
Network Working Group S. Farrell
Internet-Draft Trinity College Dublin
Intended status: Standards Track P. Hoffman
Expires: April 8, 2013 VPN Consortium
 M. Thomas
 Phresheez
 October 5, 2012

HTTP Origin-Bound Authentication (HOBA)
draft-farrell-httpbis-hoba-02

Abstract

 HTTP Origin-Bound Authentication (HOBA) is a design for an HTTP
 authentication method with credentials that are not vulnerable to
 phishing attacks, and that does not require a server-side password
 database. The design can also be used in Javascript-based
 authentication embedded in HTML. HOBA is an alternative to HTTP
 authentication schemes that require passwords with all the negative
 attributes that come with password-based systems. HOBA can be
 integrated with account management and other applications running
 over HTTP and supports portability, so a user can associate more than
 one device or origin-bound key with the same service. We also
 describe a way in which the HOBA design can be used from a Javascript
 web client. When deployed, HOBA will be a drop-in replacement for
 password-based HTTP authentication or JavaScript authentication.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 8, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the

Farrell, et al. Expires April 8, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 4
1.1. Comparison of HOBA and Current Password Authentication . . 5
1.2. Terminology . 5

2. HOBA for Both HTTP Authentication and JavaScript 6
3. HOBA HTTP Authentication Mechanism 7
4. Using HOBA-http . 7
4.1. CPK Preparation Phase 8
4.2. Signing Phase . 8
4.3. Authentication Phase 8
4.4. Logging in on a New User Agent 9

5. Using HOBA-js . 9
5.1. Key Storage . 10
5.2. User Join . 10
5.3. User Login . 10
5.4. Enrolling a New User Agent 11
5.5. Replay Protection . 11
5.6. Signature Parameters 12
5.7. Session Management . 13
5.8. Multiple Accounts on One User Agent 14
5.9. Oddities . 14

6. Additional Services . 14
6.1. Registration . 14
6.2. Associating Additional Keys to an Exiting Account 15
6.3. Logging Out . 16

7. Mandatory-to-Implement Algorithms 16
8. Security Considerations 16
8.1. localStorage Security for Javascript 16

9. IANA Considerations . 17
9.1. HOBA Authentication Scheme 17
9.2. .well-known URLs . 17
9.3. Hash names . 18

10. Acknowledgements . 18
11. References . 18
11.1. Normative References 18
11.2. Informative References 18

Appendix A. Problems with Passwords 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Farrell, et al. Expires April 8, 2013 [Page 2]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 Authors' Addresses . 19

Farrell, et al. Expires April 8, 2013 [Page 3]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

1. Introduction

 [[Commentary is in double-square brackets, like this. As you'll see
 there are a bunch of details still to be figured out. Feedback on
 those is very welcome. Also note that the authors fully expect that
 the description of HOBA-http and HOBA-js to be mostly merged in the
 draft; they're both here now so readers can see some alternatives and
 maybe support particular proposals.]]

 HTTP Origin-Bound Authentication (HOBA) is a proposal for a new
 authentication design that can be used as an HTTP authentication
 scheme and for Javascript-based authentication embedded in HTML. The
 main goal of HOBA is to offer an easy-to-implement authentication
 scheme that is not based on passwords. If deployment of HOBA reduces
 the number of password entries in databases by any appreciable
 amount, then it would be worthwhile. As an HTTP authentication
 scheme, it would work in the current HTTP 1.0 and HTTP 1.1
 authentication framework, and will very likely work with whatever
 changes are made to the HTTP authentication scheme in HTTP 2.0. As a
 JavaScript design, HOBA demonstrates a way for clients and servers to
 interact using the same credentials that are use by the HTTP
 authentication scheme.

 The HTTP specification defines basic and digest authentication
 methods for HTTP that have been in use for many years, but which,
 being based on passwords, are susceptible to theft of server-side
 databases. (See [RFC2617] for the original specification, and
 [I-D.ietf-httpbis-p7-auth] for clarifications and updates to the
 authentication mechanism.) Even though few large web sites use basic
 and digest authentication, they still use username/password
 authentication and thus have large susceptible server-side databases
 of passwords.

