
Network Working Group S. Farrell
Internet-Draft Trinity College Dublin
Intended status: Experimental February 18, 2012
Expires: August 21, 2012

Public Key Checking Protocol
draft-farrell-kc-01

Abstract

 Some asymmetric key generation implementations do not use sufficient
 randomness giving rise to a number of bad public keys, for example
 with known factors, being used on the Internet. This memo specifies
 [[for now: just outlines]] an experimental protocol that could be
 used by a private key holder to talk to a responder that knows the
 values of (some of) those bad keys that have been seen in the wild.
 The protocol only allows a holder of the relevant private key to
 request information, as doing otherwise could weaken the overall
 security of the Internet and also considers confidentiality and
 privacy as important requirements, as information that a given bad
 public key is associated with a particular identifier could also
 weaken the security of the Internet.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 21, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Farrell Expires August 21, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Public Key Checking Protocol February 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
2. Protocol Overview . 5
3. Message Formats . 6
3.1. ChalReq Message . 6
3.2. ChalResp Message Format 6
3.3. CheckReq Message Format 7
3.4. CheckResp Message Format 7
3.5. Error Message Format 8

4. Cryptographic Operations 8
4.1. Signature Operation 8
4.2. Basic Proof Types . 9

5. Sample Challenge Method 10
6. Responder Actions . 10
7. Requestor Actions . 11
8. Mandatory-to-Implement Things 11
9. Transport Considerations 11
10. Security Considerations 11
11. IANA Considerations . 11
12. Acknowledgements . 11
13. Changes . 12
14. References . 12
14.1. Normative References 12
14.2. Informative References 12

 Author's Address . 13

http://trustee.ietf.org/license-info

Farrell Expires August 21, 2012 [Page 2]

Internet-Draft Public Key Checking Protocol February 2012

1. Introduction

 [[Text in double square brackets (like this) is commentary. So far
 this is just an outline. I'll do more if there's interest. I'm also
 happy to get some help if someone wants to.]]

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Recent publications [blog][lens] have found yet again that some
 asymmetric key generation implementations do not use sufficient
 randomness giving rise to a number of bad public keys, estimated to
 be of the order of 0.2% of tested keys, being used on the Internet.
 Nonetheless, this small percentage maps to some tens of thousands of
 bad keys. And the distribution of bad keys is likely to be
 concentrated on specific devices or devices used in specific ways, so
 that their Pesudo Random Number Generators (PRNG) for one reason or
 another have not produced sufficient randomness at key generation
 time.

 The publications referred to above involved acquiring large (in
 millions) sets of keys and then analysing those for example looking
 for common factors. While that is a computationally expensive
 process, once done, it should be much quicker to incrementally check
 if for example a single new RSA public key has one of the already
 known common factors or if any public key is an exact match for a
 known-bad key. Thus if a responder were to store and analyse many
 public keys it could assist key generators in knowing if they have
 inadvertently produced a bad key. Note that such a responder cannot,
 (especially in real-time), determine that a public key is good, but
 only whether the public key is known to be bad.

 The entire set of known-bad keys cannot however be made available to
 all, as some of those keys are in real use and simply publishing
 their values could put Internet users at risk. However, if we have a
 responder with the bad keys and a protocol that only allows the
 relevant private key holder to make requests then we may be able to
 provide a useful service.

 In addition to requiring that only private key holders can query the
 responder, we must also ensure that eavesdroppers cannot tell whether
 the answer to the query is that the key is known to be bad or not
 known to be bad. For example, response packet sizes could expose
 this information.

 Servers implementing this protocol are REQUIRED to store the public
 keys presented to them for offline analysis. (Though they may also

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Farrell Expires August 21, 2012 [Page 3]

Internet-Draft Public Key Checking Protocol February 2012

 acquire public keys for analysis in many other ways.) Thus, the
 answer that a requestor receives might change from not-known-bad to
 known-bad in a matter of minutes or hours. Some requestors could
 take advantage of this and not actually use a key until they have
 gotten not-known-bad answers for a configured period.

 Note also that my public key may be good now but might become known
 to be bad after someone else has posted e.g. a public key with a
 common factor. In other words, every private key holder could
 benefit from periodically checking with a responder for this
 protocol.

 While a responder may take hours to find new bad keys, once a
 responder has a set of e.g. factors of RSA moduli, then it can easily
 check if a supplied public key has one of those as a factor, and this
 is one of the bad-key patterns seen in the wild. This will not
 detect all bad keys however, a process that does reqiure more
 computation. Similarly, if there are blacklists of bad keys (e.g. as
 happened in the Debian case [deb]) then those can be spotted
 immediately. So the responder can in such cases give quick and
 accurate answers. Ultimately, the responder can do anything it wants
 for any algorithm - the specific checks are not a part of this
 protocol.

