
Independent Submission M. Fabbrini
Internet-Draft May 22, 2022
Intended status: Informational
Expires: November 23, 2022

FC1 Algorithm Ushers In The Era Of Post-Alien Cryptography

draft-fabbrini-algorithm-post-alien-cryptography-00

Abstract

 This memo aims to introduce the concept of "post-alien cryptography",
 presenting a symmetric encryption algorithm which, in our opinion,
 can be considered the first ever designed to face the challenges
 posed by contact with an alien civilization. FC1 cipher offers an
 unprecedented grade of confidentiality. Based on the uniqueness of
 the modular multiplicative inverse of a positive integer a modulo n
 and on its computability in a polynomial time, this non-deterministic
 cipher can easily and quickly handle keys of millions or billions of
 bits that an attacker does not even know the length of.
 The algorithm's primary key is the modulo, while the ciphertext is
 given by the concatenation of the modular inverse of blocks of
 plaintext whose length is randomly chosen within a predetermined
 range. In addition to the full specification here defined, in a
 related work we present an implementation of it in Julia Programming
 Language, accompanied by real examples of encryption and decryption.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 23, 2022.

Fabbrini Expires November 23, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/draft-fabbrini-algorithm-post-alien-cryptography-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft FC1 Post-Alien Cryptography May 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. The Need Of A Post-Alien Cryptography 3
3. Specification . 5
3.1. Modular Multiplicative Inverse 5
3.2. Description . 5

3.2.1. Encryption . 5
3.2.2. Decryption . 7

3.3. Recommended Parameters Set 7
4. Implementation And Tests 8
5. IANA Considerations . 8
6. Security Considerations 8
7. Informative References . 9

 Author's Address . 9

1. Introduction

 In a symmetric key encryption scheme, a single key is used for both
 encryption and decryption. An algorithm can be considered safe if the
 only way to guess the key is to explore all the possibilities given
 by the different combinations of zeros and ones. This is called a
 "brute-force attack" and under certain circumstances it can be very
 difficult, if not impossible, to implement. A 256-bit key (the length
 used by the current AES encryption standard) is at present considered
 "unbreakable" even by the next generation of quantum computers. So it
 appears that approved standards can ensure a good level of
 confidentiality for many decades to come. Neverthless, if we look at
 some structural aspects of them, we can find some relevant weaknesses
 that could jeopardize the security of encrypted data in light of some
 new challenges that we are likely to face in a near future. But

Fabbrini Expires November 23, 2022 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft FC1 Post-Alien Cryptography May 2022

 before going into the technical details of the weaknesses, it is
 useful to dwell on the implicit hypothesis that underlies the alleged
 security of encryption standards. In fact, they are designed to
 instantly transfer encrypted data between two different points in
 space. But if we consider sending data to a different point in time,
 then the algorithms used would be perhaps inadequate to protect the
 confidentiality of the original text. For example, suppose Alice
 wants to transmit an AES-256 encrypted message to Bob who will use
 the symmetric key to decrypt it in 50 years. How can Alice be sure
 that the technological development of the coming years will not lead
 to the ability of testing 2^256 different sequences of 0's and 1's
 in a reasonable time, so making the key in Bob's possession useless?
 Now let's see the structural aspects that may compromise the safety
 of the accepted standards. Current standards have four main aspects
 in common. The first two are related to the key: its length is known
 and does not exceed 256 bits. The last two relate to the algorithms:
 they are deterministic and convert a fixed block of plaintext into a
 ciphertext block of the same length. An algorithm is deterministic if
 a given plaintext always produces a given ciphertext. These four
 points are generally considered irrelevant and do not raise security
 concerns. In our opinion, there are however two specific scenarios
 that could change the rules of the game. The first one, which we call
 the "internal" scenario, relates to the prospect of an upcoming world
 war, or at least of a long period of involution in the reciprocal
 relations among states. A tragic war is hitting Europe. Again.
 Diplomatic relations are cooling down and scientific discoveries
 become military secrets. In this context of separation and conflict,
 how can one be sure that a certain technological level has not
 already been reached by the adversary? So, for example, how can we
 be sure that no one in the world is able to test 2^256 different
 possibilities in a reasonable time? But if the internal context is
 worrying, perhaps the "external" one is even more so. By "external"
 scenario we refer to the possibility of an encounter with an alien
 civilization that could render current encryption schemes
 ineffective, thus posing serious security risks for the entire human
 species. FC1 was designed by imagining attackers possessing a
 computational capacity far superior to that of our present and future
 computers.