 Instead of passwords, HOBA uses digital signatures as an
 authentication mechanism. HOBA also adds useful features such as
 credential management and session logout. In HOBA, the client
 creates a new public-private key pair for each host ("web-origin") to
 which it authenticates; web-origins are defined in [RFC6454]. These
 keys are used in HOBA for HTTP clients to authenticate themselves to
 servers in the HTTP protocol or in a Javascript authentication
 program. HOBA keys need not be stored in public key certificates,
 but instead in subjectPublicKeyInfo structures from PKIX [RFC5280].
 Because these are generally "bare keys", there is none of the
 semantic overhead of PKIX certificates, particularly with respect to
 naming and trust anchors. Thus, client public keys ("CPKs") do not
 have any publicly-visible identifier for the user who possesses the
 corresponding private key, nor the web-origin with which the client
 is using the CPK.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc5280

Farrell, et al. Expires April 8, 2013 [Page 4]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 HOBA also defines some services that are required for modern HTTP
 authentication:

 o Servers can bind a CPK with an identifier, such as an account
 name. HOBA allows servers to define their own policies for
 binding CPKs with accounts during account registration.

 o Users are likely to use more than one device or user agent (UA)
 for the same HTTP based service, so HOBA gives a way to associate
 more than one CPK to the same account, but without having to
 register for each separately.

 o Users are also likely to lose a private key, or the client's
 memory of which key pair is associated with which origin. For
 example if a user loses the computer or mobile device in which
 state is stored. HOBA allows for clients to tell servers to
 delete the association between a CPK and an account.

 o Logout features can be useful for user agents, so HOBA defines a
 way to close a current HTTP "session", and also a way to close all
 current sessions, even if more than one session is currently
 active from different user agents for the same account.

1.1. Comparison of HOBA and Current Password Authentication

 [[This will be a few paragraphs explaining how HOBA can be used as a
 drop-in replacement for the common form-and-cookie authentication
 used today. It will show how similar many of the concepts are, and
 also point out some of the advantages sites will get by changing to
 HOBA.]]

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 A client public key ("CPK") is the public key and associated
 cryptographic parameters needed for a server to validate a signature.

 The term "account" is (loosely) used to refer to whatever data
 structure(s) the server maintains that are associated with an
 identity. That will contain of at least one CPK and a web-origin; it
 will also optionally include an HTTP "realm" as defined in the HTTP
 authentication specification. It might also involve many other non-
 standard pieces of data that the server accumulates as part of
 account creation processes. An account may have many CPKs that are
 considered equivalent in terms of being usable for authentication,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Farrell, et al. Expires April 8, 2013 [Page 5]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 but the meaning of "equivalent" is really up to the server and is not
 defined here.

 When describing something that is specific to HOBA as an HTTP
 authentication mechanism or HOBA as a JavaScript implementation, this
 document uses the terms "HOBA-http" and "HOBA-js", respectively.

 Web client: the content and javascript code that run within the
 context of a single user agent instance (such as a tab in a web
 browser).

 User agent (UA): typically, but not always, a web browser doing HOBA.

 User: a person who is running a UA. In this document, "user" does
 not mean "user name" or "account name".

 [[This specification may later use the Augmented Backus-Naur Form
 (ABNF) notation of [RFC5234]. Or maybe not.]]

2. HOBA for Both HTTP Authentication and JavaScript

 A UA that implements HOBA maintains a list of web-origins and realms.
 The UA also maintains one or more client credentials for each web-
 origin/realm combination for which it has created a CPK.

 [[We've discussed whether or not realms are needed. They may
 disappear if they're not.]]

 On receipt of a challenge from a server, the client marshals a to-be-
 signed blob that includes the web-origin name, the realm, and the
 challenge string; and signs that hashed blob using the hash algorithm
 identified with the challenge and the private key corresponding to
 the CPK for that web-origin. The client concatenates the signed blob
 with the CPK identifier that the client and host agreed on for the
 client. This is called the "client response". [[Note: this is just
 an illustrative first cut at a challenge-response protocol, real
 design and analysis is needed for this, e.g. for security, algorithm
 agility, etc. Ideally we can just adopt something that already has
 some security proofs. Expect changes here.]]

