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Abstract

This document examines the role of the transport checksum when used
with IPv6, as defined in RFC2460. It presents a summary of the trade-
offs for evaluating the safety of updating RFC 2460 to permit an IPv6
UDP endpoint to use a zero value in the checksum field to indicate that
no checksum is present. The document describes issues and design
principles that need to be considered and provides recommendations.
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1. Introduction

The User Datagram Protocol (UDP) transport was defined by RFC768
(Postel, J., "“User Datagram Protocol,” August 1980.) [RFC0768] for IPv4
RFC791 (Postel, J., “Internet Protocol,” September 1981.) [RFC0791] and
is defined in RFC2460 (Deering, S. and R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” December 1998.) [RFC2460] for IPv6
hosts and routers. A UDP transport endpoint may be either a host or a
router. The UDP Usage Guidelines (Eggert, L. and G. Fairhurst, “Unicast
UDP Usage Guidelines for Application Designers,” November 2008.)
[RFC5405] provides overall guidance for application designers,
including the use of UDP to support tunneling. These guidelines are
applicable to this discussion.

This section provides a background to key issues, and introduces the
use of UDP as a tunnel transport protocol.

Section 2 describes a set of standards-track datagram transport
protocols that may be used to support tunnels.

Section 3 evaluates proposals to update the UDP transport behaviour to
allow for better support of tunnel protocols. It focuses on a proposal
to eliminate the checksum for this use-case with IPv6 and assess the
trade-offs that would arise.

Section 4 reviews the trade offs and provides recommendations.

1.1. Background TOC

An Internet transport endpoint should concern itself with the following
issues:

*Protection of the endpoint transport state from unnecessary extra
state (i.e. Invalid state from rogue packets).

*Protection of the endpoint transport state from corruption of
internal state.

*Pre-filtering by the endpoint of erroneous data, to protect the
transport from unnecessary processing and from corruption that it
can not itself reject.

*Pre-filter of incorrectly addressed destination packets, before
responding to a source address.

UDP, as defined in [RFC0768] (Postel, J., “User Datagram Protocol,”
August 1980.), supports two checksum behaviours when used with IPv4.
The normal behaviour is for the sender to calculate a checksum over a
block of data that includes a pseudo header and the UDP datagram
payload. The UDP header includes a 16-bit one's complement checksum
that provides a statistical guarantee that the payload was not




corrupted in transit. This also allows a receiver to verify that the
endpoint was the intended destination of the datagram, because the
pseudo header covers the IP addresses, port numbers, transport payload
length, and Next Header/Protocol value corresponding to the UDP
transport protocol. The length field verifies that the datagram is not
truncated or padded. The checksum therefore protects an application
against receiving corrupted payload data in place of, or in addition
to, the data that was sent. Although the IPv4 UDP (Postel, J., “User
Datagram Protocol,” August 1980.) [RFC0768] checksum may be disabled,
applications are recommended to enable UDP checksums [RFC5405] (Eggert,

L. and G. Fairhurst, “Unicast UDP Usage Guidelines for Application
Designers,” November 2008.).

IPv4 UDP checksum control is often a kernel-wide configuration control
(e.g. In Linux and BSD), rather than a per socket call. There are
Networking Interface Cards (NICs) that automatically calculate TCP/UDP
checksums on transmission if a checksum of zero is sent to the NIC,
using a method known as checksum offloading.

The network-layer fields that are validated by a transport checksum
are:

*Endpoint IP source address (always included in pseudo header of
checksum)

*Endpoint IP destination address (always included in pseudo header
of checksum)

*Upper Layer Payload type (always included in pseudo header of
checksum)

*IP length of payload (always included in pseudo header of
checksum)

*Length of the network layer extension headers (i.e. By correct
position of checksum bytes)

The transport-layer fields that are validated by a transport checksum
are:

*Transport demultiplexing, i.e. ports (always included in
checksum)

*Transport payload size (always included in checksum)

