
Internet Engineering Task Force J. Fabini
Internet-Draft TU Wien
Intended status: Informational November 4, 2019
Expires: May 7, 2020

Communication Network Perspective on Malware Lifecycle
draft-fabini-smart-malware-lifecycle-00

Abstract

 Today's systems, networks, and protocols are complex and include
 unknown vulnerabilities that adversaries can exploit. The large-
 scale deployment of network security protocols establishes an
 additional threat by implementing a substrate for hidden
 communications like covert or subliminal channels. The resulting
 ecosystem builds a convenient platform for malicious, automated
 software (malware) to infiltrate critical infrastructures, to
 gradually infect large parts of the system and to coordinate
 distributed malware operation.

 Based on the observation that malware depends on network
 communications to discover, propagate, coordinate, and unleash its
 functionality, this memo recommends methods to identify potential
 interfaces and interactions between malware and protocols. It
 proposes a generic malware lifecycle model that defines a set of
 generic malware states and possible transitions between these states.
 Coordinated activities of distributed malware can be mapped to state
 transitions in malware instances, supporting the identification of
 (potentially hidden) network communication as a trigger for actions
 and hints on protocols that enabled the communication. Eventually,
 the proposed model aims at supporting the identification of
 architectures, protocols, interfaces, and points in time that a)
 either inhibit hidden malware communication or b) allow for optimized
 detection of anomalies as main prerequisite for timely
 countermeasures.

 While earlier work focused on protecting single hosts from
 compromise, this memo adopts a holistic view and considers the health
 of the overall networked system to be of highest priority. Presuming
 vulnerable systems, we stress that components or subsystems must be
 disconnected on suspected infection in an attempt to continue (even
 partial) operation of the overall (non-infected) system after the
 disconnect. Containment - the isolation of an infected subsystem -
 becomes an essential security feature in the context of critical
 infrastructures that influences on deployed protocols, interfaces and
 architectures.

Fabini Expires May 7, 2020 [Page 1]

Internet-Draft Malware Lifecycle November 2019

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4

2. Generic Malware Lifecycle 4
2.1. Access . 6
2.2. Infection . 6
2.3. Discovery . 7
2.4. Propagation . 7
2.5. Control . 8
2.6. Trigger . 8
2.7. Attack . 8
2.8. Cleanup . 9

3. Mapping the Lifecycle Model to Real Malware 9
3.1. Case study: Stuxnet 10
3.1.1. Access . 11

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Fabini Expires May 7, 2020 [Page 2]

Internet-Draft Malware Lifecycle November 2019

3.1.2. Infection . 11
3.1.3. Discovery . 11
3.1.4. Propagation . 11
3.1.5. Control . 12
3.1.6. Trigger . 12
3.1.7. Attack . 12
3.1.8. Cleanup . 12
3.1.9. Discussion: Stuxnet 12

4. Future work . 13
5. Acknowledgements . 13
6. IANA Considerations . 13
7. Security Considerations 14
8. References . 14
8.1. Normative References 14
8.2. Informative References 14

 Author's Address . 15

1. Introduction

 A central guideline of the IETF security area's activity focus is
 summarized in RFC 3552 [RFC3552]: "Protecting against an attack when
 one of the end-systems has been compromised is extraordinarily
 difficult". This statement is still valid today but must be seen in
 a historical context: in times of monolithic systems, the main goal
 of security is (or was) to protect one's own networked end system
 (PC, server) against compromise. This implies a worst case scenario
 and "game over" in case of a system compromise. In a distributed
 context, one single compromised system can be fatal whenever relying
 on a chain of trust, which is a common security policy within closed
 (corporate or enterprise) networks.

 However, architectures and protocols have evolved. Emerging critical
 infrastructures consist of ensembles of hundreds, thousands or tens
 of thousands of identical networked systems like for instance smart
 meters or other Internet of Things (IoT) devices. These systems all
 run identical software and identical firmware on top of identical
 hardware, all of them being potentially subject to identical
 vulnerabilities. Likewise, most personal computers that are
 connected to the Internet run one of a few operating system
 alternatives, including Microsoft Windows, Apple MacOS, or various
 Linux distributions. Portable software and common Application
 Programming Interfaces (APIs) increase the likelihood that one
 vulnerability affects multiple platforms.