 While a responder here could lie and say that a key is not-known-bad
 even if it is in fact known-bad, using more than one responder could
 mitigate that and reduce the level of trust required in the
 responder's honesty. Clients can also test any responder for this
 kind of dishonesty by occasionally generating and sending bad keys to
 check if the responder is honest. This is why we REQUIRE the
 responders to store and analyse the keys presented to it. [[Could be
 interesting games to play here.]]

 If a responder considers a public key to be known bad, then the
 responder might know the corresponding private key in which case it
 can produce a proof that it know this, e.g by signing a hash of the
 request message or otherwise. Note that responders MUST ensure that
 the inclusion or omission of such proofs is done so as not to expose
 the responder's opinion of the status of the public key - in
 otherwords, keep all response messages the same length for a given
 public key length.

 Note also that this protocol does not tell the requestor what to do
 with a known-bad public key. Presumably they'd stop using it but the
 best action to take will depend on the application using the public
 key so is out of scope here.

 This is an experimental specification for at least two good reasons.

Farrell Expires August 21, 2012 [Page 4]

Internet-Draft Public Key Checking Protocol February 2012

 Firstly, it is not yet clear that it would be broadly adopted by
 private key holders. Secondly, it is not clear that responders with
 access to the data about known-bad keys will make that information
 available via this protocol, or at all. If responders for this
 protocol with significant data sets appear on the Internet and
 private key holders adopt this protocol then the experiment will have
 been successful and a future version of this could be considered for
 the IETF standards track.

2. Protocol Overview

 [[The protocol below requires the private key be usable for signing.
 We could extend it to e.g. D-H public values if we put more
 structure into the ChalResp. Not sure if that's worthwhile for now
 since the overwhelming majority of keys will be ok for signing.]]

 The abstract protocol is simple:

 o ChalReq: the requestor sends a message asking for a challenge

 o ChalResp: the responder replies with a challenge

 o CheckReq: the requestor sends a signed query containing the public
 key and challenge

 o CheckResp: the responder replies saying the public key is known to
 be bad, or not known to be bad

 In addition there is an ErrorMsg defined.

 This protocol MUST be run over a responder-authenticated TLS
 [RFC5246] session using a TLS ciphersuite that provides strong
 confidentiality.

 In order to ensure confidentiality even in the face of traffic
 analysis, we ensure that all messages containing the responder's
 result are the same size (for a given public key algorithm and size).
 This can involve the responder sending random bits to the requestor,
 and those MUST be of sufficient quality to be useful as input to key
 generation.

 For additional privacy, a requestor might choose to run this protocol
 over some onion routing network such as Tor. [tor] The protocol is
 designed to allow for such use-cases. [[not sure yet how to do that
 though, help appreciated]]

 Note that the challenge has no strucure from the requestor

https://datatracker.ietf.org/doc/html/rfc5246

Farrell Expires August 21, 2012 [Page 5]

Internet-Draft Public Key Checking Protocol February 2012

 perspective but might have for the responder. For example, a
 responder could include encrypted values in order to ensure that the
 challenge is valid and or fresh. [[we might want to make that a MUST
 but its probably only useful if done so I could test it from
 outside.]]

3. Message Formats

 In this section we describe the messages used in this protocol.
 [[The concrete encoding is TBD. Maybe JSON or just binary, dunno.]]

 [[Would it be worthwhile REQUIRING that all messages be randomly
 padded out to some particular length that's longer than all real
 messages for the key length in question? Not sure.]]

 All multi-octet values MUST be sent in network byte order.

3.1. ChalReq Message

 This message is sent from a requestor to a responder asking for a
 fresh challenge.

 +--------------------+
 | stuff
 +--------------------+

 Figure 1: ChalReq Message Format

 This message has the following fields:

 o Type: 0x01, 1-octet, meaning that this is a ChalReq

 o Flags: TBD, 4-octets

3.2. ChalResp Message Format

 This message is sent from a responder and contains a fresh challenge.

 o Type: 0x02, 1-octet, meaning that this is a ChalResp

 o Flags: TBD, 4-octets

 o ChalId: 4-octets, a value chosen by the responder to index the
 challenge

Farrell Expires August 21, 2012 [Page 6]

Internet-Draft Public Key Checking Protocol February 2012

 o ChalLen: 4-octets, the length of the challenge in octets

 o Chal: NN octets, the octets of the challenge

 [[Maybe ChalId should be a transaction ID? figure out later. With
 the ChalId you could do all this over DTLS/UDP maybe. Probably not
 worth it though.]]

