
Workgroup: TLS

Internet-Draft: draft-farrell-tls-wkesni-03

Published: 24 May 2022

Intended Status: Experimental

Expires: 25 November 2022

Authors: S. Farrell

Trinity College Dublin

A well-known URI for publishing ECHConfigList values.

Abstract

We propose use of a well-known URI at which web servers can publish

ECHConfigList values as a way to help get those published in the

DNS.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. Example use of the well-known URI for ECH

4. The ech well-known URI

5. The JSON structure for ECHConfigList values

6. Zone factory behaviour

7. Security Considerations

8. Acknowledgements

9. IANA Considerations

10. Normative References

Appendix A. Change Log

Author's Address

1. Introduction

Encrypted ClientHello (ECH) [I-D.ietf-tls-esni] for TLS1.3 [RFC8446]

defines a confidentiality mechanism for server names and other

ClientHello content in TLS. For many applications, that requires

publication of ECHConflgList data structures in the DNS. An

ECHConfigList structure contains a list of ECHConfig values. Each

ECHConfig value contains the public component of a key pair that

will typically be periodically (re-)generated by a web server. Many

web infrastructures will have an API that can be used to dynamically

update the DNS RR values containing ECHConfigList values. Some

deployments however, will not, so web deployments could benefit from

a mechanism to use in such cases.

We define such a mechanism here. Note that this is not intended for

universal deployment, but rather for cases where the web server

doesn't have write access to the relevant zone file (or equivalent).

That zone file will eventually include an HTTPS or SVCB RR [I-

D.ietf-dnsop-svcb-https] containing an ECHConfigList.

We use the term "zone factory" for the entity that does have write

access to the zone file. We assume the zone factory (ZF) can also

make HTTPS requests to the web server with the ECH keys.

We propose use of a well-known URI [RFC8615] on the web server that

allows ZF to poll for changes to ECHConfigList values. For example,

if a web server generates new ECHConfigList values hourly and

publishes those at the well-known URI, ZF can poll that URI. When ZF

sees new values, it can check if those work, and if they do, then

update the zone file and re-publish the zone.

[[The source for this is in https://github.com/sftcd/wkesni/ PRs are

welcome there too.]]

¶

¶

¶

¶

¶

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Example use of the well-known URI for ECH

An example deployment could be as follows:

Web server generates new ECHConfigList values hourly at N past

the hour via a cronjob

ECHConfigList values are "current" for an hour, published with a

TTL of 1800, and remain usable for 3 hours from the time of

generation

Web server has a set of "backend" sites - the DNS name for each

such site is here represented as $BACKEND, which will end up as

an SNI value to be encrypted inside an ECH extension

Web server has a "front-end" site ($FRONT), where $FRONT will

typically be the DNS name used in the ECHConfigList public_name

field for ECHConfig version 0xff0d

A cronjob creates creates a JSON file for each backend site at

https://$FRONT/.well-known/ech/$BACKEND.json

Each JSON file contains an array with the ECHConfigList values

values for that particular $BACKEND as shown in Figure 1 - the

values in Figure 1 with ellipses are the values we want to

eventually see in the DNS

On the zone factory, a cronjob runs at N+3 past the hour, it

knows all the names involved and checks to see if the content at

those well-known URIs has changed or not

If the content has changed the cronjob attempts to use the

ECHConfigList values, and for each $BACKEND where that works, it

updates the zone file and re-publishes the zone containing only

the new ECHConfigList values

4. The ech well-known URI

When a web server ($FRONT) wants to publish ECHConfigList

information for a backend site ($BACKEND) then it provides the JSON

content defined in Section 5 at: https://$FRONT/.well-known/ech/

$BACKEND.json

The well-known URI defined here MUST be an https URL and therefore

the zone factory verifies the correct $FRONT is being accessed. If

there is any failure in accessing the well-known URI, then the zone

factory MUST NOT modify the zone.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

5. The JSON structure for ECHConfigList values

[[Since the specifics of the JSON structure in Figure 1 are very

likely to change, this is mostly TBD. What is here for now, is what

the author has currently implemented simply because it worked ok and

was easy to do:-) One issue raised as a result of the dispatch

presentation is whether or not anything beyond the ECHConfigList

might make sense to represent in the JSON response. One example

could be the inner ClientHello ALPN extension, if that might somehow

be useful to the TLS cilent (which really should know in that case).

The scope in that respect and the correct level of generality to

cover here is something to consider as this evolves.]]

Figure 1: Sample JSON

The JSON file at the well-known URI MUST contain an array with one

or more elements. Each element of the array MUST have these fields:

desired-ttl: contains a number indicating the TTL that the web

server would like to see used for this RR. The zone factory MUST

NOT use a longer TTL.

ports: this has a list of the TCP ports on which the web server

with the relevant key pair will listen (needed to produce the

correct zone file).

ECHConfigList: contains the value to be used as a base64 encoded

string.

The JSON file contains an array for a couple of reasons:

As TLS authentication doesn't really distinguish ports, servers

on the same host could in any case cheat on one another, so we

may as well just read one JSON file per name.