Transport endpoints also need to verify correctness of reassembly of
any fragmented packets (unless the application use of the payload is
corruption tolerant as indicated by UDP-Lite's checksum coverage
field). For UDP, this is normally provided as a part of the integrity
check. Disabling the IPv4 checksum prevents this check. A lack of
checksum can lead to issues in a translator or middlebox (e.g. Many
IPv4 Network Address Translators, NATs, rely on port numbers to find



the mappings, packet fragments do not carry port numbers, so fragments
get dropped). REC2765 (Nordmark, E., “Stateless IP/ICMP Translation
Algorithm (SIIT),” February 2000.) [RFC2765] provides some guidance on
the processing of fragmented IPv4 UDP datagrams that do not carry a UDP
checksum.

IPv6 does not provide a network-layer integrity check. The removal of
the IPv6 header checksum released routers from a need to update a
network-layer checksum on a hop-by-hop basis when they changed the IPv4
Time-To-Live (TTL) or IPv6 Hop Count. The IP header checksum
calculation was seen as redundant for most traffic (TCP and UDP with
checksums enabled), and people wanted to avoid this extra processing.
However, there was concern that the removal of the IP header checksum
in IPv6 would lessen the protection of the source/destination IP
addresses and result in a significant (a multiplier of ~32,000)
increase in the number of times that a UDP packet was accidentally
delivered to the wrong destination address and/or apparently sourced
from the wrong source address when UDP checksums were set to zero. This
would have had implications on the detectability of mis-delivery of a
packet to an incorrect endpoint/socket, and the robustness of the
Internet infrastructure. The use of the UDP checksum is
required[RFC2460] (Deering, S. and R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” December 1998.) when applications
transmit UDP over IPv6.

1.2. Use of UDP Tunnels TOC

One increasingly popular use of UDP is as a tunneling protocol, where a
tunnel endpoint encapsulates the packets of another protocol inside UDP
datagrams and transmits them to another tunnel endpoint. Using UDP as a
tunneling protocol is attractive when the payload protocol is not
supported by middleboxes that may exist along the path, because many
middleboxes support transmission using UDP. In this use, the receiving
endpoint decapsulates the UDP datagrams and forwards the original
packets contained in the payload [RFC5405] (Eggert, L. and G.
Fairhurst, “Unicast UDP Usage Guidelines for Application Designers,”
November 2008.). Tunnels establish virtual links that appear to
directly connect locations that are distant in the physical Internet
topology and can be used to create virtual (private) networks.

1.2.1. Motivation for new approaches TOC

A number of tunnel protocols are currently being defined (e.g..
Automated Multicast Tunnels, AMT (Internet draft, draft-ietf-mboned-
auto-multicast-09, “Automatic IP Multicast Without Explicit Tunnels




(AMT),"” June 2008.) [AMT], and the Locator/Identifier Separation
Protocol, LISP (Internet draft, draft-farinacci-lisp-12.txt, “Locator/
ID Separation Protocol (LISP),” March 2009.) [LISP]). These protocols
have proposed an update to IPv6 UDP checksum processing. These tunnel
protocols could benefit from simpler checksum processing for various
reasons:

*Reducing forwarding costs, motivated by redundancy present in the
encapsulated packet header, since in tunnel encapsulations,
payload integrity and length verification may be provided by
higher layer tunnel encapsulations (often using the IPv4, UDP,
UDP-Lite, or TCP checksums).

*Eliminating a need to access the entire packet when forwarding
the packet.

*Enhancing ability to traverse middleboxes, especially NATSs.

*A desire to use the port number space to enable load-sharing.

1.2.2. Reducing forwarding cost TOC

It is a common requirement to terminate a large number of tunnels on a
single router/host. Processing costs per tunnel concern both state
(memory requirements) and processing costs.

Automatic IP Multicast Without Explicit Tunnels, known as AMT (Internet
draft, draft-ietf-mboned-auto-multicast-09, “Automatic IP Multicast
Without Explicit Tunnels (AMT),” June 2008.) [AMT] currently specifies
UDP as the transport protocol for tunneled packets carrying tunneled IP
multicast packets. The current specification for AMT requires that the
UDP checksum in the outer packet header SHOULD be O (see Section 6.6).
It argues that the computation of an additional checksum, when an inner
packet is already adequately protected, is an unwarranted burden on
nodes implementing lightweight tunneling protocols. The AMT protocol
needs to replicate a multicast packet to each gateway tunnel. In this
case the outer IP addresses are different for each tunnel and therefore
require a different pseudo header to be built for each UDP replicated
encapsulation.

