
NFSv4 Working Group S. Faibish
Internet-Draft EMC Corporation
Intended status: draft D. Black
Expires: April 18, 2010 EMC Corporation
 M. Eisler
 NetApp
 October 18, 2009

pNFS Access Permissions Check
draft-faibish-nfsv4-pnfs-access-permissions-check-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 18, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Faibish et al. Expires April 18, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft pNFS SD Access Permissions Check October 2009

Abstract

 This document describe an extension to pNFS protocol addressing a gap
 related to the access permission checks to data servers used by the
 MDS in layouts sent to the clients. The draft addresses both the
 client access permission checks as well as the MDS access permissions
 to the data servers. The draft will address new errors related to
 access permission denial to devices included in valid pNFS layouts.
 The draft will also address the case when clients request direct NFS
 access to the MDS and the MDS has no permission to access some of the
 data servers included in valid layouts.

Table of Contents

1. Introduction...3
1.1. Example...4
1.2. Issues with the current pNFS protocol.....................5

1.2.1. Client access permission denial to SD................6
1.2.2. MDS access permission denial to SD...................6
1.2.3. Implied Requirement..................................7

2. Conventions used in this document..............................7
3. Description of the proposed approaches to solution.............7

3.1. Simple implementation adding new LAYOUTRETURN error code..8
3.1.1. ARGUMENT...8
3.1.2. RESULT...8
3.1.3. Description..8

3.2. Implementation using a new layoutreturn_type4.............9
3.2.1. ARGUMENT...9
3.2.2. RESULT..10
3.2.3. New LAYOUTRETURN type description...................10

4. Reporting the permission denial...............................10
4.1. Permission denied to client at mount time................10
4.2. Permission denied to the client at I/O time..............11
4.3. Permission denied to MDS server at I/O time..............12

5. Security Considerations.......................................12
6. IANA Considerations...12
7. Conclusions...12
8. References..13

8.1. Normative References.....................................13
8.2. Informative References...................................13

9. Acknowledgments...13
 Authors' Addresses...14

Faibish et al. Expires April 18, 2010 [Page 2]

Internet-Draft pNFS SD Access Permissions Check October 2009

1. Introduction

 Figure 1 shows the overall architecture of a Parallel NFS (pNFS)
 system:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| MDS |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol |
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

 Figure 1 pNFS Architecture

 There is a possible gap in the pNFS protocol regarding permissions of
 access to storage devices in the cases of a client that has no
 permission to access a storage device (SD) included in a valid layout
 sent by the MDS server. Some consider this gap an optimization or an
 implementation detail but the permission denials can defeat the
 performance scalability value of pNFS and to possible opportunities
 of unreported errors. From the pNFS protocol perspective there is no
 error mechanism to inform a system administrator that a client
 doesn't have the access permission to a storage device at mount time
 nor at I/O time. This is also the case with the MDS that doesn't have
 access permission to some storage devices and it is asked by a client
 to perform I/O to the device on behalf of the client. In this
 document storage devices mean also data servers and storage severs
 which could refer to file, block or object storage.

 On one hand looking at the block layout if the MDS doesn't see the
 storage devices/LUNs it cannot mount the pNFS file system, of course
 it cannot allow a client to mount that FSID and an error is logged by
 the MDS server. If the pNFS block server can access all the storage
 devices/LUNs but the client doesn't have the access permission to
 some storage devices/LUNs at mount time the client will mount as

 NFSV4.1 without pNFS support (fallback to NFS) without any

Faibish et al. Expires April 18, 2010 [Page 3]

Internet-Draft pNFS SD Access Permissions Check October 2009

 error/reason for the fall back. If the client doesn't have access
 permission to all the storage devices it will log an error at the
 client without any explanation of the reason of mounting NFSV4.1
 without pNFS support.

