of their current state) present on
this system.

Linowski, et al. Expires September 12, 2008 [Page 120]

Internet-Draft Kalua DML

</description>
<read-only/>
<type>kalua:integer</type>
</attribute>
</class>
<relationship name="ifTable">
<description>
A list of interface entries. The number
of entries is given by the value of ifNumber.
</description>
<read-only/>
<kind>
<containment/>
</kind>
<source>
<class>interfaces</class>
<role>parent</role>
<minCardinality>1</minCardinality>
<maxCardinality>1</maxCardinality>
</source>
<target>
<class>ifEntry</class>
<role>children</role>
<minCardinality>0</minCardinality>
<maxCardinality>unbounded</maxCardinality>
</target>
</relationship>
<class name="ifEntry">
<description>
An interface entry containing objects at
the subnetwork layer and below for a particular
interface.
</description>
<attribute name="ifIndex">
<description>
A unique value for each interface. Its value
ranges between 1 and the value of ifNumber. The
value for each interface must remain constant at
least from one re-initialization of the entity's
network management system to the next re-
initialization.
</description>
<read-only/>
<type>kalua:integer</type>
</attribute>
<attribute name="ifDescr'">
<description>
A textual string containing information about the

March 2008

Linowski, et al. Expires September 12, 2008 [Page 121]

Internet-Draft Kalua DML March 2008

interface. This string should include the name of
the manufacturer, the product name and the version
of the hardware interface.
</description>
<read-only/>
<simple-type>
<restriction>
<type>DisplayString</type>
<minLength value="0"/>
<maxLength value="255"/>
</restriction>
</simple-type>
</attribute>
<attribute name="ifType">
<description>
The type of interface, distinguished according to
the physical/link protocol(s) immediately 'below'
the network layer in the protocol stack.
</description>
<read-only/>
<simple-type>
<enum>
<enum-literal value="1" name="other"/>
<enum-literal value="2" name="regular1822"/>
<enum-literal value="3" name="hdh1822"/>
<enum-literal value="4" name="ddn_x25">
<presentation>ddn-x25</presentation>
</enum-literal>
<enum-literal value="5" name="rfc877_x25">
<presentation>rfc877-x25
</presentation>
</enum-literal>
<enum-literal value="6"
name="ethernet_csmacd">
<presentation>ethernet-csmacd
</presentation>
</enum-literal>
<enum-literal value="7"
name="is088023_csmacd">
<presentation>is088023-csmacd
</presentation>
</enum-literal>
<enum-literal value="8"
name="1s088024_tokenBus">
<presentation>is088024-tokenBus
</presentation>
</enum-literal>
<enum-literal value="9"

https://datatracker.ietf.org/doc/html/rfc877

Linowski, et al. Expires September 12, 2008 [Page 122]

Internet-Draft Kalua DML March 2008

name="1s088025_tokenRing">
<presentation>iso088025-tokenRing
</presentation>

</enum-literal>

<enum-literal value="10"

name="1s088026_man'">
<presentation>iso88026-man

</presentation>
</enum-literal>
<l-- ... -->

<enum-literal value="32"
name="frame_relay">
<presentation>frame-relay
</presentation>

</enum-literal>

</enum>
</simple-type>

</attribute>

<attribute name="ifMtu">
<description>
The size of the largest datagram which can be
sent/received on the interface, specified in
octets. For interfaces that are used for
transmitting network datagrams, this is the size
of the largest network datagram that can be sent
on the interface.
</description>
<read-only/>
<type>kalua:integer</type>
<unit>octets</unit>

</attribute>

<attribute name="ifSpeed">
<description>
An estimate of the interface's current bandwidth
in bits per second. For interfaces which do not
vary in bandwidth or for those where no accurate
estimation can be made, this object should contain
the nominal bandwidth.
</description>
<read-only/>
<type>rfcll155-smi:Gauge</type>
<unit>bit/sec</unit>

</attribute>

<attribute name="ifPhysAddress'">
<description>
The interface's address at the protocol layer
immediately “below' the network layer in the
protocol stack. For interfaces which do not have

https://datatracker.ietf.org/doc/html/rfc1155

Linowski, et al. Expires September 12, 2008 [Page 123]

Internet-Draft Kalua DML March 2008

such an address (e.g., a serial line), this object
should contain an octet string of zero length.
</description>
<read-only/>
<type>PhysAddress</type>
</attribute>
<attribute name="ifAdminStatus">
<description>
The desired state of the interface. The
testing(3) state indicates that no operational
packets can be passed.</description>
<simple-type>
<enum base="kalua:int">
<enum-literal value="1"
name="up"/>
<enum-literal value="2"
name="down"/>
<enum-literal value="3"
name="testing"/>
</enum>
</simple-type>
</attribute>
<attribute name="ifOperStatus">
<description>
The current operational state of the interface.
The testing(3) state indicates that no operational
packets can be passed.</description>
<read-only/>
<simple-type>
<enum>
<enum-literal value="1"
name="up"/>
<enum-literal value="2"
name="down" />
<enum-literal value="3"
name="testing"/>

</enum>
</simple-type>
</attribute>
<attribute name="ifSpecific">
<!-- this is not easily translated!
Seems to be a workaround for true inheritance support.
Then this attribute would be the discriminator. -->
<description>