 HOBA will support the idea of multiple users on the same user agent.
 This will be useful for the problem of "can I use your browser to
 check my mail..." and so on. It is [[currently]] described only in
 the HOBA-js section, but will apply equally to HOBA-http. [[There
 are implications beyond the discussion in HOBA-js here in that there
 would only be a single CPK for a set of users for a given origin
 since normative HOBA-http has no clue at all about users and the

https://datatracker.ietf.org/doc/html/rfc5234

Farrell, et al. Expires April 8, 2013 [Page 6]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 like. This needs more thought.]]

3. HOBA HTTP Authentication Mechanism

 An HTTP server that supports HOBA authentication includes the "hoba"
 auth-scheme value in a WWW-Authenticate header field when it wants
 the client to authenticate with HOBA.

 o If the "hoba" scheme is listed, it MUST be followed by two or more
 auth-param values. The auth-param attributes defined by this
 specification are below. Other auth-param attributes MAY be used
 as well. Unknown auth-param attributes MUST be ignored by
 clients, if present.

 o The "challenge" attribute MUST be included. The challenge is a
 string of characters that the server wants the client to sign in
 its response. The challenge SHOULD be unique for every HTTP 401
 response in order to prevent replay attacks from passive
 observers. [[How or if replay detection is specified is TBD.]]

 o The "hash" attribute MUST be included. This is the name of the
 hash algorithm that the server wants the client to use in signing
 challenge. The valid names for hash algorithms are listed in [[
 some IANA registry, maybe same as DKIM]].

 o Note that a hash here is sufficient, given the assumption that the
 client and server have already agreed (or are about to agree) the
 public key and asymmetric algorithm for the CPK.

 o A "realm" attribute MAY be included to indicate the scope of
 protection in the manner described in HTTP/1.1, Part 7
 [I-D.ietf-httpbis-p7-auth]. The "realm" attribute MUST NOT appear
 more than once.

 When the "client response" is created, the HOBA-http client encodes
 the result as a b64token and returns that b64token in the
 Authorization header.

 The HOBA-http authentication mechanism allows for the use of cookies
 for preserving state between protected resources in one HTTP realm.
 This means that the server need only send the WWW-Authenticate header
 field once, and can rely on cookie management for keeping state.

4. Using HOBA-http

 [[A lot of this is similar to the HOBA-js discussion below. At some

Farrell, et al. Expires April 8, 2013 [Page 7]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 point some nuclear fusion might be nice, but for now it might be best
 to keep them separate until we understand better what can be merged,
 and what is different.]]

 The interaction between an HTTP client and HTTP server using HOBA
 happens in three phases: the CPK preparation phase, the signing
 phase, and the authentication phase. The first and second phase are
 done in a standard fashion; the third is done using site-specific
 methods.

 [[Need to describe what happens if the user bails half way through
 the flow.]]

4.1. CPK Preparation Phase

 In the CPK preparation phase, the client determines if it already has
 a CPK for the web-origin it is going to. If the has a CPK, the
 client will use it; if the client does not have a CPK, it generates
 one in anticipation of the server asking for one.

4.2. Signing Phase

 In the signing phase, the client connects to the server, the server
 asks for HOBA-based authentication, and the client authenticates by
 signing a blob of information as described in the previous sections.

 The user agent tries to access a protected resource on the server.
 The server sends the HOBA WWW-Authenticate challenge. The user agent
 receives the challenge and signs the challenge using the CPK it
 either already had or just generated. The server validates the
 signature. If validation fails, the server aborts the transaction.
 [[Or maybe it asks again?]]

4.3. Authentication Phase

 In the authentication phase, the server extracts the CPK from the
 signing phase and decides if it recognizes the CPK. If the server
 recognizes the CPK, the server may finish the client authentication
 process. If the process involves a second factor of authentication,
 such as asking the user which account it wants to use (in the case
 where a user agent is used for multiple accounts on a site), the
 server may prompt the user for the account identifying information.
 None of this is standardized: it all follows the server's security
 policy and session flow. At the end of this, the server probably
 assigns or updates a session cookie for the client.