 When viewing a system as a complex set of components and relations
 (Rechtin [CBCS]), there are cases when vital system functions can be
 performed even in the case when some subsystems (components or links)
 have been compromised. Therefore, today's security concepts and

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552

Fabini Expires May 7, 2020 [Page 3]

Internet-Draft Malware Lifecycle November 2019

 research must support (a) identification and (b) containment, i.e.,
 isolation, of compromised subsystems at an architectural and protocol
 level. It is important to note that these requirements *extend* (and
 by no means contradict) the requirements stated in RFC 3552 [RFC3552]
 with respect to the importance of protecting systems against
 compromise.

 On this purpose, this memo proposes to enlarge the scope of systems
 security, starting from two main prerequisites, namely that (a) any
 system (single end node, component, link) is vulnerable and (b)
 malware must communicate to propagate, to discover and to coordinate
 its distributed instances. Section 2 proposes a generic malware
 lifecycle model consisting of malware states and transitions. This
 generic state diagram is subsequently mapped to existing malware
 implementations to infer on malware communication needs, as well as
 on potential interfaces and protocols that malware may use for
 discovery, infection, propagation, and control through available
 network paths. By monitoring these interfaces, systems can detect
 patterns of - potentially hidden - communications as an anomalous
 component of the network traffic. Subsequent analysis of available
 architectures, interfaces, and protocols can help in identifying
 anomalous communications and stopping it in order to prevent malware
 from propagation and execution.

 We consider the identification of systematic and design shortcomings
 of architectures and protocols with respect to hidden communications
 to be an essential component of the security-by-design concept. A
 first step is the definition of metrics and methods that can assess
 the degree to which protocols under investigation support -- or
 prevent -- hidden communications. The ability to evaluate protocols
 and choose the ones that are proven to be covert-channel free enables
 system architects to close existing gaps for hidden malware
 communication.

 Todo: the terms used in this memo should be eventually aligned to
 [I-D.mcfadden-smart-endpoint-taxonomy-for-cless].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Generic Malware Lifecycle

 The state diagram depicted in Figure 1 illustrates a generic malware
 lifecycle model. A graphical representation of the diagram along
 with a detailed description can be found in the original publication

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Fabini Expires May 7, 2020 [Page 4]

Internet-Draft Malware Lifecycle November 2019

 [GML] or its pre-published version at
https://publik.tuwien.ac.at/files/publik_261089.pdf.

 Generic Stages of Malware Lifecycle.

 +==============+ +==============+
 | DISCOVERY | | PATIENT ZERO |
 | +----------+ | +=======+======+ +==================+
	Scan:				INFECTION	
	Blind,		v	+--------------+		
	Topology,		+========+======+		Exploit:	
	Passive,..			ACCESS +<--+	Vulnerability,	
+----------+ +<--+ +-----------+			Zero-day,			
 +==============+ | |Physical, | +-->+ |Payload, ... | |
 | | |Network, | | | +--------------+ |
 v | |Passive, | | +==================+
 +==============+ | |Persistent,| |
 | PROPAGATION +-->+ |... | |
 | +----------+ | | +-----------+ |
 | | lateral, | | | | +================+
	vertical,			+-->	ATTACK	
	...					+------------+
+----------+					Disruption,	
 +==============+ | | | |Destruction,| |
 +-------+ | | |Theft, | |
 | +===============+ | |Extortion, | |
 v ^ | |Repurpose, | |
 +===========+ | +=============+ | |... | |
 | CONTROL +-------+ | TRIGGER +-->+ +------------+ |
 | +-------+ | | +---------+ | +================+
 | |C&C, | | | |External,| | |
 | |Update,| | | |Internal,| | v
 | |Module,| | | |... | | +=========+
 | |... | | | +---------+ +----->+ CLEANUP |
 | +-------+ | +=============+ +=========+
 +===========+

 <--------------------------> <--------------------------->
 NETWORK DOMAIN HOST DOMAIN

 An extended graphical representation of this diagram along with
 detailed descriptions can be found in [GML].

 Figure 1

 Malware activity in Figure 1 revolves around the concept of access to
 abstract resources. Essential from an defender's monitoring
 perspective is that, depending on their implementation and target,

https://publik.tuwien.ac.at/files/publik_261089.pdf

Fabini Expires May 7, 2020 [Page 5]

Internet-Draft Malware Lifecycle November 2019

 malware variants differ substantially in their use of communication
 networks. Common to many recent malware is that it encrypts
 communication, attempts to obfuscate it as legitimate traffic, and/or
 uses hidden communication channels to stay unobserved.
 Aggressiveness and "noise" that malware generates while propagating,
 infecting and attacking differs substantially between malware types.