 This is true for file and object layout pNFS clients regardless if
 the MDS has permission to access the storage devices or not. On the
 other hand, for the file and object layouts there is no similar error
 mechanism to report the case when the client or the server cannot
 access a storage device and there is no CB for access permission
 check. The only fallback is a request for re-direct by the MDS server
 as storage device is inaccessible assuming that the MDS server has
 access to the storage device and it can serve the I/O to the client
 still without logging an error at least not at mount time. This
 assumption is weaker than in the case of the block layout that cannot
 allow to mount a FSID to which it has no access permission.

1.1. Example

 A typical usecase is when a new storage device is added and all the
 pNFS clients (1000s of them) have no access permission to the new
 storage device. From this time on all the I/Os to the new storage
 device will be served by the MDS server creating a performance and
 scalability bottleneck that is difficult to detect.

 A better approach to address this issue is to report the access
 failure before the client attempt to issue any I/Os to the MDS server
 rather than the MDS trying to diagnose the performance problem caused
 by client I/O using NFS path and not using the pNFS layout. In the
 current pNFS protocol a client cannot detect this situation at mount
 time in cases of complex mountpoint structures and we can perhaps
 only address the error for the root/top of the mount structure
 assuming we are only referring to pNFS capable clients. See section

1.2.1 for detailed example.

 The intention of this draft is to introduce a new access permission
 check and error access permission denial report mechanism at both
 server and client to address the above issues.

 One of the problems may be the fact that there is no mention in the
 pNFS spec to address the data protocol between MDS and storage
 devices, except for the block layout driver in which case the MDS
 cannot itself mount a pNFS file system due to access permission
 issue. In order for the MDS server to export a filesystem as NFSV4.1
 filesystem for pNFS clients access it is mandatory for the MDS to
 have access permission to all the storage devices/LUNs for that
 filesystem as a pre-condition for the mount. In the case that there
 is any access permission issue the filesystem cannot be mounted by

 the MDS and an error is sent to the MDS server log.

Faibish et al. Expires April 18, 2010 [Page 4]

Internet-Draft pNFS SD Access Permissions Check October 2009

 On the other hand for file and object pNFS layout MDS servers there
 is no requirement in the spec to check access permission to all the
 storage devices even when the NFSV4.1 filesystem is exported to the
 pNFS clients. In fact an MDS that accesses the storage devices is
 considered an unhealthy pNFS server except for the case when a pNFS
 client fall back to NFS and requests the MDS server to perform an I/O
 on his behalf. At that time the MDS must access the storage server in
 order to perform the I/O. It is then possible that the MDS I/O to the
 storage device fails due to access permission denial in which case
 the MDS will send a error to the client and the client I/O fails.

 There is no error report mechanism in the pNFS protocol for this type
 of error. Even if we correct the access permission issue the
 introduction of a new error reporting mechanism at I/O time for both
 server and client can be problematic as it may be too chatty. We
 propose to introduce a new error case but leave the error reporting
 mechanism at I/O time OPTIONAL or an optimization to the latitude of
 the server and client implementation.

 Although the change to the protocol is delicate logging some kind of
 warning at the client might be appropriate to be recommended as an
 implementation option on the client to reduce chattiness.

1.2. Issues with the current pNFS protocol

 Scenario of Interest: Client expects to be able to use pNFS (e.g.,
 use -pnfs switch to mount command, or similar), but one or more
 devices are inaccessible. This discussion does not apply to a client
 that doesn't care (e.g., uses pNFS to optimize if available, but is
 ok if all of its access is via the main NFS server).

 Desired client behavior: Client gets entire device list for mount
 point from server and checks it as part of the mount operation (or at
 whatever point it first realizes that it expects to use pNFS).

 Missing piece of protocol: Client has no obvious way to report an
 inaccessible device to the server.