3.3. CheckReq Message Format

 This message is sent from a requestor to a responder and contains a
 public key, challenge and signature over those.

 o Type: 0x03, 1-octet, meaning that this is a CheckReq

 o Flags: TBD, 4-octets

 o ChalId: 4-octets, a value chosen by the responder to index the
 challenge

 o ChalLen: 4-octets, the length of the challenge in octets

 o Chal: NN octets, the octets of the challenge

 o PKAlg: public key algorithm identifier and format (details TBD)

 o PKLen: 4-octets, the length of the public key in octets

 o PK: NN octets, the octets of the public key

 o Sigalg: signature algorithm identifier and format (details TBD)

 o Siglen: 4-octets, the length of the signature in octets

 o Sig: NN octets, the octets of the signature

3.4. CheckResp Message Format

 This message is sent from a responder to a requestor and contains the
 status of the public key according to the responder. .

 o Type: 0x04, 1-octet, meaning that this is a CheckReq

 o Flags: TBD, 4-octets

 o ChalId: 4-octets, a value chosen by the responder to index the
 challenge

Farrell Expires August 21, 2012 [Page 7]

Internet-Draft Public Key Checking Protocol February 2012

 o Status: 1-octet, an even numbered value means the key is not known
 to be bad; an odd numbered value means the key is known to be bad
 (says the responder!)

 o ProofType: 2-octets, proof algorithm identifier and format
 (details TBD)

 o Prooflen: 4-octets, the length of the proof in octets

 o Proof: NN octets, the octets of the proof

 In order to keep response to the same length, a ProofType value of
 zero (0) means that the Proof field contains the relevant number of
 octets of random values.

3.5. Error Message Format

 Error messages all have the following format.

 o Type: 0x00, 1-octet, meaning that this is an ErrorMsg

 o Flags: TBD, 4-octets

 o ChalId: 4-octets, a value chosen by the responder to index the
 challenge or zero if no relevant ChalId is known

 o ErrType: 2-octets, the specific error (values TBD)

 o Errlen: 4-octets, the length of the error string in octets

 o ErrorString: NN octets, the octets of the error string

 [[There will be i18n silliness needed here, maybe.]]

4. Cryptographic Operations

 In this section we define the signature operation and define proof
 types.

4.1. Signature Operation

 The requestor has to sign some data for the CheckReq. The input to
 the signature is the following values, concatenated.

 o A fixed string "CHECKING A PUBLIC KEY"

Farrell Expires August 21, 2012 [Page 8]

Internet-Draft Public Key Checking Protocol February 2012

 o Type: 0x03, 1-octet, meaning that this is a CheckReq

 o Flags: TBD, 4-octets

 o ChalId: 4-octets, a value chosen by the responder to index the
 challenge

 o ChalLen: 4-octets, the length of the challenge in octets

 o Chal: NN octets, the octets of the challenge

 o PKAlg: public key algorithm identifier and format (details TBD)

 o PKLen: 4-octets, the length of the public key in octets

 o PK: NN octets, the octets of the public key

 o Sigalg: signature algorithm identifier and format (details TBD)

 o Siglen: 4-octets, the length of the signature in octets

 This is essentially the fixed string (to prevent cross-protocol
 attacks) followed by the CheckReq message minus the Sig field but
 including the length.

4.2. Basic Proof Types

 We define two types of proof here, a signature scheme (ProofType 1)
 and a random scheme (ProofType 0) to be used when the public key is
 not known to be bad.

 For ProofType 0, the responder just includes the same number of
 random octets as it would have used for ProofType 1 had the status
 been known-bad. As with the challenge value those random octets MUST
 be good enough to use as a PRNG seed.

 Note that a responder can use ProofType 0 even if it says that the
 public key is known-bad. Not all kinds of badness result in the
 responder being able to demonstrate that it knows the private key.

 ProofType 1 involves the responder signing a sha-256 hash of the
 CheckReq message with the private key corresponding to the public key
 submitted in the CheckReq. This signature demonstrates to the
 private key holder that their key is toast.

 [[At some stage think about this some more to see what's best to use
 as proof.]]

Farrell Expires August 21, 2012 [Page 9]

Internet-Draft Public Key Checking Protocol February 2012

5. Sample Challenge Method

 Regardless of the scheme used to generate the challenge, a
 responder's challenge MUST be a good random value, suitable for a
 requestor to use as an additional seed for a PRNG and the challenge
 MUST be at least 256 bits long.

 A fresh challenge value MUST be used for all transactions. Attempts
 to re-use a challenge MUST result in an error (BadChal). [[Not sure
 this is needed but we should say something and this is the easiest to
 say, if not to implement;-)]]

 If the responder wishes to remain stateless then it can emit
 challenge values that are a symmetically encrypted form (with
 integrity!) of the current responder time and/or a sequence number of
 some sort. This would allow the responder to detect attempts to use
 stale challenges.