A reference to MIB definitions specific to the
particular media being used to realize the
interface. For example, if the interface is
realized by an ethernet, then the value of this

Linowski, et al. Expires September 12, 2008 [Page 124]

Internet-Draft Kalua DML March 2008

object refers to a document defining objects
specific to ethernet. If this information is not
present, its value should be set to the OBJECT
IDENTIFIER { @ @ }, which is a syntatically valid
object identifier, and any conformant
implementation of ASN.1 and BER must be able to
generate and recognize this value.
</description>
<read-only/>
<type>kalua:string</type>

</attribute>

<key scope="local">
<member>ifIndex</member>

</key>
</class>
<class name="at'">
<description>

the Address Translation group

Implementation of the Address Translation group is
mandatory for all systems. Note however that this group
is deprecated by MIB-II. That is, it is being included
solely for compatibility with MIB-I nodes, and will most
likely be excluded from MIB-III nodes. From MIB-II and
onwards, each network protocol group contains its own
address translation tables.

The Address Translation group contains one table which is

the union across all interfaces of the translation tables

for converting a NetworkAddress (e.g., an IP address) into
a subnetwork-specific address. For lack of a better term,
this document refers to such a subnetwork-specific address
as a "physical' address.

Examples of such translation tables are: for broadcast
media where ARP is in use, the translation table is
equivalent to the ARP cache; or, on an X.25 network where
non-algorithmic translation to X.121 addresses is
required, the translation table contains the
NetworkAddress to X.121 address equivalences.
</description>
</class>
<relationship name="atTable">
<description>
The Address Translation tables contain the
NetworkAddress to “physical' address equivalences.
Some interfaces do not use translation tables for
determining address equivalences (e.g., DDN-X.25
has an algorithmic method); if all interfaces are

Linowski, et al. Expires September 12, 2008 [Page 125]

Internet-Draft Kalua DML March 2008

of this type, then the Address Translation table
is empty, i.e., has zero entries.

</description>

<kind>
<containment/>

</kind>

<source>
<class>at</class>
<role>parent</role>
<minCardinality>l1</minCardinality>
<maxCardinality>1</maxCardinality>

</source>

<target>
<class>atEntry</class>
<role>children</role>
<minCardinality>0</minCardinality>
<maxCardinality>unbounded</maxCardinality>

</target>

</relationship>
<class name="atEntry">
<description>
Each entry contains one NetworkAddress to
'physical' address equivalence.

</description>

<annotation name="statusAnnotation">
<e name="deprecated"/>

</annotation>

<attribute name="atIfIndex">
<description>
The interface on which this entry's equivalence
is effective. The interface identified by a
particular value of this index is the same
interface as identified by the same value of
ifIndex.
</description>
<annotation name="statusAnnotation">

<e name="deprecated"/>

</annotation>
<type>kalua:int</type>

</attribute>

<attribute name="atPhysAddress">
<description>
The media-dependent “physical' address.
Setting this object to a null string (one of zero
length) has the effect of invaliding the
corresponding entry in the atTable object. That
is, it effectively dissasociates the interface
identified with said entry from the mapping

Linowski, et al. Expires September 12, 2008 [Page 126]

Internet-Draft Kalua DML

identified with said entry. It is an
implementation-specific matter as to whether the

agent removes an invalidated entry from the table.

Accordingly, management stations must be prepared
to receive tabular information from agents that
corresponds to entries not currently in use.
Proper interpretation of such entries requires
examination of the relevant atPhysAddress object.
</description>
<annotation name="statusAnnotation">
<e name="deprecated"/>
</annotation>
<type>PhysAddress</type>
</attribute>
<attribute name="atNetAddress'">
<description>
The NetworkAddress (e.g., the IP address)
corresponding to the media-dependent “physical'
address.
</description>
<annotation name="statusAnnotation">
<e name="deprecated"/>
</annotation>
<type>NetworkAddress</type>
</attribute>
<key scope="local">
<member>atIfIndex</member>
<member>atNetAddress</member>
</key>
</class>
<relationship name="addressTranslation">
<kind>
<calculated>
<condition>$source/atIfIndex=
$target/ifIndex
</condition>
</calculated>
</kind>
<source>
<class>atEntry</class>
<role>atEntry</role>
<minCardinality>0</minCardinality>
<maxCardinality>l1</maxCardinality>
</source>
<target>
<class>ifEntry</class>
<role>ifEntry</role>
<minCardinality>1</minCardinality>

March 2008

Linowski, et al. Expires September 12, 2008 [Page 127]

Internet-Draft Kalua DML March 2008

<maxCardinality>1</maxCardinality>
</target>
</relationship>
<class name="ip">
<attribute name="ipForwarding">
<description>
The indication of whether this entity is acting
as an IP gateway in respect to the forwarding of
datagrams received by, but not addressed to, this
entity. IP gateways forward datagrams. IP hosts
do not (except those source-routed via the host).