 This is why this memo focuses on evaluating protocols, interfaces and
 architectures with respect to their ability to inhibit or support
 hidden communications. The proposed generic lifecycle model can
 identify the malware's need for communication to trigger state
 changes. (Internal: provide hints to anomaly detection systems?
 estimated amount of data as an order of magnitude: transferring a
 malware update or additional malware modules requires more data
 transfer than a single command.)

 The following subsections discuss briefly the generic stages of
 malware lifecycle in line with [GML].

2.1. Access

 Starting point of malware operation is the so-called patient zero,
 denoting a device or method that triggers the initial infection
 within the system under observation. Examples for access options
 include, but are not limited to physical access (e.g., through a
 compromised USB stick inserted into a computer, through hard drive
 replacement or through starting from a temporary boot device),
 network access (e.g., as part of existing connections, or through a
 hidden communication channel), application access (e.g., by sending a
 legitimate email with compromised payload), or persistent access (for
 instance an intentional or unintentional backdoor that is installed
 by firmware or BIOS).

 The patient zero may depend on qualified (human) support to bypass
 existing security barriers and gain access to the system. This may
 be, e.g., a staff member plugging a compromised USB stick into a
 computer to infiltrate an air-gapped system, or an employee of the
 computer manufacturer who adds a backdoor to the computer BIOS,
 firmware or software. Once it has gained access to the target
 system, the malware can start its operation.

 Todo: Extend, discuss options.

2.2. Infection

 Having gained (temporary) access to the system, malware depends on
 system vulnerabilities to support its attempt to infect the system
 and install itself persistently. Examples include the exploit of

Fabini Expires May 7, 2020 [Page 6]

Internet-Draft Malware Lifecycle November 2019

 backdoors, zero-day vulnerabilities or execution of a malicious email
 attachment.

 Todo: Extend, discuss options.

2.3. Discovery

 Once the local system is infected, malware has several options. The
 most common malware strategy is to first discover new potential
 victims that are reachable via the communication network.
 Alternatives for discovery differ in terms of communication verbosity
 and range from blind scans to passive monitoring of incoming network
 connections and many variants in between. Blind scans are the most
 aggressive but also the most verbose variant of discovery, malware
 actively scanning ranges of IPv4 or IPv6 addresses like, e.g., the
 current subnet or all IPv4 addresses. In typical networks monitoring
 devices can easily detect these blind scans because of the high
 volume of additional illegitimate traffic. Adding some more
 intelligence to the discovery process results in targeted scans to
 decrease the amount of traffic that is needed for probing. Examples
 include the support for distributed scan lists that record already
 scanned (and infected) devices, or a prioritization of the scan
 process to prefer system-critical devices like, e.g., the standard
 gateway. Most stealthy and most difficult to detect is malware that
 monitors passively its local network interfaces on incoming and
 outgoing traffic to infer on the network topology and potential
 targets. However, this stealthiness comes at the cost of reduced
 malware propagation speed and is typical for complex attack patterns.

 It is worth mentioning that the supported IP address version has
 substantial impact on the discovery strategy that malware may use or
 prefer. Whenever targeting IPv4 addresses, distributed malware can
 scan the entire Internet within reasonable time. The large address
 space of IPv6 and the resulting sparse population of subnets will
 likely result in malware to prefer targeted active scans or passive
 scanning for the discovery process.

 Todo: Extend, discuss options.

2.4. Propagation

 Following the discovery of a potential victim, malware attempts to
 propagate over existing communication channels to gain access to
 these victims and install new instances of itself in the network.

 Todo: Extend, discuss options.

Fabini Expires May 7, 2020 [Page 7]

Internet-Draft Malware Lifecycle November 2019

2.5. Control

 All presented malware activities or state changes happen either
 autonomously, which is typical for early malware variants, or guided
 by some command & control infrastructures that recent malware
 variants prefer to allow for later malware modification and
 coordinated attacks. Examples of the latter variant include malware
 that supports remotely controlled updates, loading of new modules and
 distributed C&C structures. Such functionality facilitates the
 update of encryption keys, communication patterns and functionality,
 as well as the support for new communication protocols. Eventually,
 this functionality enables offerings business models of "malware as a
 service": botnet owners may operate infrastructures of compromised
 devices that customers can rent and use to execute their custom-
 tailored malicious code.

 Todo: Extend, discuss options.