6. Responder Actions

 Responders need to ensure that simple timing attacks are not
 possible. The processing of CheckReq messages MUST take the same
 amount of time regardless of errors, known-bad status and of the
 ProofType used in the corresponding CheckResp.

 For clarity: the time between receipt of a CheckReq and emission of a
 CheckResp or ErrroMsg corresponding to that CheckReq MUST be a
 constant for any given public key algorithm and key size.

 When a responder recevives a message that does not decode properly it
 SHOULD return an ErrorMsg with an ErrType value of BadMessage (1).
 An example where an ErrorMsg might not be returned would be if the
 responder considered itself as being under a Denial-of-Service (DoS)
 attack.

 When a responder receives a ChalReq message, it MUST generate a fresh
 ChalRep message.

 When a responder receives a CheckReq message it MUST do all of the
 following:

 1. Verify that the ChecReq challenge value meets whatever are the
 server's criteria. If it does not then the responder MUST return
 an ErrorMsg with ErrType BadChal (2).

 2. Verify that the public key from the message verifies the
 signature from the message. If the signture check fails then the

Farrell Expires August 21, 2012 [Page 10]

Internet-Draft Public Key Checking Protocol February 2012

 responder SHOULD an ErrorMsg with ErrType BadSig (3). The
 responder might not send an ErrorMsg if it considered that some
 attack was under way, e.g. if many bad signatures were received
 for the same public key.

 3. Store the public key for later analysis. The responder MUST NOT
 store any other information about the requestor, for example, its
 IP address.

 4. Determine whether to answer that the key is known-bad or not-
 known-bad based on whatever local criteria are used.

 5. Construct a corresponding CheckResp message and return that to
 the requestor.

7. Requestor Actions

 [[Still TBD, but fairly obvious]]

8. Mandatory-to-Implement Things

 [[You MUST be able to do RSA, prooftypes 0 (random bits) and 1
 (signature), signatures MUST use rsa-sha256 with OAEP or pkcs1v1.5
 maybe. What else?]]

9. Transport Considerations

 [[Maybe just right over TLS over TCP, maybe via HTTP, with a .well-
 known URL, dunno.]]

10. Security Considerations

 [[You'd have to imagine there are:-)]]

11. IANA Considerations

 [[None yet, there will be a bunch with registries for many of the
 fields in the messages defined above.]]

12. Acknowledgements

 Steve Bellovin proposed the main idea here independently [bell], I

Farrell Expires August 21, 2012 [Page 11]

Internet-Draft Public Key Checking Protocol February 2012

 only saw that after the -00 was out.

 Thanks for Paul Hoffman for some off-list discussions that didn't
 quite convince him this is worth some effort;-)

13. Changes

 This section describes the various versions of this draft and is to
 be removed later when/if this becomes an RFC.

 -00: just a sketch of the protocol

 -01: sketch -> fairly detailed outline

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

14.2. Informative References

 [bell] Bellovin, S., "Duplicate primes in lots of RSA moduli",
 February 2012, <http://lists.randombit.net/pipermail/

cryptography/2012-February/002310.html>.

 [blog] Heniger, N., "New research: There's no need to panic over
 factorable keys--just mind your Ps and Qs", February 2012,
 <https://freedom-to-tinker.com/blog/nadiah/

new-research-theres-no-need-panic-over-factorable-keys-
just-mind-your-ps-and-qs>.

 [deb] "Debian Security Advisory, DSA-1571-1: openssl --
 predictable random number generator", May 2008,
 <http://www.debian.org/security/2008/dsa-1571>.

 [lens] Lenstra, A., Hughes, J., Augier, M., Bos, J., Kleinjung,
 T., and C. Wachter, "Ron was wrong, Whit is right",
 Cryptology ePrint Archive Report 2012/064, February 2012,
 <http://eprint.iacr.org/2012/064>.

 [tor] "The Tor Project", <http://www.torproject.org/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://lists.randombit.net/pipermail/cryptography/2012-February/002310.html
http://lists.randombit.net/pipermail/cryptography/2012-February/002310.html
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
http://www.debian.org/security/2008/dsa-1571
http://eprint.iacr.org/2012/064
http://www.torproject.org/

Farrell Expires August 21, 2012 [Page 12]

Internet-Draft Public Key Checking Protocol February 2012

Author's Address

 Stephen Farrell
 Trinity College Dublin
 Dublin, 2
 Ireland

 Phone: +353-1-896-2354
 Email: stephen.farrell@cs.tcd.ie

Farrell Expires August 21, 2012 [Page 13]