2. The Need Of A Post-Alien Cryptography

 Imagine waking up tomorrow and discovering aliens exist, they're here
 and they're not good guys. Then you decide to join others to organize
 a resistance. The first thing you realize is that you need a secure
 communication channel to coordinate with others. The second bad news
 of the day is to understand that the AES-xxx is unable to protect
 your messages because the aliens use cryptanalytic techniques and

Fabbrini Expires November 23, 2022 [Page 3]

Internet-Draft FC1 Post-Alien Cryptography May 2022

 computing power capable of breaking any deterministic algorithm.
 But without imagining alien invasion scenarios, let's think about
 how much the chances of a first contact with aliens will increase
 thanks to the synergy between the public and private sectors in
 space trips. Humanity is about to become a multiplanetary species and
 soon our spaceships will venture into deep space in search of planets
 to explore and on which to perpetuate the human race. It is logical
 to assume that aliens are technologically more advanced than us and
 have perhaps another math, but that they are able to understand ours.
 It also makes sense to assume that however advanced their
 computational abilities are, they are somehow "bounded". Since a
 brute-force attack implies in any case the use of computing power,
 it may be a good idea "to raise the bar", thus passing from keys of
 256 bits to keys of hundreds of thousands or millions of bits.
 Likewise, it can be helpful not to publicly disclose the key length.
 But in the face of considerable computing power, the use of a larger
 key may not be sufficient. It is necessary to break the mold and move
 without delay from deterministic to non-deterministic algorithms,
 making the relationship between input and output more complex and
 unpredictable. These are the main lines that have guided the
 construction of the FC1 algorithm, the first one we made public in a
 class of algorithms designed to face the exciting challenges of our
 future.
 We believe that FC1 ushers in the era of "post-alien cryptography"
 and we hope that the debate we have stimulated will lead to realize
 we need to have a vision oriented to the design of algorithms that
 can defend human life from any possible threat.

3. Specification

3.1. Modular Multiplicative Inverse

 Definition - For a positive integer n, and a (an element of Z) we say
 that a' is a multiplicative inverse modulo n if

 a*a' is congruent to 1 mod n

 It can be proven [1] that:

 1. a has a multiplicative inverse modulo n if and only if a and n
 are relatively prime
 2. if a' exists, then it is unique

 Computation - There are various methods to compute the inverse modulo
 n in a polynomial time [2] [3] which, if implemented in languages
 like Julia, having built-in support for Arbitrary Precision
 Arithmetic, make it possible to calculate a' in a few fractions of a

Fabbrini Expires November 23, 2022 [Page 4]

Internet-Draft FC1 Post-Alien Cryptography May 2022

 second even for numbers with hundreds of thousands of digits.

 A note on Julia Programming Language - With origins in the Computer
 Science and Artificial Intelligence Laboratory (CSAIL) and the Dep.
 of Mathematics, Julia is a programming language created in 2009 by
 Jeff Bezanson, former MIT Julia Lab researchers Stefan Karpinski, and
 Viral B. Shah, and professor of mathematics Alan Edelman. The Julia
 programming language is a flexible dynamic language, appropriate for
 scientific and numerical computing. Julia provides software support
 for Arbitrary Precision Arithmetic, which can handle operations on
 numeric values that cannot be represented effectively in native
 hardware representations, but at the cost of relatively slower
 performance. To allow computations with arbitrary-precision integers
 and floating point numbers, Julia wraps the GNU Multiple Precision
 Arithmetic Library (GMP) and the GNU MPFR Library, respectively.
 In an APA application the size of the integer is limited only by the
 available memory.