Faibish et al. Expires April 18, 2010 [Page 5]

Internet-Draft pNFS SD Access Permissions Check October 2009

1.2.1. Client access permission denial to SD

 A client doesn't communicate to the MDS server that the client's
 access to a storage device is denied as a result of an access
 permission issue. When the pNFS server grants a layout to the client,
 it assumes the client can access the storage devices (files, luns, or
 objects). The server cannot check this because the server cannot
 issue I/Os via the client and because connectivity is not transitive
 - the client may have good network connectivity to the MDS, the MDS
 may have good storage connectivity to the storage devices, but
 something in the storage network prevents the client from talking to
 one or more of the storage devices. This could be a network mis-
 configuration or failure, and it's a possible scenario for all pNFS
 layout types.

 The access permission problem cannot be reported at mount time for a
 number of reasons. Reporting the permission problem at mount time has
 some difficulties. First, the MDS pNFS server doesn't know that the
 client can even mount with pNFS support. Second, the MDS NFS server
 doesn't know that the client is mounting the NFS filesystem (there is
 no separate mount protocol in NFSv4). Third, the MDS server cannot
 know if the client mounts say, "/", and the file systems below "/"
 have pNFS capabilities, but refer to different storage devices. Or
 the client mounts say "/a/b/c/d", and d is in a pNFS capable volume.
 But the client is going actually do its I/O to "e/f/g/h/i/j/k", and k
 is either no pNFS capable, or it is, but uses a storage device that
 differs from d.

1.2.2. MDS access permission denial to SD

 The current pNFS server protocol doesn't mandatory require to access
 the storage devices and there is only a control protocol (Fig. 1)
 between the MDS and the storage devices but there is no specific data
 access protocol between the MDS and the SDs. Although the MDS doesn't
 check permissions it is assumed that at the configuration is correct
 when the storage devices are initially configured and the pNFS
 filesystem is mounted on the MDS server. It is possible that the
 administrator checks the MDS access permission to all the SD during
 the configuration. The problem may not exist at the time of the
 initial mount of the pNFS filesystem but can surface when a new SD is
 added to the pool of SDs. If the MDS tries to do successful I/Os to
 the new added SD before including it in the layout to pNFS clients
 will avoid this set of problems. The pNFS specification does not
 address the data access protocol between the MDS and the storage
 devices.

Faibish et al. Expires April 18, 2010 [Page 6]

Internet-Draft pNFS SD Access Permissions Check October 2009

1.2.3. Implied Requirement

 Metadata server SHOULD NOT use devices in pNFS layouts that are not
 accessible to the MDS (or to clients if the MDS has any means of
 determining this).

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

3. Description of the proposed approaches to solution

 A simple possible approach is to address the gap in the protocol by
 simply adding a new LAYOUTRETURN type and a new error case to
 LAYOUTRETURN. In the case that the pNFS client has a valid layout on
 a file but cannot perform I/O to a SD due to access permission
 denial, the client will fall back the I/O to the MDS NFS server.
 Before the client sends the I/O to the NFS server it will send a
 LAYOUTRETURN command for the purpose of avoiding unnecessary MDS
 CB_LAYOUTRECALL operations in the future. The client will send the
 LAYOUTRETURN operation for the layouts corresponding to the
 inaccessible SD and include a new error reporting that the reason of
 the fall back to the NFS server is access permission denial to the
 specific deviceid4. The client may return disjoint regions of the
 file by using multiple LAYOUTRETURN operations within a single
 COMPOUND operation. The client will include NFS4ERR_DEVICE_PERM_DENY
 in the new LAYOUTRETURN operation.

 LAYOUTRETURN at FSID scope seems like the best simple choice
 available. Alternatively we can introduce a new LAYOUTRETURN type
 that is LAYOUT4_RET_REC_FSID_NO_ACCESS, i.e., return all layouts for
 this FSID and tell the server that the reason for the return is a
 connectivity issue. In order to differentiate the permission issue
 from a real connectivity issue the solution will require the client
 to do two LAYOUTRETURN operations to deal with servers that don't
 understand the new type. The two LAYOUTRETURN operations happen once
 per client using LAYOUT4_RET_REC_FSID_NO_ACCESS and only in an error
 case followed by a second operation for "FSID" in case the first one
 wasn't understood.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Faibish et al. Expires April 18, 2010 [Page 7]