2.6. Trigger

 Triggers are essential for supporting the coordination of
 functionality in distributed malware instances, typical example being
 the launch of a coordinated DDoS attack. Explicit control
 communication (command) is one option for an external trigger, other
 less suspicious options include the setting of conditions that
 distributed malware instances can observe. Examples include timers
 (some malware variants implementing explicit time synchronization
 with dedicated time servers for improved accuracy) but also
 availability of specific servers at specific domain names, etc.

 Internal triggers are typically hard-coded into the malware or its
 modules and support it in targeting and focusing its attacks. These
 triggers can, for instance, control malware to launch its attacks on
 specific hardware- or software systems only, or can limit its actions
 to specific IP address ranges and/or DNS domains.

 Todo: Extend, discuss options.

2.7. Attack

 Once successfully propagated, malware can start its damaging
 functionality that ranges from destruction and disruption to theft or
 extortion.

 Todo: Extend, discuss options.

Fabini Expires May 7, 2020 [Page 8]

Internet-Draft Malware Lifecycle November 2019

2.8. Cleanup

 Recent malware variants focusing on stealthy operation include hidden
 communication and cleanup functionality to remove themselve from
 infected systems. The cleanup starts either on completing the attack
 or on external triggers after accomplishing their goal.

 Todo: Extend, discuss options.

3. Mapping the Lifecycle Model to Real Malware

 This section maps the known behavior of well-studied, prototypical
 malware variants to the Malware Lifecycle Model. Eventually, this
 mapping aims at identifying malware communication needs and
 behavioral patterns that automated processes can use to discover
 unknown malware.

 Central observation with respect to the Malware Lifecycle Model's
 applicability is that malware has huge incentives to communicate, and
 that monitoring devices can detect this communication as anomaly. In
 particular, network communication is a key component for malware to
 unleash its full destructive potential. Infecting systems remotely
 and automating and coordinating their distributed activities using
 network communications brings huge benefits to malware authors. Most
 notably, being physically located in distinct geographical,
 jurisdictional, and/or legislational regions supports networked
 operations while minimizing the risk of being prosecuted for the
 results of these actions.

 Bridging the air gap to an isolated system is conditioned by physical
 access to the system. Options include access to the system or to
 parts of it, either during the manufacturing process (e.g., by
 compromising a computer's BIOS and adding a backdoor) or later on,
 during installation or operation (e.g., by inserting a compromised
 USB drive into the system). From a malware author's perspective, the
 physical access alternative has severe drawbacks. First, the need
 for physical access may leave traces that help in identifying the
 originator. Second, the lack of updates and coordination: malware
 must be fully functional at the time of first infection, updates for
 it depending on recurring physical access to the system. However,
 even in the case of air-gapped systems malware may subsequently
 attempt to discover and infect locally connected systems (as
 exhibited for instance by Stuxnet). These communication attempts may
 be monitored and detected.

 Summarizing, the main incentives for malware to communicate include
 the following:

Fabini Expires May 7, 2020 [Page 9]

Internet-Draft Malware Lifecycle November 2019

 o Network-based malware coordination and control: the closer
 coordinated distributed malware instances can act, the higher the
 potential severity of their aggregated actions (for instance in
 the case of DDoS attacks). Malware may use coordination to reduce
 network traffic, too (for example by maintaining scan lists when
 scanning for new victims).

 o Network-based update: the complexity and sophistication of today's
 malware increases the effort for its programming. This drives the
 trend for modular malware that can install a minimum persistent
 foothold, update itself and can load novel functionality on demand
 as additional modules. Malware update can support malware authors
 by protecting their assets in the case of malware identification
 and/or takeover attempts by competing organizations. In such
 cases, malware updates can support in the modifications of keys,
 change of encryption algorithms, use of novel obfuscation methods,
 etc.

 o Network-based discovery of potential infection targets and
 propagation: Scanning for infection candidates and propagation
 range among the two most verbose activities of today's malware.
 Worth noting is that specific malware functionality is typically
 related to malware size, i.e., data volume that the malware must
 transfer. Depending on the implementation, malware can decide to
 transfer its entire body at propagation time or install a tiny
 foothold during propagation that subsequently loads the required
 modules. The data pattern that monitoring devices can identify
 differs for these two alternatives: the self-carried malware will
 be visible in monitoring logs only once, when transferring a large
 amount of data. The modular variant consists of several smaller
 data transfers.

 o tbc...