Note that for some managed nodes, this object may
take on only a subset of the values possible.
Accordingly, it is appropriate for an agent to
return a 'badvalue' response if a management
station attempts to change this object to an
inappropriate value.
</description>
<simple-type>
<enum base="kalua:integer">
<enum-literal value="1"
name="forwarding">
<description>acting as a gateway
</description>
</enum-literal>
<enum-literal value="2"
name="not_forwarding">
<presentation>not-forwarding
</presentation>
<description>
NOT acting as a gateway
</description>
</enum-literal>
</enum>
</simple-type>
</attribute>
</class>
<relationship name="ipAddrTable">
<description>
The table of addressing information relevant to this
entity's IP addresses.</description>
<kind>
<containment/>
</kind>
<source>
<class>ip</class>
<role>parent</role>

Linowski, et al. Expires September 12, 2008 [Page 128]

Internet-Draft Kalua DML

<minCardinality>1</minCardinality>
<maxCardinality>l1</maxCardinality>
</source>
<target>
<class>ipAddrEntry</class>
<role>children</role>
<minCardinality>0</minCardinality>
<maxCardinality>unbounded</maxCardinality>
</target>
</relationship>
<class name="ipAddrEntry">
<attribute name="ipAdEntAddr">
<description>
The IP address to which this entry's
addressing information pertains.
</description>
<read-only/>
<type>rfcl1155-smi:IpAddress</type>
</attribute>
<attribute name="ipAdEntIfIndex">
<description>
The index value which uniquely identifies the
interface to which this entry is applicable. The
interface identified by a particular value of this
index is the same interface as identified by the
same value of ifIndex.
</description>
<read-only/>
<type>kalua:integer</type>
</attribute>
<key scope="global">
<member>ipAdEntAddr</member>
</key>
</class>
<relationship name="ip_interface">
<kind>
<calculated>
<condition>$source/ipAdEntIfIndex=
$target/ifIndex
</condition>
</calculated>
</kind>
<source>
<class>ipAddrEntry</class>
<role>ipAddress</role>
<minCardinality>0</minCardinality>
<maxCardinality>l1</maxCardinality>
</source>

March

2008

https://datatracker.ietf.org/doc/html/rfc1155

Linowski, et al. Expires September 12, 2008 [Page 129]

Internet-Draft Kalua DML March 2008

<target>
<class>ifEntry</class>
<role>interface</role>
<minCardinality>1</minCardinality>
<maxCardinality>l1</maxCardinality>
</target>
</relationship>
<class name="icmp"/>
<class name="tcp"/>
<class name="udp"/>
<class name="egp"/>
<class name="transmission"/>
<class name="snmp"/>
<annotation-type name="statusAnnotation">
<annotation-property-type name="current"/>
<annotation-property-type name="deprecated"/>
<annotation-property-type name="obsolete"/>
<annotable-type>annotation-property-type
</annotable-type>
<annotable-type>annotation-type</annotable-type>
<annotable-type>attribute</annotable-type>
<annotable-type>attribute-group</annotable-type>
<annotable-type>class</annotable-type>
<annotable-type>constraint</annotable-type>
<annotable-type>enum</annotable-type>
<annotable-type>enum-literal</annotable-type>
<annotable-type>import</annotable-type>
<annotable-type>key</annotable-type>
<annotable-type>member</annotable-type>
<annotable-type>module</annotable-type>
<annotable-type>relationship</annotable-type>
<annotable-type>sequence</annotable-type>
<annotable-type>structure</annotable-type>
<annotable-type>typedef</annotable-type>
<annotable-type>use</annotable-type>
</annotation-type>

<class name="linkDown">

<description>
A linkDown trap signifies that the SNMP entity, acting in
an agent role, has detected that the ifOperStatus object for
one of its communication links is about to enter the down
state from some other state (but not from the notPresent
state). This other state is indicated by the included value
of ifOperStatus.

</description>

<max-access>accessible-for-notify</max-access>

<attribute name="ifIndex">

Linowski, et al. Expires September 12, 2008 [Page 130]

Internet-Draft Kalua DML March 2008

<type>kalua:int</type>
</attribute>
<attribute name="ifAdminStatus">
<structure>
<attribute name="ifIndex">
<type>kalua:int</type>
</attribute>
<attribute name="ifAdminStatus">
<description>
The desired state of the interface. The testing(3) state
indicates that no operational packets can be passed. When a
managed system initializes, all interfaces start with
ifAdminStatus in the down(2) state. As a result of either
explicit management action or per configuration information
retained by the managed system, ifAdminStatus is then
changed to either the up(1) or testing(3) states (or remains
in the down(2) state).</description>
<simple-type>
<enum>
<enum-literal
name="up" value="1"/>
<enum-literal
name="down" value="2"/>
<enum-literal
name="testing" value="3"/>
</enum>
</simple-type>
</attribute>
</structure>
</attribute>
<attribute name="ifOperStatus">
<structure>
<attribute name="ifIndex">
<type>kalua:int</type>
</attribute>
<attribute name="ifOperStatus'">
<description>
The current operational state of the interface. The
testing(3) state indicates that no operational packets can
be passed. If ifAdminStatus is down(2) then ifOperStatus
should be down(2). If ifAdminStatus is changed to up(1)
then ifOperStatus should change to up(1) if the interface is
ready to transmit and receive network traffic; it should
change to dormant(5) if the interface is waiting for
external actions (such as a serial line waiting for an
incoming connection); it should remain in the down(2) state
if and only if there is a fault that prevents it from going
to the up(1) state; it should remain in the notPresent(6)