Internet-Draft pNFS SD Access Permissions Check October 2009

3.1. Simple implementation adding new LAYOUTRETURN error code

3.1.1. ARGUMENT

 When the LAYOUTRETURN operation specifies a LAYOUTRETURN4_FILE_return
 type, then the layoutreturn_file4 data structure specifies the region
 of the file layout that is no longer needed by the client. We will
 modify the layoutreturn_file4 changing the opaque "lrf_body" field of
 the "layoutreturn_file4" data structure to include the deviceid with
 access permission error. Alternative, more complex, add the deviceid
 to the layoutreturn_type4.

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 deviceid4 lrf_deviceid;
 /* layouttype4 specific data */
 opaque lrf_body<deviceid>;
 };

3.1.2. RESULT

 union LAYOUTRETURN4res switch (nfsstat4 lorr_status) {
 case NFS4_OK:
 layoutreturn_stateid lorr_stateid;
 case NFS4ERR_DEVICE_PERM_DENY:
 layoutreturn_deviceid lorr_deviceid;
 default:
 void;
 };

3.1.3. Description

 This solution will add a new error case to LAYOUTRETURN. The
 implementation will use LAYOUTRETURN when FSID is sent to the client.
 When the client fails an I/O as a result of access permission denial
 it will send a LAYOUTRETURN operation to the MDS server with new
 error NFS4ERR_DEVICE_PERM_DENY specifying the deviceid4 with
 permission denial.

Faibish et al. Expires April 18, 2010 [Page 8]

Internet-Draft pNFS SD Access Permissions Check October 2009

 When the server receives this error it can OPTIONALLY log an error to
 the syslog and perform a access performance check to the SD expecting
 that the client will fall back the I/O to the MDS. If the permission
 check of the server fails the NFS4ERR_DEVICE_PERM_DENY will be sent
 to the syslog.

3.2. Implementation using a new layoutreturn_type4

 In this section we will define the usecase addressed by this
 implementation.

3.2.1. ARGUMENT

 /* Constants used for new LAYOUTRETURN and CB_LAYOUTRECALL */
 const LAYOUT4_RET_REC_FILE = 1;
 const LAYOUT4_RET_REC_FSID = 2;
 const LAYOUT4_RET_REC_ALL = 3;
 const LAYOUT4_RET_REC_DEVICE = 4;

 enum layoutreturn_type4 {
 LAYOUTRETURN4_DEVICE = LAYOUT4_RET_REC_DEVICE_NO_ACCESS,
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL
 };

 struct layoutreturn_device4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 deviceid4 lrf_deviceid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_DEVICE:
 layoutreturn_device4 lr_layout;
 default:
 void;
 };

Faibish et al. Expires April 18, 2010 [Page 9]

Internet-Draft pNFS SD Access Permissions Check October 2009

3.2.2. RESULT

 union LAYOUTRETURN4res switch (nfsstat4 lorr_status) {
 case NFS4_OK:
 layoutreturn_stateid lorr_stateid;
 case NFS4ERR_DEVICE_PERM_DENY:
 layoutreturn_deviceid lorr_deviceid;
 default:
 void;
 };
3.2.3. New LAYOUTRETURN type description

 We will use a new LAYOUTRETURN layoutreturn_type4, let's call it
 LAYOUT4_RET_REC_DEVICE_NO_ACCESS, in which case the client returns
 all layouts for this DEVICE and OPTIONAL for the FSID and tell the
 server that the reason for the return is a connectivity issue. The
 same stateid may be used or in order to report a new error client
 will force a new stateid. We will also add the operation to report a
 new error NFS4ERR_DEVICE_PERM_DENY.