The argument concerning redundant processing costs is valid regarding
the integrity of a tunneled packet. In some architectures (e.g. PC-
based routers), other mechanisms may also significantly reduce checksum
processing costs: There are implementations that have optimised
checksum processing algorithms, including the use of checksum-
offloading. This processing is readily available for IPv4 packets at
high line rates. Such processing may be anticipated for IPv6 endpoints,
allowing them to reject corrupted packets without further processing.




Relaxing RFC 2460 to minimise the processing impact for existing
hardware is a transition policy decision, which seems undesirable if at
the same time it yields a solution that may reduce stability and
functionality in future network scenarios.

1.2.3. Need to inspect the entire packet TOC

The currently-deployed hardware in many routers uses a fast-path
processing that only provides the first n bytes of a packet to the
forwarding engine, where typically n < 128. This prevents fast
processing of a transport checksum over an entire (large) packet. Hence
the currently defined IPv6 UDP checksum is poorly suited to use within
routers that are unable to access the entire packet and do not provide
checksum-offloading.

1.2.4. Interactions with middleboxes TOC

In IPv4, UDP-encapsulation may be desirable for NAT traversal, since
UDP support is commonly provided.

IPv6 NAT traversal does not necessarily present the same protocol
issues as for IPv4. It is not clear that NATs will work the same way
for IPv6. Any change to RFC 2460 is going to require rewriting IPv6 (or
defining it) NAT behaviour to achieve consistent widescale deployment.
The requirements for IPv6 firewall traversal are likely be to be
similar to those for IPv4. In addition, it can be reasonably expected
that a firewall conforming to RFC 2460 will not regard UDP datagrams
with a zero checksum as valid packets, and if such a mode were to be
defined for IPv6 these may also need to be updated.

Key questions in this space include:

*What types of middleboxes does the protocol need to cross
(routers, NAT boxes, firewalls, etc.), and how will those
middleboxes deal with these packets?

*What do IPv6 routers do today with zero-checksum UDP packets?

*What other IPv6 middleboxes exist today, and what would they do?
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1.2.5. Support for load balancing

The UDP port number fields have been used as a basis to design load-
balancing solutions for IPv4. This approach could also be leveraged for
IPv6. However, support for extension headers would increase the
complexity of providing standards-compliant solutions for IPv6.

An alternate method could utilise the IPv6 Flow Label to perform load
balancing. This would release IPv6 load-balancing devices from the need
to assume semantics for the use of the transport port field. This use
of the flow-label is consistent with the intended use, although further
clarity may be needed to ensure the field can be consistently used for
this purpose, (e.g. ECMP [ECMP] (, “Using the IPv6 flow label for equal
cost multipath routing in tunnels (draft-carpenter-flow-ecmp),” .)).
Router vendors could be encouraged to start using the IPv6 Flow Label
as a part of the flow hash.

2. Standards-Track Transports TOC

2.1. UDP with Standard Checksum TOC

UDP with standard checksum behaviour is defined in RFC 2460, and should
be the default choice. Guidelines are provided in [RFC5405] (Eggert, L.
and G. Fairhurst, “Unicast UDP Usage Guidelines for Application
Designers,” November 2008.).

2.2. UDP-Lite TOC

UDP-Lite [RFC3828] (Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-
E., and G. Fairhurst, “The Lightweight User Datagram Protocol (UDP-
Lite),” July 2004.) offers an alternate transport to UDP, specified as
a proposed standard, RFC 3828. A MIB is defined in RFC 5097 and unicast
usage guidelines in [RFC5405] (Eggert, L. and G. Fairhurst, “Unicast
UDP Usage Guidelines for Application Designers,” November 2008.). UDP-
Lite has been implemented, e.g. as a part of the Linux kernel since
version 2.6.20.