 If the server does not recognize the CPK the server might send the
 client through a either a join or login-new-user-agent (see below)

Farrell, et al. Expires April 8, 2013 [Page 8]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 process. This process is completely up to the server, and probably
 entails using HTML, JavaScript and CSS to ask the user some questions
 in order to assess whether or not the server wants to give the client
 an account. Completion of the joining process might entail require
 confirmation by email, SMS, Captcha, and so on.

 Note that there is no necessity for the server to initiate a joining
 or login process upon completion of the signing phase. Indeed, the
 server may desire to challenge the user agent even for unprotected
 resources and carry along the CPK in a session cookie for later use
 in a join or login process as it becomes necessary. For example, a
 server might only want to offer an account to someone who had been to
 a few pages on the web site; in such a case, the server could use the
 CPK from an associated session cookie as a way of building reputation
 for the user until the server wants the user to join.

 After the UA is authenticated (if the user had to join, this could be
 the last step of joining), the server gives the UA access to the
 protected resource that was originally requested at the beginning of
 the signing phase. It is quite likely that the server would also
 update the UA's session cookie for the web site.

4.4. Logging in on a New User Agent

 When a user wants to use a new user agent for an existing account,
 the flows are similar to logging in with an already-joined UA or
 joining for the first time. In fact, the CPK preparation phase (with
 the UA knowing that it needs to create a new CPK) and the signing
 phase are identical.

 During the authentication phase, the server could use HTML,
 JavaScript and CSS to ask the user if they are really a new user or
 want to associate this new CPK with an already-joined CPK. The
 server can then use some out-of-band method (such as a confirmation
 email round trip, SMS, or an UA that is already enrolled) to verify
 that the "new" user is the same as the already-enrolled one.

5. Using HOBA-js

 [[A description of how to use the same HOBA semantics, but doing
 everything in Javascript in a web page. This is more of a
 demonstration that you could get the similar semantics via JS rather
 than a normative section.]]

 Web sites using javascript can also perform origin-bound
 authentication without needing to involve the http layer, and by
 inference not needing HOBA-specific support in browsers. One element

Farrell, et al. Expires April 8, 2013 [Page 9]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 is required: localStorage (see http://www.w3.org/TR/webstorage/), and
 one when it is available will be highly desirable: WebCrypto (see

http://www.w3.org/TR/WebCryptoAPI). In lieu of WebCrypto, javascript
 crypto libraries can be employed with the known deficiencies of PRNG,
 and the general immaturity of those libraries. The following section
 outlines a mechanism for Javascript HOBA clients to initially enroll,
 subsequent enrollment on new clients, login, and how HOBA-js relates
 to web based session management. As with HOBA-http, a pure
 Javascript implementation retains the property that only CPKs are
 stored on the server, so that server compromise doesn't suffer the
 multiplier affect that the various recent password exposure debacles
 have vividly demonstrated.

5.1. Key Storage

 We use the new HTML 5 webstorage feature that is now widely
 available. Conceptually an implementation stores in the origin's
 localStorage dictionary account identifier, public key, private key
 tuples for subsequent authentication requests. How this is actually
 stored in localStorage is an implementation detail. We rely on the
 security properties of the same-origin policy that localStorage
 enforces. See the security considerations for discussion about
 attacks on localStorage.

5.2. User Join

 To join a web site, the HOBA-js client generates a public/private key
 pair and takes as input the account identifier to which the key pair
 should be bound. The key pair and account identifier are stored in
 localStorage for later use. The user agent then signs the join
 information (see below) using the private key, and forms a message
 with the public key (CPK) and the signed data. The server receives
 the message and verifies the signed data using the supplied key. The
 server creates the account and adds the public key to a list of
 public keys associated with this account.

5.3. User Login

 Each time the user needs to log in to the server, it creates a login
 message (see below) and signs the message using the relevant private
 key stored in localStorage. The signed login message along with the
 associated CPK identifier is sent to the server. The server receives
 the message and verifies the signed data. If the supplied public key
 is amongst the set of valid public keys for the supplied account,
 then the login proceeds. See below for a discussion about replay.