 To address the backward compatibility may require a client to do two
 layout return operations to deal with servers that don't understand
 the new layoutreturn_type4. If the server doesn't understand the new
 layoutreturn_type4, then the server will come back with an error
 code. The client needs to do a FSID return and remember that this
 server doesn't understand the new return type. This assumes that the
 client is sufficient disrupted by the connectivity problem to the
 point it decided to drop all layouts for the filesystem (FSID), which
 matches the failure case of client data server access permission
 deny. Alternatively when the server receives a new stateid it will
 check the error or issue an CB_LAYOUTRECALL to get the error.

4. Reporting the permission denial

4.1. Permission denied to client at mount time

 The most suitable time for the client reporting the permission denial
 by a data server is at the mount time. This would be the preferred
 way to address the issue but it is not possible with the current
 protocol for several reasons: If the server initiates the request,
 MDS doesn't know if the client wants to use pNFS or NFS. If the
 client is the initiator of the error the is mounting the pNFS
 filesystem knowing that it will use pNFS for access the client
 doesn't specifically request pNFS.

Faibish et al. Expires April 18, 2010 [Page 10]

Internet-Draft pNFS SD Access Permissions Check October 2009

 The solution will be to use a special tag -pnfs or a switch to
 mount/syscall. To the latest issue the client cannot explicitly
 request pNFS as it needs first to discover that the server is
 supporting pNFS. In order to address this issue the client needs to
 send a request at mount time to the server as part of the initial
 handshake. There is no reportable error of the client to cope with
 this currently.

 The client makes a file access and it finds that the NFS server is
 pNFS capable it will request a LAYOUTGET command and if the NFS
 server doesn't accept and returns an error the client will request
 access using plain NFS. The client will decide if this is an error or
 not. In the case that the LAYOUTGET command succeeded the client may
 still ask the MDS to deliver the I/O. So, inherently the client has
 to query the MDS access permissions to all the DS that are used in
 the layout send to the client before putting the device into a
 layout. The pNFS protocol doesn't require the MDS to check access
 permission to the devices that are included in the layout. It is
 assumed that the MDS has permission access to all the devices it
 includes in the layout without any checks.

 If the MDS doesn't know if it has access or not it shouldn't put that
 device in the layout granted to clients to prevent cases when the
 client ask the I/O using plain NFS from the MDS. If the MDS doesn't
 have permission access to a data server it will send an error to the
 client and the I/O will fail. Based on the above behavior the best
 time to check is at the time when the initial configuration of the
 pNFS filesystem is done. Currently the pNFS spec states that a client
 can write through or read from the MDS, whether it has a layout or
 not or it does not support pNFS assuming that the MDS has permission
 access to all the data servers. We propose to make this implicit
 recommendation explicit.

4.2. Permission denied to the client at I/O time

 In this case when the pNFS capable client receives a valid layout
 from the pNFS capable MDS server and due to access permission denial
 to some devices cannot write to the storage devices, it will fall
 back to the NFS server for the I/O. There is no error logged by the
 client nor sent back to the MDS server mentioning the reason for the
 fallback. As a result there is no way to fix the configuration
 problem until the client unmounts the pNFS filesystem. And
 potentially if there is no permission check at mount time even the
 remount will not detect the problem. Moreover as the MDS server never
 checks access permission to the storage devices the MDS will not be
 able to perform the I/O unless the MDS is also a storage device
 itself, in which case the I/O will fail without any error mentioning
 permission denial. One option is for the MDS to send a LAYOUTRETURN

 with FSID_PERM_CHECK in the case when the a pNFS client request the
 MDS to write an I/O to one of the devices from a layout sent to the

Faibish et al. Expires April 18, 2010 [Page 11]

Internet-Draft pNFS SD Access Permissions Check October 2009

 client by the MDS the MDS will check the error and send a CB request
 for FSID_PERM_CHECK.