UDP-Lite provides a checksum with an optional partial coverage. When
using this option, a datagram is divided into a sensitive part (covered
by the checksum) and an insensitive part (not covered by the checksum).
Errors/corruption in the insensitive part will not cause the datagram
to be discarded by the transport layer at the receiving host. A minor




side-effect of using UDP-Lite is that this was specified for damage-
tolerant payloads, and some link-layers may employ different link
encapsulations when forwarding UDP-Lite segments (e.g. Over radio
access bearers). When the checksum covers the entire packet, which
should be the default, UDP-Lite is semantically identical to UDP and is
specified for use with IPv4 and IPv6. It uses an IP protocol type (or
IPv6 next header) with a value of 136 decimal. This value is different
to that used by UDP.

2.2.1. Using UDP-Lite as a Tunnel Encapsulation TOC

Tunnel encapsulations can use UDP-Lite (e.g. Control And Provisioning
of Wireless Access Points, CAPWAP), since UDP-Lite provides a
transport-layer checksum, including an IP pseudo header checksum, in
IPv6, without the need to traverse the entire packet.

In the LISP case, the bytes that would need to be "checksummed" for
UDP-Lite would be the set of bytes that are added to the packet by the
LISP encapsulating router. When an IPv4/UDP header is per-pended by a
LISP router, the LISP ETR needs to calculate the IP header checksum
over 20 bytes (the IP header). If an IPv6/UDP-Lite header were per-
pended by a LISP router, the ETR would need to calculate an IP header
checksum over 48 bytes (the IP pseudo header and the UDP header). This
results in an increase in the number of bytes to be the checksummed for
IPv6 (48 bytes rather than 20), but this is not thought to be a major
processing overhead for a well-optimized implementation where the pre-
pended header bytes are already in memory.

2.3. 1IP in IPv6 Tunnel Encapsulations TOC

The IETF has defined a set of tunneling protocols. These do not include
a checksum, since tunnel encapsulations are typically layered directly
over the Internet layer (identified by the upper layer type field) and
are also not used as endpoint transport protocols. That is, there is
little chance of confusing a tunnel-encapsulated packet with other
application data that would result in corruption of application state
or data.

From the end-to-end perspective, the principal difference is that the
Next Header field identifies a separate transport, which reduces the
probability that corruption could result in the packet being delivered
to the wrong endpoint or application. Specifically, packets are only
delivered to protocol modules that process a specific next header
value. The next header field therefore provides a first-level check of
correct demultiplexing. In contrast, the UDP port space is shared by



many diverse application and therefore UDP de multiplexing relies
solely on the port numbers.

3. Evaluation of proposal to update to RFC 2460 to support TOC
zero checksum

This section evaluates a proposal to update IPv6 [RFC2460], to provide
the option that some nodes may suppress generation and checking of the
UDP transport checksum. The decision to omit an integrity check at the
IPv6 level means that the transport check is overloaded with many
functions including validating:

*the endpoint address was not corrupted within a router - this
packet was meant for this destination and a wrong header has not
been spliced to a different payload.

*the extension header processing is correctly delimited - the
start of data has not been corrupted. The protocol type field
also provides some protection.

*reassembly processing, when used.
*the length of the payload.

*the port values - i.e. The correct application gets the payload
(applications should also check source ports/address).

*the payload integrity.

In IPv4, the first 4 checks are performed using the IPv4 header
checksum.

In IPv6, these checks occur within the endpoint stack using the UDP
checksum information. An IPv6 node also relies on the header
information to determine whether to send an ICMPv6 error message and to
determine the node to which this is sent. Corrupted information may
lead to misdelivery to an unintended application socket on an
unexpected host.