 The remainder of this section presents prototypical case studies of
 existing malware variants, the mapping of their behavior to malware
 lifecycle model stages and how the lifecycle model can support in
 their detection. Tables 1-4 of [GML] compare and discuss features
 and peculiarities of various malware variants in more detail. Future
 versions of this draft are planned to structure and extend the
 malware communication aspects that these tables summarize, eventually
 building the base for a generic malware detection framework.

3.1. Case study: Stuxnet

 Stuxnet [Stuxnet] is a computer worm that was reported for the first
 time in June 2010. The effort associated with the design and
 implementation of Stuxnet was substantial, pointing to nation states

Fabini Expires May 7, 2020 [Page 10]

Internet-Draft Malware Lifecycle November 2019

 or intelligence services as authors. This speculation is backed by
 Stuxnet's stealthy behavior and targeted attack against Siemens
 Simatic S7 Supervisory Control and Data Acquisition (SCADA)
 Industrial Control Systems (ICS), eventually aimed at causing
 physical damage. The following subsections map the known Stuxnet
 behavioral and communication patterns to the generic Malware
 Lifecycle model stages and transitionsl.

3.1.1. Access

 The initial Stuxnet access (patient zero) targets air-gapped systems.
 It uses the autostart functionality of Microsoft Windows 32 bit
 operating system variants on inserting a USB stick. As soon as the
 first system has been infected, Stuxnet attempts to discover and
 access other computers within the same LAN. Whereas the initial
 infection (USB drive autostart) can not be captured by the Lifecycle
 Model, the access to other computers within the LAN can be monitored
 within the network traffic.

3.1.2. Infection

 Stuxnet exploits several zero-day vulnerabilities that were unknown
 by the time of its release and allowed for privilege escalation on
 several Microsoft Windows 32 bit operating system variants. In
 addition, Stuxnet made use of two stolen certificates to sign its
 drivers. The infection includes installation of dedicated RPC
 servers and -clients and peer-to-peer clients for communication with
 other infected Stuxnet instances within the same LAN, as well as
 infection of connected network shares. Local infection and
 installation is not in the scope of the Lifecycle Model, whereas the
 infection of network shares may lead to unexpected network traffic
 and monitored network anomalies.

3.1.3. Discovery

 Following an initial infection, Stuxnet scans the local network for
 potential, previously uninfected targets. Stuxnet also uses specific
 domains to probe for Internet connectivity. All of these network
 scan operations are typical and can be monitored and detected.

3.1.4. Propagation

 Whenever Stuxnet identifies uninfected targets in the local network
 with Siemens Step7 software installed, it propagates and attempts to
 infect these PCs. Otherwise it enters a dormant mode.

Fabini Expires May 7, 2020 [Page 11]

Internet-Draft Malware Lifecycle November 2019

3.1.5. Control

 Stuxnet instances within the same network use peer-to-peer RPC calls
 and encryption to update each other. This method allows one single
 USB drive infection to update distributed Stuxnet instances in air-
 gapped systems. Whenever Internet access is available, Stuxnet
 contacts command and control servers using encrypted communication to
 receive updates, additional features, and instructions. These update
 RPC calls and the traffic to command and control servers can be
 identified by network monitoring systems as anomalies.

3.1.6. Trigger

 Stuxnet installation is conditioned by software (Siemens Step7)
 software to be installed on, and/or Siemens PLCs being connected to
 the Windows-based system. The Lifecycle Model can not capture these
 triggers as they are proprietary to the malware and do not involve
 network communication.

3.1.7. Attack

 Once installed on a system that controls a PLC, Stuxnet acts as a
 man-in-the-middle. Faulty commands, aimed to cause physical damage,
 are sent to the PLC, and forged PLC response codes are forwarded by
 Stuxnet back to the controlling application to pretend correct
 operation. Complex (cross-layer) monitoring systems, featuring
 sensors inside the PLC, could identify the mismatch between the
 commands sent by the controlling application and the commands
 received by the PLC. Likewise, system log correlation with network
 traffic data could reveal anomalous behavior.

3.1.8. Cleanup

 Stuxnet stores several encrypted copies of itself on infected
 systems. Whereas cleanup on the host system should be feasible,
 Stuxnet can not delete the malicious code that has been sent to the
 PLC. Therefore, Stuxnet will leave traces that may identify its
 presence.

3.1.9. Discussion: Stuxnet

 An analysis of Stuxnet reveals communication patterns that can be
 matched to specific stages of the Malware Lifecycle Model. Depending
 on the specific network architecture and on the type of systems
 connected to the network under observation, these communications may
 appear more or less anomalous. In Internet of Things (IoT) networks
 where automated machine-to-machine communications predominate, the
 type of communication originated by Stuxnet will be highly visible.