4.3. Permission denied to MDS server at I/O time

 In case when the client holding a valid layout requests the NFS
 server to execute the I/O the MDS will have to access the data
 server/device that the client requested to write to and gets an
 access permission denial from the storage device, the MDS cannot
 perform the I/O and will return an error to the client. In this case
 the client I/O will fail indefinitely and there no error information
 about the reason of the failure related to permission denial to data
 servers. The client has no means to communicate to the server the
 permission denial as there is no check and error case. To address
 this case a new error code will be added to the LAYOUTRETURN call
 mentioning DEVICE_PERM_DENY and the MDS will send an error to the
 client NFS4ERR_PERM_DENY. An additional option is to send a CB to the
 client requesting permission access check and on failure the MDS will
 log an error NFS4ERR_DEVICE_UNACCESSIBLE to inform the admin to
 correct the problem. On receiving the permission check the client
 will send the DS a GETDEVICEINFO and report NFS4ERR_DEVICE_PERM_DENY
 to the MDS server.

5. Security Considerations

 All control operations from the MDS to the storage devices, including
 any operations required for access permission checks in order to
 detect permission denials to the MDS and the pNFS client, should be
 authenticated in order to address cases when the access permission is
 denied to the client by the administrator. It is expected that the
 permission denial to a certain data server to a certain client will
 be known to the MDS by configuration. This will be implemented for
 all the pNFS layout types.

6. IANA Considerations

 There are no IANA considerations in this document beyond pNFS IANA
 Considerations are covered in [NFSV4.1].

7. Conclusions

 This draft specifies additions to the pNFS protocol addressing access
 permission checks of the client and MDS server to storage devices
 used in pNFS layouts for all layout types.

Faibish et al. Expires April 18, 2010 [Page 12]

Internet-Draft pNFS SD Access Permissions Check October 2009

8. References

8.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF
 Documents",URL http://trustee.ietf.org/docs/IETF-Trust-

License-Policy.pdf, November 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [NFSV4.1] Shepler, S., Eisler, M., and Noveck, D. ed., "NFSv4 Minor
 Version 1", RFC [[RFC Editor: please insert NFSv4 Minor
 Version 1 RFC number]], [[RFC Editor: please insert NFSv4
 Minor Version 1 RFC month]] [[RFC Editor: please insert
 NFSv4 Minor Version 1 year].
 <http://www.ietf.org/rfc/rfc[[RFC Editor: please insert
 NFSv4 Minor Version 1 RFC number]].txt>.

 [draft-ietf-nfsv4-pnfs-block-12]
 Black, D., Glasgow, J., Fridella, S., "pNFS Block/Volume
 Layout".

 [XDR] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

8.2. Informative References

 [MPFS] EMC Corporation, "EMC Celerra Multi-Path File System", EMC
 Data Sheet, available at:

http://www.emc.com/collateral/software/data-sheet/h2006-
celerra-mpfs-mpfsi.pdf

 link checked 16 October 2009

9. Acknowledgments

 This draft includes ideas from discussions with the authors of the
 different pNFS layouts Jason Glasgow and Benny Halevy as well as pNFS
 maintainer of Linux kernel including Bruce Fields.

 This document was prepared using 2-Word-v2.0.template.dot.

http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-pnfs-block-12
https://datatracker.ietf.org/doc/html/rfc4506
http://www.emc.com/collateral/software/data-sheet/h2006-celerra-mpfs-mpfsi.pdf
http://www.emc.com/collateral/software/data-sheet/h2006-celerra-mpfs-mpfsi.pdf

Faibish et al. Expires April 18, 2010 [Page 13]

Internet-Draft pNFS SD Access Permissions Check October 2009

Authors' Addresses

 Sorin Faibish (editor)
 EMC Corporation
 32 Coslin Drive
 Southboro, MA 01772
 US

 Phone: +1 (508) 305-8545
 Email: sfaibish@emc.com

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748
 US

 Phone: +1 (508) 293-7953
 Email: black_david@emc.com

 Michael Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1 (719) 599 8759
 Email: mike@eisler.com

Faibish et al. Expires April 18, 2010 [Page 14]