3.1. Alternatives to the Standard Checksum TOC

There are several alternatives to the normal method for calculating the
UDP Checksum that do not require a tunnel endpoint to inspect the
entire packet when computing a checksum. These include (in decreasing
complexity):



*Delta computation of the checksum from an encapsulated checksum
field. Since the checksum is a cumulative sum (RFC 1624), an
encapsulating header checksum can be derived from the new pseudo
header, the inner checksum and the sum of the other network-layer
fields not included in the pseudo header of the encapsulated
packet. This would not require access to the whole packet, but
does require header fields to be collected across the header, and
arithmetic operations on each packet. The method would only work
for packets that contain a 2's complement transport checksum
(i.e. it would not be appropriate for SCTP or when IP
fragmentation is used). The process may be easier for IPv4 over
IPv6 encapsulation, where the encapsulated IPv4 header checksum
could be used as a basis.

*UDP-Lite. Where the checksum coverage may be set to only the
header portion of a packet. This requires a pseudo header
checksum calculation only on the encapsulating packet header,
which includes extracting the UDP payload length for the pseudo
header, however this is expected to be also known when performing
packet forwarding. The value may be cached per flow/destination,
and subsequently combined only with the Length field to minimise
per-packet processing.

*The UDP Tunnel Transport, UDPTT [UDPTT] (, “The UDP Tunnel
Transport mode,” Feb 2010.)(if progressed), where UDP is modified
to derive the checksum only from the encapsulating packet
protocol header. This value does not change between packets in a
flow. The value may be cached per flow/destination to minimise
per-packet processing.

*UDP modified to disable checksum processing [UDPZ] (, “UDP
Checksums for Tunneled Packets,” (Oct 2009.)(if progressed). This
requires no checksum calculation.

These options are discussed further in later sections.

3.2. Applicability of method TOC

The expectation of the present proposal to permit omission of UDP
checksums [UDPZ] (, “UDP Checksums for Tunneled Packets,” (Oct 2009.)
is that this would apply only to IPv6 router nodes that implement
specific protocols. However, the distinction between a router and a
host is not always clear, especially at the transport level. Systems
(such as unix-based operating systems) routinely provide both
functions. There is no way to identify the role of a receiver from a
received packet.




Any new method would therefore need a specific applicability statement
indicating when this mechanism can (and can not). There are additional
requirements, e.g. that fragmentation is not performed, since correct
reassembly can not be verified at the receiver without a checksum. This
would also open the receiver to a wide range of mis-behaviours. This
implies disabling host-based fragmentation. Policing this and ensuring
correct interactions with the stack implies much more than simply
disabling the checksum algorithm for specific packets at the transport
interface. There are also proposals to simply ignore a specific
received UDP checksum value, however this also can result in problems
(e.g. when used with a NAT that always adjusts the checksum value).

The IETF should carefully consider constraints on sanctioning the use
of this mode. If this is specified and widely available, it may be
expected to be used by applications that are perceived to gain benefit.
Any solution that uses an end-to-end transport protocol (rather than an
IP in IP encapsulation) also needs to minimise the possibility that
end-hosts could confuse a corrupted or wrongly delivered packet with
that of data addressed to an application running on their endpoint.

3.3. Effect of packet modification in the network TOC

When a checksum is used with UDP/IPv6, this significantly reduces the
impact of such errors, reducing the probability of undetected
corruption of state (and data) on both the host stack and the
applications using the transport service.

P packets may be corrupted as they travers an Internet path. Evidence
has been presented [Sigcomm2000] (http://conferences.sigcomm.org/
sigcomm/2000/conf/abstract/9-1.htm, “When the CRC and TCP Checksum
Disagree,” 2000.) to show that this was once an issue with IPv4
routers, and occasional corruption could result from bad internal
router processing in routers or hosts. These errors are not detected by
the strong frame checksums employed at the link-layer (RFC 3819). There
is no current evidence that such cases are rare in the modern Internet,
nor that they may not be applicable to IPv6. It therefore seems prudent
not to relax this constraint. The emergence of low-end IPv6 routers and
the proposed use of NAT with IPv6 further motivate the need to protect
from this type of error.

Corruption in the network may result in:

*a datagram being mis-delivered to the wrong host/router or the
wring transport entity within a host/router. Such a datagram
needs to be discarded.