Linowski, et al. Expires September 12, 2008 [Page 131]

Internet-Draft Kalua DML March 2008

state if the interface has missing (typically, hardware)

components.
</description>
<simple-type>
<enum>
<enum-literal name="up" value="1"/>
<enum-literal name="down" value="2"/>
<enum-literal name="testing" value="3"/>
<enum-literal name="unknown" value="4"/>
<enum-literal name="dormant" value="5"/>
<enum-literal name="notPresent" value="6"/>
<enum-literal name="lowerLayerDown" value="7"/>
</enum>
</simple-type>
</attribute>
</structure>
</attribute>
</class>

</kalua:module>

Linowski, et al. Expires September 12, 2008 [Page 132]

Internet-Draft Kalua DML

Appendix C.

Netconf Payload Example

March 2008

The XML example below shows a Netconf payload that is in line with
the Kalua module shown in the previous sections:

<?xml version="1.0" encoding="UTF-8"?>

<l--

This is an example of an NETCONF instance document
for the Kalua module rfcl1213-mib.xml

-->

<rpc-reply message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data xmlns:rfcl1213="iso.org.dod.internet.mgmt.mib-2.rfc1213">
<rfcl213:system>

<sysDescr>IP Router</sysDescr>
<sysObjectID>8.0.1.2.3.5.63.22.3.4</sysObjectID>
<sysUpTime>646467347</sysUpTime>
<sysContact>Bob's phone: (352) 465 3746 available
</sysContact>

<sysName>Bob's router</sysName>
<sysLocation>Bob's garage</sysLocation>
<sysServices>6</sysServices>

</rfcl1213:system>
<rfcl213:interfaces>

<ifNumber>1</ifNumber>
<rfc1213:ifEntry> <!-- classes have fully qualifi
namespaces, as they are reusable -->

<ifIndex>1</ifIndex>
<ifDescr>Flintstone Inc Ethernet A562</ifDescr>
<ifType>10</ifType>
<!-- corresponds to is088026_man -
enum-literal's value overrules name -->
<ifMtu>1500</ifMtu>
<ifSpeed>10000000</ifSpeed>
<ifPhysAddress>0:12:3f:7d:b5:8b</ifPhysAddress>
<ifAdminStatus>1</ifAdminStatus> <l-- up -
<ifOperStatus>1</ifOperStatus> <l-- up -

</rfc1213:ifEntry>

</rfcl1213:interfaces>
<rfcl213:at>

<rfcl2i13:atEntry>
<atIfIndex>1</atIfIndex>
<atPhysAddress>0:23:be:8e:00:6a</atPhysAddress>
<atNetAddress>192.168.2.1</atNetAddress>
</rfcl213:atEntry>

</rfcl213:at>
<rfc1213:ip>

<ipForwarding>1</ipForwarding>

24/7

ed

->
->

https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213

Linowski, et al. Expires September 12, 2008 [Page 133]

Internet-Draft Kalua DML

<rfcl1213:ipAddrEntry>
<ipAdEntIfIndex>1</ipAdEntIfIndex>
<ipAdEntAddr>10.34.120.3</ipAdEntAddr>
</rfc1213:ipAddrEntry>
<rfci1213:ipAddrEntry>
<ipAdEntIfIndex>1</ipAdEntIfIndex>
<ipAdEntAddr>10.22.255.255</ipAdEntAddr>
</rfc1213:ipAddrEntry>
</rfc1213:ip>
<rfci1213:icmp/>
<rfcl1213:tcp/>
<rfcl1213:udp/>
</data>
</rpc-reply>

March 2008

https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213

Linowski, et al. Expires September 12, 2008 [Page 134]

Internet-Draft Kalua DML March 2008

Appendix D. NETCONF Notification Example

The XML example below shows a NETCONF notification for the Kalua
module rfci1213-mib.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is an example of a NETCONF notification for the Kalua
module rfci213-mib.xml -->

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data xmlns:rfcl1213="iso.org.dod.internet.mgmt.mib-2.rfc1213">

<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2007-07-08T00:01:00Z</eventTime>
<rfcl1213:1inkDown>
<ifIndex>1</ifIndex>
<ifAdminStatus>
<ifAdminStatus>1</ifAdminStatus>
<ifIndex>1</ifIndex>
</ifAdminStatus>
<ifOperStatus>
<ifOperStatus>2</ifOperStatus>
<ifIndex>1</ifIndex>
</ifOperStatus>
</rfc1213:1inkDown>
</notification>
</data>
</rpc-reply>

https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213
https://datatracker.ietf.org/doc/html/rfc1213

Linowski, et al. Expires September 12, 2008 [Page 135]

Internet-Draft Kalua DML March 2008

Appendix E. DHCP example from RCDML Requirements Document

The following XML example demonstrates the Kalua variant of the DHCP
example in RCDML Requirements Document [RCDML].