Fabini Expires May 7, 2020 [Page 12]

Internet-Draft Malware Lifecycle November 2019

 The more human-triggered network communications are present in the
 observed traffic, the more difficult the anomaly detection becomes,

 However, a word of warning is due: Stuxnet incorporates technology
 that was state-of-the-art more than ten years ago. Evolutions of
 Stuxnet like Duqu and Duqu2, but also recent malware variants like
 Gauss, BlackEnergy3, AdWind or Locky show that multi-layer
 obfuscation and encryption will become the standard for advanced
 malware. Moreover, malware like, e.g., Regin passively monitors the
 actual network traffic to select the least suspicious communication
 protocol as VPN tunnel for its command and control traffic.
 Therefore, network monitoring and subsequent anomaly detection
 systems will be challenged to identify anomalies in encrypted and
 obfuscated network traffic.

4. Future work

 This draft aims at defining the basic framework that advanced anomaly
 detection methods will build upon. Plans and ongoing work include
 the definition of metrics and methodologies to rate malware
 communications, protocols, and interfaces to applications. As an
 example a malware's adopted scanning strategy is commonly related to
 its propagation speed. On one hand, aggressive probing by a malware
 discovers a higher number of potential victims within a shorter time,
 increasing the malware's speed and likelihood of propagation. The
 cost of this propagation speed is an increased scanning traffic that
 results in malware activity being detectable through network
 monitoring. On the other hand, passive listening malware may spend
 long periods of time unobserved in a system, monitoring and learning
 its environment while waiting for activation through potentially
 hidden communication channels. Discovery of such dormant persistent
 threats depends, therefore, on detection of highly sporadic, hidden
 activation signals in almost real-time.

5. Acknowledgements

 Thanks to Kirsty P., Sage B., and Tanja Zseby for their comments that
 helped substantially in scoping, structuring and wording the initial
 version of this draft.

6. IANA Considerations

 This memo includes no request to IANA.

 All drafts are required to have an IANA considerations section (see
 the update of RFC 2434 [I-D.narten-iana-considerations-rfc2434bis]
 for a guide). If the draft does not require IANA to do anything, the
 section contains an explicit statement that this is the case (as

https://datatracker.ietf.org/doc/html/rfc2434

Fabini Expires May 7, 2020 [Page 13]

Internet-Draft Malware Lifecycle November 2019

 above). If there are no requirements for IANA, the section will be
 removed during conversion into an RFC by the RFC Editor.

7. Security Considerations

 All drafts are required to have a security considerations section.
 See RFC 3552 [RFC3552] for a guide.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

8.2. Informative References

 [CBCS] Rechtin, E., "Systems Architecting: Creating and Building
 Complex Systems", Prentice Hall ISBN-13: 978-0138803452,
 1991, 352 pages, 1991.

 [GML] Eder-Neuhauser, P., Zseby, T., Fabini, J., and G. Vormayr,
 "Cyber Attack Models for Smart Grid Environments",
 Elsevier Sustainable Energy, Grids and Networks Volume 12,
 2017, pp 10-29, December 2017.

 Pre-published version available for download at
https://publik.tuwien.ac.at/files/publik_261089.pdf

 [I-D.mcfadden-smart-endpoint-taxonomy-for-cless]
 McFadden, M., "Endpoint Taxonomy for CLESS", draft-

mcfadden-smart-endpoint-taxonomy-for-cless-00 (work in
 progress), July 2019.

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", draft-narten-iana-

considerations-rfc2434bis-09 (work in progress), March
 2008.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://publik.tuwien.ac.at/files/publik_261089.pdf
https://datatracker.ietf.org/doc/html/draft-mcfadden-smart-endpoint-taxonomy-for-cless-00
https://datatracker.ietf.org/doc/html/draft-mcfadden-smart-endpoint-taxonomy-for-cless-00
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-09

Fabini Expires May 7, 2020 [Page 14]

Internet-Draft Malware Lifecycle November 2019

 [Stuxnet] Falliere, N., O Murchu, L., and E. Chien, "W32.Stuxnet
 Dossier", February 2011.

 URL:
https://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf

Author's Address

 Joachim Fabini
 TU Wien
 Gusshausstrasse 25/E389
 Vienna 1040
 AT

 Phone: +43 1 58801 38813
 Email: Joachim.Fabini@tuwien.ac.at

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

Fabini Expires May 7, 2020 [Page 15]