*a datagram payload being corrupted and delivered to the intended
host/router transport entity. Such a datagram needs to be either



discarded or correctly processed by an application that has its
own integrity checks.

*a datagram payload being truncated by corruption of the length
field. Such a datagram needs to be discarded.

3.3.1. Corruption of the destination IP address TOC

An IP endpoint destination address could be modified in the network
(corrupted by errors). This modification can not be detected in the
network when using IPv6. This is not a concern in IPv4, because the IP
header checksum will result in this packet being discarded by the
receiving IP stack.

There are two possible outcomes:

*Delivery to an address that is not in use (the packet will not be
delivered, but could result in an error report).

*Delivery to a different address. This modification will normally
be detected by the transport checksum, resulting in silent
discard. Without this checksum, the packet would be passed to the
port demultiplexing function. If an application is bound to the
associated ports, the packet payload will be passed to the
application (see the subsequent section on port processing).

3.3.2. Corruption of the source IP address TOC

This section examines what happens when the source IPv6 address is
corrupted in transit. (This is not a concern in IPv4, because the IP
header checksum will result in this packet being discarded by the
receiving IP stack).

Corruption of an IPv6 packet's source address does not result in the IP
packet being delivered to a different endpoint protocol or destination
address. If only the source address is corrupted, the packet will
likely be processed in the intended context, although with erroneous
origin information. The result will depend on the application or
protocol that processes the packet. Some examples are:

*An application that requires pre-established context may
disregard the packet as invalid, or could map this to another
context (if a context for the modified source address was already
activated).



*A stateless application will process the packet outside of any
context, a simple example is the ECHO server, which will respond
with a packet to the modified source address. This would create
unwanted additional processing load, and generate traffic to the
modified endpoint address.

*Some applications build state using the information from packet
headers. A previously unused source address would result in
receiver processing and the creation of unnecessary transport-
layer state at the receiver. For example, RTP flows commonly
employ a source independent receiver port. State is created for
each received flow. Reception of a packet with a corrupted source
address would result in accumulation of unnecessary state in the
RTP state machine, including collision detection and response
(since the same Synchronization source, SSRC, value will appear
to arrive from multiple source IP addresses).

In general, the effect of corrupting the source address will depend
upon the protocol that processes the packet and its robustness to this
error. For the case where the packet is received by a tunnel endpoint,
the application is expected to correctly handle a corrupted source
address.

This effect is more difficult to quantify when several fields have been
modified in transit, and the receiving application is not that
originally intended.

3.3.3. Delivery to an unexpected port TOC

This section considers what happens if one or both of the UDP port
values are corrupted in transit. (This can also happen with IPv4 in the
zero checksum case, but not when UDP checksums are enabled or with UDP-
Lite). If the ports were corrupted in transit, packets may be delivered
to the wrong process (on the intended machine) and/or responses or
errors sent to the wrong application process (on the intended machine).
There are several possible outcomes for a packet that passes and does
not use the UDP checksum validation:

*Delivery to a port that is not in use. This is discarded, but
could generate an ICMPv6 message (e.g. port unreachable).

*It could be delivered to a different node that implements the
same application, where the packet may be accepted, generating
side-effects or accumulated state.

*It could be delivered to an application that does not implement
the tunnel protocol, where the packet may be incorrectly parsed,
and misinterpreted, generating side-effects or accumulated state.



The probability of this happening depends on the statistical
probability that the source address and the destination port of the
datagram (the source port is not always used in UDP) match those of an
existing connection.

Unfortunately, this may be more likely for UDP than for connection-
oriented transports: (a) There is no handshake prior to communication
and no sequence numbers (as in TCP, DCCP, SCTP). Together this makes it
hard to verify that an application is given only the data associated
with a session. (b) Applications writers often bind to wild-card values
in endpoint identifiers and do not always validate correctness of
datagrams they receive. While we could revise these rules and declare
naive applications as Historic, this is not realistic - the transport
owes it to the stack to do its best to reject bogus datagrams.