<kalua:module name="DHCP" xmlns:kalua="urn:ietf:params:xml:ns:kalua:1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:kalua:1:\Users\kalua\kalua.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<presentation>DHCP</presentation>
<description>
DHCP example, as in draft-presuhn-rcdml-03#appendix-C
</description>
<ns-uri>http://example.org/ns/dhcp</ns-uri>
<ns-prefix>dhcp</ns-prefix>
<release>1</release>
<organization>Nokia Siemens Networks</organization>
<import>
<ns-uri>urn:ietf:params:xml:ns:netmod:base</ns-uri>
<ns-prefix>ndl</ns-prefix>
</import>
<import>
<ns-uri>http://example.com/ns/int</ns-uri>
<ns-prefix>int</ns-prefix>
<description>interfaces</description>
</import>
<class name="dhcp">
<attribute name="default_lease_time">
<presentation>default-lease-time</presentation>
<type>kalua:int</type>
</attribute>
<attribute name="max_lease_time">
<presentation>max-lease-time</presentation>
<type>kalua:int</type>
</attribute>
</class>
<relationship name="subnets">
<kind>
<containment/>
</kind>
<source>
<class>dhcp</class>
<role>parent</role>
</source>
<target>
<class>subnet</class>
<role>children</role>
</target>

https://datatracker.ietf.org/doc/html/draft-presuhn-rcdml-03

Linowski, et al. Expires September 12, 2008 [Page 136]

Internet-Draft Kalua DML March

</relationship>
<class name="subnet">

<attribute name="network">
<type>ndl:ipAddress</type>

</attribute>

<attribute name="prefix_length">
<presentation>prefix-length</presentation>
<type>kalua:int</type>

</attribute>

<attribute name="range">
<optional/>
<type>rangeType</type>

</attribute>

<attribute name="max_lease_time">
<presentation>max-lease-time</presentation>
<type>kalua:int</type>
</attribute>
<attribute name="leases">
<read-only/>
<sequence elementName="lease">
<structure>
<attribute name="ip_address">
<presentation>ip-address</presentation>
<type>ndl:ipAddress</type>
</attribute>
<attribute name="starts">
<type>kalua:dateTime</type>
</attribute>
<attribute name="ends'">
<type>kalua:dateTime</type>
</attribute>
<attribute name="mac_address">
<presentation>mac-address</presentation>
<type>ndl:nsapAddress</type>
</attribute>
<key scope="local">
<member>ip_address</member>
</key>
</structure>
</sequence>
</attribute>
<attribute name="interface_filter">
<sequence elementName="interface">
<type>kalua:string</type>
</sequence>
</attribute>
<key scope="global">
<member>network</member>

2008

Linowski, et al. Expires September 12, 2008 [Page 137]

Internet-Draft Kalua DML March

<member>prefix_length</member>
</key>
</class>
<typedef name="rangeType'">
<structure>
<attribute name="dynamic_bootp">
<presentation>dynamic-bootp</presentation>
<type>kalua:boolean</type>
<defaultValuelLiteral>true</defaultValuelLiteral>
</attribute>
<attribute name="low">
<mandatory/>
<type>ndl:ipAddress</type>
</attribute>
<attribute name="high">
<mandatory/>
<type>ndl:ipAddress</type>
</attribute>
</structure>
</typedef>
<relationship name="dhcp_options_Rel">
<kind>
<containment/>
</kind>
<source>
<class>dhcp</class>
<role>dhcp</role>
</source>
<target>
<class>dhcp_options</class>
<role>dhcp_options</role>
</target>
</relationship>
<class name="dhcp_options">
<presentation>dhcp-options</presentation>
<attribute name="router_list">
<presentation>router-list</presentation>
<sequence elementName="router">
<type>ndl:ipAddress</type>
</sequence>
</attribute>
<attribute name="domain_list">
<presentation>domain-list</presentation>
<sequence elementName="domain">
<type>ndl:ipAddress</type>
</sequence>
</attribute>
<attribute name="custom">

2008

Linowski, et al. Expires September 12, 2008 [Page 138]

Internet-Draft Kalua DML March 2008

<structure>
<attribute name="option">
<type>kalua:int</type>
</attribute>
<attribute name="ip_address">
<presentation>ip-address</presentation>
<type>ndl:ipAddress</type>
</attribute>
<attribute name="string">
<type>kalua:string</type>
</attribute>
</structure>
</attribute>
</class>
<relationship name="filtered_interfaces">
<kind>
<calculated>
<condition>
$source/interface_filter/interface=$target/ifName
</condition>
</calculated>
</kind>
<source>
<class>subnet</class>
<role>filtering_subnet</role>
<maxCardinality>unbounded</maxCardinality>
</source>
<target>
<class>int:interface</class>
<role>filtered_interface</role>
<maxCardinality>unbounded</maxCardinality>
</target>
</relationship>
<class name="shared_network">
<attribute name="name'">
<type>kalua:string</type>
</attribute>
<key scope="global">
<member>name</member>
</key>
</class>
<relationship name="shared_network_subnets">
<kind>
<containment/>
</kind>
<source>
<class>shared_network</class>
<role>parent</role>

Linowski, et al. Expires September 12, 2008 [Page 139]

Internet-Draft Kalua DML March 2008

</source>
<target>
<class>subnet</class>
<role>children</role>
</target>
</relationship>
</kalua:module>

Linowski, et al. Expires September 12, 2008 [Page 140]

Internet-Draft Kalua DML March 2008

Appendix F. DHCP augmentation example from RCDML Requirements Document

The XML example below shows the Kalua variant of the DHCP
augmentation example in RCDML Requirements Document [RCDML].