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/WebCryptoAPI

Farrell, et al. Expires April 8, 2013 [Page 10]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

5.4. Enrolling a New User Agent

 When a user wants to start using a different UA, the website has two
 choices: use a currently enrolled UA to permit the enrollment or use
 a trusted out of band mechanism (eg email, sms, etc). To enroll a
 new UA using an existing UA, the web site can display a one-time
 password on the currently enrolled UA. This password is a one-time
 password and expires in a fixed amount of time (say, 30 minutes). It
 doesn't need to be an overly fussy password since it's one-time and
 times out quickly. The user then inputs the one-time password and
 the new UA generates a new asymmetric key pair and includes the one-
 time password in the login message to the server (see below).

 Alternatively if an enrolled UA is not available, and the site has an
 out of band communication mechanism (eg, sms, email, etc) a user can
 request that a one-time password be sent to the user. The server
 generates and stores the one-time password as above. The user
 receives the one-time password, inputs as above on the new UA, and
 the HOBA-js client forms the login message as above.

 In both cases, when the server receives a login message with a one-
 time password, it checks to see if the password supplied is in a list
 of unexpired one-time passwords associated with that account. If the
 password matches, the server verifies the signature, expires or
 deletes the one-time password and adds the supplied public key to the
 list of public keys associated with the user assuming the signature
 verified correctly. Subsequent logins proceed as above in User
 Login.

5.5. Replay Protection

 To guard against replay of a legitimate login/join message, we use
 Kerberos-like timestamps in the expectation of synchronization
 between the browser's and server's clocks is sufficiently reliable.
 This saves an HTTP round trip which is desirable, though a challenge-
 response mechanism as in HOBA-http could also be used. The client
 puts the current system time into the URL, and the server side vets
 it against its system time. Like Kerberos, a replay cache covering a
 signature timeout window is required on the server. This can be done
 using a database table that is keyed (in the database sense of the
 term) using the signature bits. If the signature is in the replay
 table, it ought be rejected. If the timestamp in the signature is
 outside the current replay cache window then it also gets rejected.

 [[An addition of the ability for the server to reject a client with
 potential time skew and give it a nonce (as with HOBA-http) would
 allow the size of the replay cache to be set to just a few minutes
 rather than a much longer period. Or the HOBA server could always

Farrell, et al. Expires April 8, 2013 [Page 11]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 use a nonce method. This is worthy of more discussion.]].

5.6. Signature Parameters

 Since we only require agreement between the server and the client
 where the client is under the control of the server, the actual url
 parameter names here are only advisory. For each signed url, the
 client forms a url with the necessary login/join information. For
 example, suppose example.com has login and join scripts with various
 parameters:

 o http://example.com/site/login.php?username=Mike

 o http://example.com/site/
 join.php?username=Mike&email=mike@example.com&sms=555.1212

 The client then appends a signature parameter block to the url:

 o curtime: the time in milliseconds since unix epoch (ie, new Date
 ().getTime ()).

 o pubkey: the url encoded public key. See DKIM for the format of
 the base64 encoded PEM formated key.

 o temppass: an optional url encoded one-time password for subsequent
 enrollment.

 o keyalg: currently RSA. 2048 bit keys should be use if WebCrypto is
 available

 o digestalg: currently SHA1. SHA256 should be used if WebCrypto is
 available.

 o signature: empty for signing canonicalization purposes

 [[Signing the full url is problematic with PHP; we should take a
 clue from what OAUTH does here; we almost certainly need to add some
 host identifying information...]] To create the signature, the
 canonical text includes the path portion, the site-specific url
 parameters and appends a signature block onto the end of the url.
 The signature block consists of the parameters listed above with an
 empty signature parameter (ie, signature=), eg:

 o Login: /site/
 login.php?username=Mike&curtime=1234567890.1234&keyalg=RSA&
 digestalg=SHA1&signature=