If checksum coverage is suppressed, the application needs to provide a
method to detect and discard the unwanted data. The encapsulated tunnel
protocol would need to perform its own integrity checks on any control
information and ensure an integrity check is applied to the tunneled
packet. It is not reasonable to assume that it is safe for one
application to use a zero checksum value and that other applications
will not. It is important to consider the possibility that a packet
will be received by a different node to that for which it was intended,
or that it will arrive at the correct tunnel destination with the wrong
source address in the external header.

3.3.4. Vvalidating the network path TOC

IP transports designed for use in the general Internet should not
assume specific characteristics. Network protocols may reroute packets
and change the set of routers and middleboxes along a path. Therefore
transports such as TCP, SCTP and DCCP are designed to negotiate
protocol parameters, adapt to different characteristics, and receive
feedback that the current path is suited to the intended application.
Applications using UDP and UDP-Lite need to provide their own
mechanisms to confirm the validity of the current network path.

Any application/tunnel that seeks to make use of zero checksum must
include functionality to both negotiate and verify that the zero
checksum support is provided by the path and validate that this
continues to work (e.g., in the case of re-routing events) between the
intended parties. This increases the complexity of using such a
solution.

TOC



3.4. Comparision

This section compares different methods. This includes two proposals
for updating the behaviour of UDP. These are provided as examples, and
do not seek to endorse any specific method or suggest that these
proposals are ready to be standardised.

Comparison of functions for selected methods

UDP UDPv4 UDPL IP IP UDPv6 UDPv6 UDPTT

zero in in zero
IPv4 IPV6

Incremental cksum update? X - X N/A N/A X - X
Verification of IP length? X X X X X X X X
Detect dest addr corruption? X X X X - X - X
Detect NH addr corruption? - - - X - - - -
Flow demux fields present? X X X - X X X X
Detect port corruption? X - X N/A N/A X - X
Detect illegal pay length? X X - N/A N/A X X -
Detect pay corruption? X - ? N/A N/A X - -
Static cksum per flow? - X - N/A N/A - X X
Partial/full midbox support? X * ? 7 ? X ? ?
Restricted tunnel behaviour X * X X ? X - X
X = Provided/supported
- = Not provided/supported
N/A = Not applicable
? = Partial support
* = Supports a subset of functions (i.e. not all combinations)

Table 1

4. Requirements on the specification of transported protocols TOC

If the IETF were to revise the standard for UDP using IPv6 for specific
use-cases there are a set of questions that would need to be answered.
These include:

Is there a reason why IP in IP is not a reasonable choice for
encapsulation?

*Examples of arguments for requiring an encapsulation beyond IP-
in-IP include the need for NAT traversal and/or firewall
traversal. However, the use of any non-standard transport
protocol or variant would also require specific support in
middleboxes.



*Another example is a need to perform port-demultiplexing (e.g.
for load balancing). This need could be met using UDP, UDP-Lite,
or other transports, or by utilising the IPv6 flow label.

Is there a reason why UDP-Lite is not a reasonable choice for
encapsulation?

*One argument against using UDP-Lite is that this transport is
that this transport is not implemented on all endpoints. However,
there is at least one open source implementation.

*Another argument against using UDP-Lite is that it uses a
different IPv6 Next Header, which is currently not widely
supported in middleboxes (see previous).

*It has also been argued that UDP-Lite requires a checksum
computation. The UDP-Lite checksum, for instance includes the
length field, but need not include the IP payload, and therefore
would not require access to the full datagram payload by the
tunnel endpoints.

If the IETF needs to revise the rationale for UDP checksums in RFC
2460, should we remove the checksum or replace it with one closer to
UDP-Lite (e.g. UDPTT)?

Topics to be considered in making this decision:

*The role of a router and host are not fixed, and a consistent
method must be specified that can be used on all nodes. It can
not be assumed that a particular protocol (or transport mode)
will only be used on a specific type of network node (e.g.
permitting the UDP checksum to be disabled only on a router). In
IPv6, a node selects the role of a router or host on a per
interface basis. It is important to note that protocol changes
intended for one specific use are often re-used for different
applications.