<kalua:module name="DHCP_augment"
xmlns:kalua="urn:ietf:params:xml:ns:kalua:1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:kalua:1:\Users\kalua\kalua.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<presentation>DHCP_augment</presentation>
<description>DHCP augmentation example, as in
http://tools.ietf.org/html/draft-presuhn-rcdml-03#appendix-C
</description>
<ns-uri>http://example.org/ns/cal</ns-uri>
<ns-prefix>cal</ns-prefix>
<release>1</release>
<organization>Nokia Siemens Networks</organization>
<import>
<ns-uri>http://example.org/ns/dhcp</ns-uri>
<ns-prefix>dhcp</ns-prefix>

</import>
<class name="extended_dhcp_options">
<description>

Inheritance would imply substitution of the element
name as well, which is not the case here. An additional
augmentation mechanism would be needed to truly support
this case.

</description>
<super-class>dhcp:dhcp_options</super-class>
<attribute name="timezone">

<type>kalua:string</type>

</attribute>

</class>

</kalua:module>

http://tools.ietf.org/html/draft-presuhn-rcdml-03#appendix-C

Linowski, et al. Expires September 12, 2008 [Page 141]

Internet-Draft Kalua DML March 2008

Appendix G. Example for Partial Lock RPC for NETCONF

The XML example below shows a Kalua example for Partial Lock RPC for
NETCONF.

<kalua:module name="NCPL" xmlns:kalua="urn:ietf:params:xml:ns:kalua:1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:kalua:1:\Users\kalua\kalua.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<presentation>NETCONF partial lock</presentation>
<description>NETCONF partial lock operations</description>
<ns-uri>urn:ietf:params:xml:ns:netconf:partial-lock:1.0</ns-uri>
<ns-prefix>ncpl</ns-prefix>
<release>1</release>
<organization>IETF</organization>
<import>
<ns-uri>urn:ietf:params:xml:ns:netconf:base:1.0</ns-uri>
<ns-prefix>nc</ns-prefix>
</import>
<attribute-group name="lock_id_attribute">
<attribute name="lock_id">
<type>kalua:unsignedInt</type>
</attribute>
</attribute-group>
<operation name="partial_ lock">
<description>
This operation defines the element for partial-lock RPC
operation. Positive response to this operation is the
"lock-id" element.
</description>
<input>
<attribute name="config_name">
<type>nc:config_name</type>
</attribute>
<attribute name="select">
<sequence>
<type>kalua:string</type>
</sequence>
</attribute>
</input>
<output>
<use>
<attribute-group>sadasd</attribute-group>
</use>
</output>
</operation>
<operation name="partial unlock">
<description>

Linowski, et al. Expires September 12, 2008 [Page 142]

Internet-Draft Kalua DML March 2008

This operation defines the element for partial-unlock RPC
operation. The standard positive response
(rpc-reply with <nc:ok/>) is sent if the operation
succeeds.
</description>
<input>
<use>
<attribute-group>sadasd</attribute-group>
</use>
</input>
</operation>
</kalua:module>

Linowski, et al. Expires September 12, 2008 [Page 143]

Internet-Draft

Appendix H.

Kalua DML

Support of RCDML Requirements in Kalua

March 2008

Following table shows the support of RCDML Requirements in Kalua.

1. Consequences of NETCONF

1.1. Notification Definition
(Agreed)

1.2. Notification Get (NOT Agreed)

1.3. Locking (Agreed)
1.4. All Base Operations (Agreed)

1.5. Define new NETCONF Operations
(Agreed)

1.6. Separation of Operations and
Payload (Agreed)

1.7. Error Annotation (Agreed)

1.8. No Mixed Content (Agreed)

2. Model Representation
Requirements

2.1. Human Readable (Agreed)
2.2. Machine Readable (Agreed)

2.3. Textual Representation
(Agreed)

2.4. Document Information (Agreed)

2.5. Ownership and Change Control
(Agreed)

Kalua
support

Yes

Yes (%)

Yes
Yes

Yes (wo)

Yes

Yes (wo)

Yes

Yes
Yes

Yes

Yes

Yes

Reuse of
config
definitions
possible, not
mandatory

In parallel to
Req. # 1.5

Linowski, et al. Expires September 12, 2008 [Page 144]

Internet-Draft Kalua DML March 2008

elements is
not defined

| 2.6. Dependency Risk Reduction | Yes | |
| (Agreed) I I I
I I I I
| 2.7. Diff-Friendly (Agreed) | Yes | |
I I I I
| 2.8. Internationalization and | Yes | |
| Localization | | |
I I I I
| 2.8.1. Descriptions using Local | Yes | |
| Languages (Agreed) | | |
I I I I
| 2.8.2. UTF-8 Encoding (Agreed) | Yes | |
I I I I
| 2.8.3. Localization Support | Yes | |
| (Agreed) I I I
I I I I
| 2.8.4. Error String Localization | Yes | |
| (Agreed) I I I
I I I I
| 2.8.5. Tag Names and Strings in | No | |
| Local Languages (NOT agreed) | | |
I I I I
| 3. Reusability Requirements | | |
I I I I
| 3.1. Modularity (Agreed) | Yes | |
I I I I
| 3.2. Reusable Definitions (Agreed) | Yes | |
I I I I
| 3.3. Modular extension (Agreed) | Yes | |
I I I I
| 4. Instance Data Requirements | |