Farrell, et al. Expires April 8, 2013 [Page 12]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 o Join: /site/
 join.php?username=Mike&email=mike@
 example.com&curtime=1234567890.1234&keyalg=RSA&digestalg=SHA1&
 signature=

 o Login New User Agent: /site/
 login.php?username=Mike&curtime=1234567890.1234&temppass=1239678&
 keyalg=RSA&digestalg=SHA1&signature=

 The canonical signature text is then signed with the private key
 associated with the account. The signature is then base64 encoded
 and appended to the full url, and sent to the server using
 XMLHttpRequest as usual. On receipt of the login request, the server
 first extracts the timestamp (curtime) and determines whether the
 timestamp is fresh (see above) rejecting the request if stale. The
 server then removes the scheme and domain:port portion of the
 incoming url, and removes the signature value only to create the
 canonical signature text. The server then extracts the public key
 along with the account and verifies the signature. If the signature
 verifies, the server then determines whether this is an enrolled
 public key for the user. If it is, login/join succeeds. If the key
 is not enrolled, the server then checks to see if a one-time password
 was supplied. If not, login/join fails. If a one-time password was
 supplied, the server checks to see if a one-time password is valid
 and fails if not. If valid, the server disables the one-time
 password (eg, deletes it from its database) and adds the new public
 key to the list of enrolled public keys for this user.

 Once verified, the server may start up normal cookie-based session
 management (see below). The server should send back status to the
 HOBA-js client to determine whether the login/join was successful.
 The details are left as an implementation detail.

 Note: the client SHOULD use an HTTP POST for the XMLHttpRequest as
 both the public key and signature blocks may exhaust the maximum size
 for a GET request (typically around 2KB).

5.7. Session Management

 Session Management is identical to username/password session
 management. That is, the session management tool (such as PHP,
 Python CGI, and so on) inserts a session cookie into the output to
 the browser, and logging out simply removes the session cookie.
 HOBA-js does nothing to help or hurt session cookie hijacking -- TLS
 is still our friend.

Farrell, et al. Expires April 8, 2013 [Page 13]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

5.8. Multiple Accounts on One User Agent

 A shared UA with multiple accounts is possible if the account
 identifier is stored along with the asymmetric key pair binding them
 to one another. Multiple entries can be kept, one for each account,
 and selected by the current user. This, of course, is fraught with
 the possibility for abuse, since you're enrolling the device
 potentially long-term. A couple of things can possibly be done to
 combat that. First, the user can request that the credential be
 erased from keystore. Similarly, in the enrollment phase, a user
 could request that the key pair only be kept for a certain amount of
 time, or that it not be stored at all. Last, it's probably best to
 just not use shared devices at all since that's never especially
 safe.

5.9. Oddities

 With the same-origin policy, subdomains do not have access to the
 same localStorage as parent domains do. For larger/more complex
 sites this could be an issue that requires enrollment into subdomains
 with the requisite hassle for users. One way to get around this is
 to use session cookies as they can be used across subdomains. That
 is, login using a single well-known domain, and then use session
 cookies to navigate around a site.

6. Additional Services

 HOBA uses a well-known URL [RFC5785] "hoba" as a base URI for
 performing many tasks: "https://www.example.com/.well-known/hoba".
 These URLs are based on the name of the host that the HTTP client is
 accessing. There are many use cases for these URLs to redirect to
 other URLs: a site that does registration through a federated site, a
 site that only does registration under HTTPS, and so on. Like any
 HTTP client, HOBA clients MUST be able to handle redirection of these
 URLs. [[There are a bunch of security issues to consider related to
 cases where a re-direct brings you off-origin.]]

 All additional services MUST be done in TLS-protected sessions
 ([RFC5246]).

6.1. Registration

 Normally, a registration is expected to happen after a UA receives a
 WWW-Authenticate for a web-origin and realm for which it has no
 associated CPK. The (protocol part of the) process of registration
 for a HOBA account on a server is relatively light-weight. The UA
 generates a new key pair, and associates it with the web-origin/realm

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5246

Farrell, et al. Expires April 8, 2013 [Page 14]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 in question. The UA sets up a TLS-protected session, goes to the
 registration URL ".well-known/hoba/register", and submits the CPK
 using a POST message. [[More description is clearly needed here.]]
 It is up to the server to decide what kind of user interaction is
 required before the account is finally set up.