Different ports could map to different sets of ECHConfig values

As ECHConfigList is (regrettably:-) an extensible structure, it

may be necessary to publish different ECHConfigList values to get

best interoperability.

¶

 [

 {

 "desired-ttl": 1800,

 "ports": [443, 8413],

 "echconfiglist": "AD7+DQA65wAgAC..AA=="

 },

 {

 "desired-ttl": 1800,

 "ports": [443, 8413],

 "echconfiglist": "AD7+DQA65wAgAC..AA=="

 }

]

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

6. Zone factory behaviour

The zone factory SHOULD check that the presented ECHConfigList

values work with the $BACKEND server before publication. A "special"

TLS client may be needed for this check, that does not require the

ECHConfigList value to have already been published in the DNS. [[I

guess that calls for the zone factory to know of a "safe" URL on

$BACKEND to try, or maybe it could use HTTP HEAD? Figuring that out

is TBD. The ZF could also try a GREASEd ECH and see if the retry-

configs it gets back is one of the ECHConfig values in the

ECHConfigList.]]

A careful zone factory could explode the ECHConfigList value

presented into "singleton" values with one public key in each and

test each for each port claimed.

The zone factory SHOULD publish all the ECHConfigList values that

are presented in the JSON file, and that pass the check above.

The zone factory SHOULD only publish ECHConfigList values that are

in the latest version of the JSON file. This leaves the control of

"expiry" with the web server, so long as the ECHConfigList values

presented actually work. [[An alternative could be to have the new

values just be appended to the zone, but that'd require some form of

"notAfter" value in the JSON file which seems unnecessary and more

complex.]]

The SCVB and HTTPS RR specification [I-D.ietf-dnsop-svcb-https]

defines how and where the ECHConfigList values for $BACKEND needs to

be published in the DNS. The zone factory is assumed to be in

control of how ECHConfigList values are included in such RRs.

A possibly interesting (unintended) consequence of this design is

that once a TLS client has first gotten an ECHConfigList from the

DNS for $BACKEND with the ECHConfigList structure containing the

public_name field, the TLS client would know both $FRONT and

$BACKEND and so could later probe for this .well-known as an

alternative to doing so via DoT/DoH. Probably not something a web

browser might do, but could be fun for other applications maybe.

[[The extent to which retry-configs could be used for a similar

purpose might be worth considering. But the JSON stuff here may

still be needed if implementations (such as mine:-) tend to only

return one ECHConfig in retry-configs.]]

7. Security Considerations

This document defines another way to publish ECHConfigList values.

If the wrong keys were read from here and published in the DNS, then

clients using ECH would do the wrong thing, likely resulting in

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[RFC8446]

[RFC8615]

[I-D.ietf-tls-esni]

[I-D.ietf-dnsop-svcb-https]

denial of service, or a privacy leak, or worse, when TLS clients

attempt to use ECH with a backend web site. So: Don't do that:-)

8. Acknowledgements

Thanks to Niall O'Reilly for a quick review of -00.

9. IANA Considerations

[[TBD: IANA registration of a .well-known. Also TBD - how to handle

I18N for $FRONT and $BACKEND within such a URL.]]

10. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Nottingham, M., "Well-Known Uniform Resource Identifiers

(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

<https://www.rfc-editor.org/info/rfc8615>.

Rescorla, E., Oku, K., Sullivan, N., and C. A.

Wood, "TLS Encrypted Client Hello", Work in Progress,

Internet-Draft, draft-ietf-tls-esni-14, 13 February 2022,

<https://www.ietf.org/archive/id/draft-ietf-tls-

esni-14.txt>.

Schwartz, B., Bishop, M., and E. Nygren,

"Service binding and parameter specification via the DNS

(DNS SVCB and HTTPS RRs)", Work in Progress, Internet-

Draft, draft-ietf-dnsop-svcb-https-09, 6 May 2022,

<https://www.ietf.org/archive/id/draft-ietf-dnsop-svcb-

https-09.txt>.

Appendix A. Change Log

[[RFC editor: please remove this before publication.]]

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8615
https://www.ietf.org/archive/id/draft-ietf-tls-esni-14.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-14.txt
https://www.ietf.org/archive/id/draft-ietf-dnsop-svcb-https-09.txt
https://www.ietf.org/archive/id/draft-ietf-dnsop-svcb-https-09.txt

From -02 to -03:

noted scope issue

From -01 to -02:

General changes from ESNI to ECH.

From -00 to -01:

Re-structured a bit after re-reading rfc8615

Author's Address

Stephen Farrell

Trinity College Dublin

Dublin

2

Ireland

Phone: +353-1-896-2354

Email: stephen.farrell@cs.tcd.ie

¶

* ¶

¶

* ¶

¶

* ¶

tel:+353-1-896-2354
mailto:stephen.farrell@cs.tcd.ie

	A well-known URI for publishing ECHConfigList values.
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Example use of the well-known URI for ECH
	4. The ech well-known URI
	5. The JSON structure for ECHConfigList values
	6. Zone factory behaviour
	7. Security Considerations
	8. Acknowledgements
	9. IANA Considerations
	10. Normative References
	Appendix A. Change Log
	Author's Address