I I I I
| 4.1. Default Values on the Wire | Yes (wo) | |
| (Agreed) I I I
I I I I
| 4.2. Ordering | |

I I I I
| 4.2.1. Ordered Lists (Agreed) | Yes | |
I I I I
4.2.2. Order within Containers (NOT	No	Not for
Agreed)		containment
		relationships.
I I I I		
4.2.3. Interleaving (NOT Agreed)	Yes (*)	Order of
		contained
I I I I
I I I I
I I I I

Linowski, et al. Expires September 12, 2008 [Page 145]

Internet-Draft Kalua DML March 2008

4,3. Validation

instance (NOT Agreed)

I I I I
I I I I
4.3.1. Validate Instance Data	Yes	No explicit
(Agreed)		definition of
		valid and
		well-formed
I I I I		
4.3.2. Tools to Validate Instance	No	
Data (NOT Agreed)		
I I I		
4.4. Instance Canonicalization	Yes (wo)	
(Agreed) I I I		
I I I I		
4.5. Character Set and Encoding	Yes	
(Agreed) I I I		
I I I I		
4.6. Model Instance Localization	Yes (*)	
(NOT Agreed)		

I I I I
| 5. Semantic Richness Requirements | | |
I I I |
| 5.1. Human-Readable Semantics | Yes | |
| (Agreed) I I I
I | I I
| 5.2. Basic Types (Agreed) | Yes | |
I I I I
5.3. Handling Opaque Data (Agreed)	Yes (wo)	kalua:any type
		can be added
		easilly
I I I I		
5.4. Keys		

I I I I
| 5.4.1. Define Keys (Agreed) | Yes | |
I I I I
| 5.4.2. Deep Keys (NOT Agreed) | Yes | |
I I I |
| 5.5. Relationships | | |
I I I I
| 5.5.1. Simple Relationships | Yes | |
| (Agreed) I I |
I I I I
| 5.5.2. Many-to-Many Relationships | Yes (*) | |
| (NOT Agreed) | |

I I I I
| 5.5.3. Retrieve Relationships | Yes (*) | |
I I I I
I I I I

Linowski, et al. Expires September 12, 2008 [Page 146]

Internet-Draft Kalua DML March 2008

| 5.5.4. Retrieve Relationships - | Yes (*) | |
| qualified (NOT Agreed) | |

I I I I
| 5.6. Hierarchical Data | Yes | |
I | I I
| 5.7. Referential Integrity | | |
I I I I
5.7.1. Referential Integrity (NOT	Yes (wo)	Calculated
Agreed) [(")	relationships	
		do not imply
		referential
		integrity.
		Reference
		relationships
		only cover the
		key attributes
I I I I		
5.7.2. Extended Referential	No	Not really
Integrity (NOT Agreed)		clear what
		this is
I I I		
5.7.3. Referential Integrity	Yes (*)	
Robustness (NOT Agreed)		
I	I I	
5.8. Characterize Data (Agreed)	Yes	
I I I I		
5.9. Defaults		

I I I I
| 5.9.1. Default Values (NOT Agreed) | Yes (*) | |
I I I I
| 5.9.2. Dynamic Defaults (NOT | No | |
| Agreed) I I I
I I I I
| 5.10. Formal Constraints | | |
I | I I
| 5.10.1. Formal Description of | Yes | |
| Constraints (Agreed) | |

I I I I
| 5.10.2. Multi-element Constraints | No | |
| (NOT Agreed) | |

I I I I
| 5.10.3. Non-Key Uniqueness (Agreed) | Yes | |
I I I I
| 5.11. Units (Agreed) | Yes | |
I I I I
| 5.12. Define Actions (NOT Agreed) | No | |
I I I I
I I I I

6. Extensibility Requirements

Linowski, et al. Expires September 12, 2008 [Page 147]

Internet-Draft Kalua DML March 2008

element names
not understood
by old
clients.

| 6.1. Language Extensibility | Yes | |
I I I I
| 6.1.1. Language Versioning (Agreed) | Yes | |
I I I I
| 6.1.2. User Extensions (NOT Agreed) | Yes (*) | |
I I I |
| 6.1.3. Mandatory Extensions (NOT | No | |
| Agreed) I I I
I | I I
| 6.2. Model Extensibility | | |
I I I I
| 6.2.1. Model Version Identification | Yes | |
| (Agreed) I I I
I I I I
| 6.2.2. Interaction with defaults | No | |
| (NOT Agreed) | |

I I I I
| 6.2.3. Conformance Interference | Yes (wo) | |
| (NOT Agreed) I (*) I

I | I I
6.2.4. Obsolete Portions of a Model	Yes	Solution
(Agreed)		assumes that
		the manager
[will select	
		the correct
		version of a
		module
I I	(matching the	
I I	agent) I	
I I I I		
6.3. Instance Data Extensibility		
I I I I		
6.3.1. Schema Version of Instance	Yes (wo)	
(NOT Agreed) I (*) I		