 If the UA has a CPK associated with the web-origin, but not for the
 realm concerned, then a new registration is REQUIRED. If the server
 did not wish for that outcome, then it ought not use a different
 realm.

 The POST message sent to the registration URL has one parameter,
 called "cpksubmit", which contains the CPK that the UA will use for
 the origin/realm combination. The CPK MUST be sent base64 encoded.
 The value that is base64 encoded is the DER encoding of the
 subjectPublicKeyInfo structure that is the CPK. See [RFC5280] for
 details of that data structure.

6.2. Associating Additional Keys to an Exiting Account

 It is common for a user to have multiple UAs, and to want all those
 UAs to be able to authenticate to a single account. One method to
 allow a user who has an existing account to be able to authenticate
 on a second device is to securely transport the private and public
 keys and the origin information from the first device to the second.
 Previous history with such key transport has been spotty at best. As
 an alternative, HOBA allows associating a CPK from the second device
 to the account created on the first device.

 Instead of registering on the new device, the UA generates a new key
 pair, associates it with the web-origin/realm in question, goes to
 the URL for starting an association, ".well-known/hoba/
 associate-start" in a TLS-protected session, and submits the new CPK
 using a POST message. [[More description is clearly needed here.]]
 The server's response to this request is a nonce with at least 128
 bits of entropy. That nonce SHOULD be easy for the user to copy and
 type, such as using Base32 encoding (see [RFC4648]). The user then
 uses the first UA to log into the origin, goes to the URL for
 finishing an association, ".well-known/hoba/associate-finish", and
 submits the nonce using a POST message. [[More description is
 clearly needed here.]]. The server then knows that the
 authenticated user is associated with the second CPK. The server can
 choose to associate the two CPKs with one account. Whether to do so
 is entirely at the server's discretion however, but the server SHOULD
 make the outcome clear to the user.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4648

Farrell, et al. Expires April 8, 2013 [Page 15]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

6.3. Logging Out

 When the user wishes to logout, the UA simply goes to ".well-known/
 hoba/logout". The UA MAY also delete session cookies associated with
 the session. [[Is that right?, maybe a SHOULD- or MUST-delete would
 be better]]

 The server-side MUST NOT allow TLS session resumption for any logged
 out session and SHOULD also revoke or delete any cookies associated
 with the session.

7. Mandatory-to-Implement Algorithms

 [[We should list two signature schemes (most likely RSA and ECDSA
 with P256). We should list two hash algorithms (most likely SHA-256
 and SHA-384).]]

8. Security Considerations

 If key binding was server-selected then a bad actor could bind
 different accounts belonging to the user from the network with
 possible bad consequences, especially if one of the private keys was
 compromised somehow.

 Binding my CPK with someone else's account would be fun and
 profitable so SHOULD be appropriately hard. In particular the string
 generated by the server MUST be hard to guess, for whatever level of
 difficulty is chosen by the server. The server SHOULD NOT allow a
 random guess to reveal whether or not an account exists.

 [[The potential impact on privacy of HOBA needs to be addressed. If
 a site can use a 401 and a CPK to track users without permission that
 would be not-so-nice so some guidance on how a UA could indicate to a
 user that HOBA stuff is going on might be needed.]]

 [[lots more TBD, be nice to your private keys etc. etc.]]

8.1. localStorage Security for Javascript

 Our use of localStorage will undoubtedly be a cause for concern.
 localStorage uses the same-origin model which says that the scheme,
 domain and port define a localStorage instance. Beyond that, any
 code executing will have access to private keying material. Of
 particular concern are XSS attacks which could conceivably take the
 keying material and use it to create user agents under the control of
 an attacker. But XSS attacks are in reality across the board

Farrell, et al. Expires April 8, 2013 [Page 16]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 devastating since they can and do steal credit card information,
 passwords, perform illicit acts, etc, etc. It's not clear that we
 introduce unique threats from which clear text passwords don't
 already suffer.