3.2. Description

 Basic concept - FC1 essentially relies on the uniqueness of the
 modular multiplicative inverse of a positive integer a modulo n and
 on the fact that it can be calculated in a polynomial time. Here the
 modulo is the main key which, due to the algorithm's design, can be
 any positive integer, while the ciphertext is the modular
 multiplicative inverse. The plaintext, once tagged with a hash, is
 divided into blocks, the length of which is chosen by a random number
 generator, converted into ciphertext and sent over an insecure
 channel.

 Keys - Keys to be kept secret and transferred over a secure channel
 are primary key (the modulo) and secondary key. The latter represents
 the length of a random string that is placed at the beginning of the
 ciphertext.

3.2.1 Encryption

 Hash - The very first operation that is performed is the computation
 of a hash of the plaintext using the SHA-256 function. This tag is
 then appended at the end of the text. The purpose is to ensure the
 integrity of the data transmitted. We denote the plaintext with the
 final tag by 'tplain':

 tplain = plaintext || hash

 Ciphertext initialization - With the value of the secondary key, a
 random string is created which we denote by 'startpad'. This is the
 initial ciphertext:

Fabbrini Expires November 23, 2022 [Page 5]

Internet-Draft FC1 Post-Alien Cryptography May 2022

 c = startpad

 Fencrypt - A main function named 'fencrypt' has the task of
 controlling the flow, switching between different sections of the
 algorithm in relation to a certain threshold value of the length of
 the tagged plaintext that still remains to be encrypted. The
 threshold is fixed at 1.5 times the length of the modulo.

 Frand - In the first part of the algorithm fencrypt calls a random
 number generator in a given range, which we denote by 'frand'. The
 generated random integer represents the length of the i-block of
 tagged plaintext to be encrypted. We denote by |modulo| the length of
 the modulo. The frand function generates a random value between 1 and
 |modulo| − 3. From the length of the modulo, 3 bits are subtracted to
 define the upper limit of the random function because 2 bits space is
 used to append the leading and trailing 1 (see next point 'Fintgen').
 Moreover, since we want that the integer, whose modular inverse we
 are going to calculate, is less than the modulo, another bit is
 dropped:

 1 =< frandvalue =< |modulo| - 3

 Fintgen - A leading and a trailing '1' are appended at each chunk of
 tagged plaintext whose length is randomly selected by frand function.
 The leading 1 is meant to make sure that the input of the function
 computing the modular inverse is a positive integer since the block
 could start with '0'. The trailing '1' serves to prevent the
 algorithm from blocking in the case of an even modulo and a tagged
 plaintext to be encrypted containing a long row of 0's. We denote by
 tplain_i the i-block of tagged plaintext; then is:

 input_i = 1 || tplain_i || 1

 Finv - Once the input has been prepared, it is possible to attempt to
 compute the modular inverse using the 'finv' function. If the input
 and the modulo are not coprime, finv cannot produce a result and it
 calls the main function fencrypt which calls frand again in order to
 try with a different random integer. Else, if they are coprime, the
 modular multiplicative inverse is computed in a polynomial time and
 passed to the next step.

 Fblockgen - If the modular inverse is computable, a function called
 'fblockgen' comes into play comparing the modulo length with that of
 the modular inverse generated by finv. If the lengths are the same,
 fblockgen does not modify the string:

 If |modulo| = |finvvalue|_i

Fabbrini Expires November 23, 2022 [Page 6]

Internet-Draft FC1 Post-Alien Cryptography May 2022

 output_i = finvvalue_i

 Otherwise, if the modular inverse length is less than modulo length,
 fblockgen adds one or more leading zeros so that the lengths match:

 If |modulo| > |finvvalue|_i

 output_i = 0..0 || finvvalue_i

 Final step of the first part - The block created by fblockgen is
 concatenated to the existing ciphertext and the main function
 fencrypt is called.

 Second part: ciphertext finalization - When threshold is crossed, the
 finalization functions are called. They have the task of
 simultaneously calculating the last and the second-last block of
 ciphertext. This design solution is necessary to prevent the case the
 modular inverse does not exist for the last portion of tagged
 plaintext, with the consequence of blocking the whole encryption
 process. The last step involves adding a random final padding whose
 length must be less than modulo length. This final padding, that we
 call 'endpad', is actually a third key that we can consider inferred
 from the other two. It is automatically added by the encryption
 algorithm. In the subsequent decryption phase, the algorithm will
 recognize it as its length is less than that of the modulo and
 finally it will discard it without attempting to decrypt it.