I | I I
| 6.3.2. Interaction with default | No | |
| Values (NOT Agreed) | |

I I I I
6.3.3. Backwards Compatibility	Partially	Additional
(Agreed)		inheritance
		may lead to
I I I I
I I I I
I I I I
I I I I
I I I I

Linowski, et al. Expires September 12, 2008 [Page 148]

Internet-Draft Kalua DML March 2008

6.3.4. Forwards Compatibility (NOT	No	Unclear about
Agreed)		implications
		of this
		requirement
I	I I	
7. Talking About Conformance		

I I I I
| 7.1. Conformance to the Modeling | Yes (*) | |
| Language (NOT Agreed) | | |
I I I |
| 7.2. Conformance to a Model | Yes | |
| (Agreed) I I I
I I I I
| 8. Techno-Political Constraints | |

I I I I
| 8.1. Standard Technology (NOT | Yes (*) | |
| Agreed) I I I
I I I I
| 8.2. Translate Models to Other | Yes | |
| Forms (Agreed) | |

I I I |
| 8.3. Minimize SMI Translation Pain | No | |
| (NOT Agreed) | |

I | I I
| 8.4. Generate Models from Other | Yes (*) | |
| Forms (NOT Agreed) | | |
I I I I
| 8.5. Isolate Models from Protocol | Yes (*) | |
| (NOT Agreed) | |

I I I I
| 8.6. Library Support (NOT Agreed) | Yes (*) | |
I I I I
| 8.7. REC 3139 Considerations | Yes | |
I I I I
| 8.8. RFC 3216 Considerations | Yes | |
. S SR TRy +

Table 2: Support of RCDML Requirements in Kalua
(wo): work ongoing

(*): Not agreed RCDML requirement supported by Kalua

https://datatracker.ietf.org/doc/html/rfc3139
https://datatracker.ietf.org/doc/html/rfc3216

Linowski, et al. Expires September 12, 2008 [Page 149]

Internet-Draft Kalua DML

Appendix I. Support of Use Cases for SMI and MIB Modules

March 2008

Following table shows the support of Use cases for SMI and MIB
modules in Kalua.

Agreement on a set of standard knobs (or
proprietary knobs in a proprietary MIB module).
These knobs can be defined in a clear and
unambiguous manner including the restrictions
that apply to the knobs, such as range,
character set, what gets counted in a counter,
and so on. Ideally, Netconf knobs would support
all the types of management object properties
already supported by MIB modules, unless it can
be shown that such properties do not apply to
configuration.

clear specification in the schema of what
MUST/SHOULD/MAY/MUST NOT/SHOULD NOT be supported
to claim compliance to the standard, to support
vendor-neutral interoperability

modular documents that can be formally validated
using tools such as smilint

enough information for implementers to
implement, with internal engineering choices
being implementer-dependent, but with
vendor-neutral formats on-the-wire

enough human-readable description/qualities that
operators can read the raw schema to understand
the meaning of a managed object

enough machine-readability that applications can
effectively parse (and compare/contrast/utilize)
the information across multiple vendor
implementations, and across multiple vendor
implementation releases.

| Supported |
| by Kalua |

Yes (%)

Yes

Yes

Yes

Yes

Linowski, et al. Expires September 12, 2008 [Page 150]

Internet-Draft Kalua DML March 2008

the document can be used by network management Yes
applications to programmatically create
corresponding databases of information (i.e. an
NMS can IMPORT a MIB module to create
corresponding record formats in a database)
each managed object is clearly Yes
instance-addressable such that a sender can
label the object instance being sent in a
message

the receiver of a message can clearly identify Yes
the instance of any object contained in a
message, and can validate the data types and
values (such as range, character set, etc.) of
objects being passed in a message

10 a protocol-dependent message MAY contain a very Yes
small subset of the managed objects defined in a
schema (e.g., one object from a schema) and
still meet the previous requirements

11 a protocol-dependent message MAY contain a Yes
mixture of managed objects defined in different
modules/schemas, and still meet the previous

requirements

Table 3: Support of Use cases for SMI and MIB modules in Kalua

(*): Kalua does not define optional elements.

Linowski, et al. Expires September 12, 2008 [Page 151]

Internet-Draft Kalua DML March 2008

Authors' Addresses

Bernd Linowski

Nokia Siemens Networks
Heltorfer Strasse 1
40472 Duesseldorf
Germany

Email: bernd.linowski@nsn.com

Martin Storch

Nokia Siemens Networks
Heltorfer Strasse 1
40472 Duesseldorf
Germany

Email: martin.storch@nsn.com

Mikko Lahdensivu

Nokia Siemens Networks
Hatanpaeaen valtatie 30
33100 Tampere

Finland

Email: mikko.lahdensivu@nsn.com

Mehmet Ersue

Nokia Siemens Networks
St.-Martin-Strasse 76
81541 Munich

Germany

Email: mehmet.ersue@nsn.com

Linowski, et al. Expires September 12, 2008 [Page 152]

Internet-Draft Kalua DML March 2008

Full Copyright Statement
Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP_ 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Linowski, et al. Expires September 12, 2008 [Page 153]