 Another source of concern is local access to the keys. That is, if
 an attacker has access to the UA itself, they could snoop on the key
 through a javascript console, or find the file(s) that implement
 localStorage on the host computer. Again it's not clear that we are
 worse in this regard because the same attacker could get at browser
 password files, etc too. One possible mitigation is to encrypt the
 keystore with a password/pin the user supplies. This may sound
 counter intuitive, but the object here is to keep passwords off of
 servers to mitigate the multiplier effect of a large scale compromise
 ala LinkedIn because of shared passwords across sites.

 It's worth noting that HOBA uses asymmetric keys and not passwords
 when evaluating threats. As various password database leaks have
 shown, the real threat of a password breach is not just to the site
 that was breached, it's all of the sites a user used the same
 password on too. That is, the collateral damage is severe because
 password reuse is common. Storing a password in localStorage would
 also have a similar multiplier effect for an attacker, though perhaps
 on a smaller scale than a server-side compromise: one successful
 crack gains the attacker potential access to hundreds if not
 thousands of sites the user visits. HOBA does not suffer from that
 attack multiplier since each asymmetric key pair is unique per site/
 useragent/user.

9. IANA Considerations

9.1. HOBA Authentication Scheme

 Authentication Scheme Name: hoba

 Pointer to specification text: [[this document]]

 Notes (optional): The HOBA scheme can be used with either HTTP
 servers or proxies. [[But we need to figure out the proxy angle;-)]]

9.2. .well-known URLs

 TBD

Farrell, et al. Expires April 8, 2013 [Page 17]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

9.3. Hash names

 TBD, hopefully re-use and existing registry

 We probably want a new registry for the labels beneath .well-known/
 hoba so that other folks can add additional features in a controlled
 way, e.g. for CPK/account revocation or whatever.

10. Acknowledgements

 [[TBD]]

11. References

11.1. Normative References

 [I-D.ietf-httpbis-p7-auth]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", draft-ietf-httpbis-p7-auth-21
 (work in progress), October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

11.2. Informative References

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-21
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc4648

Farrell, et al. Expires April 8, 2013 [Page 18]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

Appendix A. Problems with Passwords

 By far the most common mechanism for web authentication is passwords
 that can be remembered by the user, called "memorizable passwords".
 There is plenty of good research on how users typically use
 memorizable passwords ([[handful of citations goes here]]), but
 some of the highlights are that users typically try hard to reuse
 passwords on as many web sites as possible, and that web sites often
 use either email addresses or users' names as the identifier that
 goes with these passwords.

 If an attacker gets access to the database of memorizable passwords,
 that attacker can impersonate any of the users. Even if the breach
 is discovered, the attacker can still impersonate users until every
 password is changed. Even if all the passwords are changed or at
 least made unusable, the attacker now possesses a list of likely
 username/password pairs that might exist on other sites.

 Using memorizable passwords on unencrypted channels also poses risks
 to the users. If a web site uses either the HTTP Plain
 authentication method, or an HTML form that does no cryptographic
 protection of the password in transit, a passive attacker can see the
 password and immediately impersonate the user. If a hash-based
 authentication scheme such as HTTP Digest authentication is used, a
 passive attacker still has a high chance of being able to determine
 the password using a dictionary of known passwords.

 [[Say a bit about non-memorizable passwords. Still subject to
 database attack, although that doesn't give the attacker knowledge
 for other systems. Safe if digest authentication is used, but that's
 rare.]]

https://datatracker.ietf.org/doc/html/rfc5280

Farrell, et al. Expires April 8, 2013 [Page 19]

Internet-Draft HTTP Origin-Bound Auth (HOBA) October 2012

Authors' Addresses

 Stephen Farrell
 Trinity College Dublin
 Dublin, 2
 Ireland

 Phone: +353-1-896-2354
 Email: stephen.farrell@cs.tcd.ie

 Paul Hoffman
 VPN Consortium

 Email: paul.hoffman@vpnc.org

 Michael Thomas
 Phresheez

 Email: mike@phresheez.com

Farrell, et al. Expires April 8, 2013 [Page 20]