 Encryption flowchart - A detailed flowchart of the encryption process
 is provided in our related work [4].

3.2.2 Decryption

 We omit a complete description of the decryption algorithm since it
 is trivial. Note that, once the whole tagged plaintext has been
 decrypted, it is checked, through the hash function, that the final
 tag is correct and that therefore the integrity of the data is not
 compromised.

3.3 Recommended Parameters Set

 Primary key - We recommend a minimum length of 501 bits. At the same
 time, we encourage the use of 50.000-100.000 bits keys to fully
 exploit the potential offered by the algorithm. To maximize the speed
 we suggest the use of a modulo having as factors non-trivial prime
 numbers. If, on the other hand, the aim is to create further problems
 for a potential attacker, we recommend the inclusion of some trivial
 factors such as 3, 5, 11 and so on. Remember that you can safely use
 an even modulo without absolutely slowing down the algorithm.

Fabbrini Expires November 23, 2022 [Page 7]

Internet-Draft FC1 Post-Alien Cryptography May 2022

 Secondary key - It has no upper limit and can even be 0.

4. Implementation And Tests

 We have coded the algorithm in Julia Programming Language and tested
 it using keys of different length, from 10.000 bits to over
 1.000.000.000 bits. Both the code and some of the tests were recently
 published in a paper, available on IACR [4].

5. IANA Considerations

 This memo includes no request to IANA.

6. Security Considerations

 The minimum recommended primary key length we have seen is 501 bits.
 The maximum length is instead not defined because it depends on the
 limits of the system on which the algorithm is run. In our tests we
 went as far as keys of over one Gigabit, which means a length of over
 a billion of bits. Now, if by hypothesis the attacker knew the length
 of the key, the startpad was zero and he could have any information
 about the content of the first block of plaintext, for a brute-force
 attack he would have to try about 2^1.000.000.000 different
 combinations. Since the attacker does not normally know the length of
 the key, assuming the startpad equals zero, the number of attempts
 would be:

 SUM [2^i] from i = 501 - 1, to i = 1.000.000.000 - 1

 We denote by |maxmodulo| the longest key that a system can handle in
 a 'reasonably short time' and by |minmodulo| the minimum recommended
 length of the primary key.
 Generalizing and assuming that |tplain| > |maxmodulo| we have:

 SUM [2^i] from i = |minmodulo| - 1, to i = |maxmodulo| - 1

 FC1 therefore provides an incredible grade of confidentiality,
 compared to the standards currently in use, which makes it suitable
 for facing the difficult challenges of the next future. As far as
 integrity is concerned, it is ensured by adding a tag generated by a
 SHA-256 function. In a future work we will discuss in detail other
 possible attacks (such as the 'replay attack') and we will show how
 FC1 is immune to them.

Fabbrini Expires November 23, 2022 [Page 8]

Internet-Draft FC1 Post-Alien Cryptography May 2022

7. Informative References

 [1] Victor Shoup (2009) A Computational Introduction to Number Theory
 and Algebra, Cambridge University Press; 2nd ed.
 [2] Michele Bufalo, Daniele Bufalo, Giuseppe Orlando (2021) A Note on
 the Computation of the Modular Inverse for Cryptography, Axioms
 [3] Niels Moeller (2007) On Schoenhage's algorithm and subquadratic
 integer GCD computation, MATHEMATICS OF COMPUTATION
 [4] Michele Fabbrini (2022) FC1: A Powerful, Non-Deterministic,
 Symmetric Key Cipher, Cryptology ePrint Archive, Report 2022/567

https://eprint.iacr.org/2022/567

Author's Address

 Michele Fabbrini
 Email: fc1_id@fabbrini.org

Fabbrini Expires November 23, 2022 [Page 9]

https://eprint.iacr.org/2022/567

Internet-Draft FC1 Post-Alien Cryptography May 2022