*Behaviour of NAT/Middleboxes needs to be updated for UDPTT and
for UDP cksum==0.

*Load balancing may not be enabled for all transport protocols.
*Implications on host acting as routers and transport end points.
*Appropriate mechanisms to negotiate and validate the properties
of the network path, including consideration of the impact of

rerouting.

*Whether this requires restrictions on recursive tunnels (e.g.
Necessary when the endpoint is not verified).



If a zero checksum approach were to be adopted by the IETF, the
specification should consider adding the following constraints on
usage:

1. The method must be specified to verify the integrity of the
inner (tunneled) packet.

2. The tunneling protocol must not allow fragmentation of the
inner packets being carried. We would suggest the following
elaborations of the above restrictions, if a change in the IPv6
specification moves forward: That is, an inner IPv4 packet with
a UDP checksum equal to O must not be tunneled

3. If a method proposes selective ignoring of the checksum on
reception, it needs to provide guidance that is appropriate for
all use-cases, including defining how currently standardised
nodes handle any new use.

4. Other tunneling protcocols that use the UDP checksum equal to ©
must not be tunneled themselves, even if more deeply
encapsulated packets have checksums or other integrity checking
mechanisms.

5. Non-IP inner (tunneled) packets must have a CRC or other
mechanism for checking packet integrity.

6. The specification needs to consider whether to prevent
recursive tunnels (e.g. necessary when the endpoint is not
verified).

7. It is recommended that general protocol stack implementations
do not by default allow the new method. The new method should
remain restricted to devices serving as endpoints of the
lightweight tunneling protocol adopting the change.

5. Summary TOC

This document examines the role of the transport checksum when used
with IPv6, as defined in RFC2460.

It presents a summary of the trade-offs for evaluating the safety of
updating RFC 2460 to permit an IPv6 UDP endpoint to use a zero value in
the checksum field to indicate that no checksum is present. A decision
not to include a UDP checksum in received IPv6 datagrams could impact a
tunnel application that receives these packets. However, a well-
designed tunnel application should include consistency checks to
validate any header information encapsulated with a packet and ensure



that a an integrity check is included for each tunneled packet. When
correctly implemented, such a tunnel endpoint will not be negatively
impacted by omission of the transport-layer checksum. However, other
applications at the intended destination node or another IPv6 node can
be impacted if they are allowed to receive datagrams without a
transport-layer checksum.

In particular, it is important that already deployed applications are
not impacted by any change at the transport layer. If these
applications execute on nodes that implement RFC 2460, they will reject
all datagrams without a UDP checksum.

The implications on firewalls, NATs and other middleboxes need to be
considered. It should not be expected that NATs handle IPv6 UDP
datagrams in the same way as they handle IPv4 UDP datagrams. Firewalls
are intended to be configured, and therefore may need to be explicitly
updated to allow new services or protocols.

If the use of UDP transport without a checksum were to become prevalent
for IPv6 (e.g. tunnel protocols using this are widely deployed), there
would also be a significant danger of the Internet carrying an
increased volume of packets without a transport checksum for other
applications, potentially including applications that have
traditionally used IPv4 UDP transport without a checksum. This result
is highly undesirable. In general, UDP-based applications need to
employ a mechanism that allows a large percentage of the corrupted
packets to be removed before they reach an application, both to protect
the applications data stream and the control plane of higher layer
protocols. These checks are currently performed by the UDP checksum for
IPv6, or the reduced checksum for UDP-Lite when used with IPv6.
Although the use of UDP over IPv6 with no checksum may have merits for
use as a tunnel encapsulation and is widely used in IPv4, it is
considered dangerous for all IPv6 nodes (hosts and routers). Other
solutions need to be found. This requires rthat the IPv4 and IPv6
solutions to differ, since there are different deployed
infrastructures.
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7. IANA Considerations

This document does not require IANA considerations.

8. Security Considerations TOC

Transport checksums provide the first stage of protection for the
stack, although they can not be considered authentication mechanisms.
These checks are also desirable to ensure packet counters correctly log
actual activity, and can be used to detect unusual behaviours.
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