
Web Authorization Protocol D. Fett
Internet-Draft yes.com
Intended status: Standards Track B. Campbell
Expires: May 2, 2020 Ping Identity
 J. Bradley
 Yubico
 T. Lodderstedt
 yes.com
 M. Jones
 Microsoft
 D. Waite
 Ping Identity
 October 30, 2019

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer
 (DPoP)

draft-fett-oauth-dpop-03

Abstract

 This document describes a mechanism for sender-constraining OAuth 2.0
 tokens via a proof-of-possession mechanism on the application level.
 This mechanism allows for the detection of replay attacks with access
 and refresh tokens.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Fett, et al. Expires May 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-fett-oauth-dpop-03
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth DPoP October 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions and Terminology 3

2. Main Objective . 3
3. Concept . 3
4. DPoP Proof JWTs . 5
4.1. Syntax . 5
4.2. Checking DPoP Proofs 6

5. Token Request (Binding Tokens to a Public Key) 7
6. Resource Access (Proof of Possession for Access Tokens) . . . 8
7. Public Key Confirmation 9
8. Acknowledgements . 10
9. Security Considerations 10
9.1. DPoP Proof Replay . 10
9.2. Signed JWT Swapping 11
9.3. Signature Algorithms 11
9.4. Message Integrity . 11

10. IANA Considerations . 11
10.1. OAuth Access Token Type Registration 11

 10.2. JSON Web Signature and Encryption Type Values
 Registration . 12

11. References . 12
11.1. Normative References 12
11.2. Informative References 13

Appendix A. Document History 13
 Authors' Addresses . 14

1. Introduction

 [I-D.ietf-oauth-mtls] describes methods to bind (sender-constrain)
 access tokens using mutual Transport Layer Security (TLS)
 authentication with X.509 certificates.

 [I-D.ietf-oauth-token-binding] provides mechanisms to sender-
 constrain access tokens using HTTP token binding.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Fett, et al. Expires May 2, 2020 [Page 2]

Internet-Draft OAuth DPoP October 2019

 Due to a sub-par user experience of TLS client authentication in user
 agents and a lack of support for HTTP token binding, neither
 mechanism can be used if an OAuth client is a Single Page Application
 (SPA) running in a web browser.

 This document outlines an application-level sender-constraining for
 access and refresh tokens that can be used in cases where neither
 mTLS nor OAuth Token Binding are available. It uses proof-of-
 possession based on a public/private key pair and application-level
 signing.

 DPoP can be used with public clients and, in case of confidential
 clients, can be combined with any client authentication method.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response", and
 "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Main Objective

 Under the attacker model defined in [I-D.ietf-oauth-security-topics],
 the mechanism defined by this specification aims to prevent token
 replay at a different endpoint.

 More precisely, if an adversary is able to get hold of an access
 token or refresh token because it set up a counterfeit authorization
 server or resource server, the adversary is not able to replay the
 respective token at another authorization or resource server.

 Secondary objectives are discussed in Section 9.

3. Concept

 The main data structure introduced by this specification is a DPoP
 proof JWT, described in detail below. A client uses a DPoP proof JWT
 to prove the possession of a private key belonging to a certain
 public key. Roughly speaking, a DPoP proof is a signature over some
 data of the HTTP request to which it is attached to and a timestamp.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6749

Fett, et al. Expires May 2, 2020 [Page 3]

Internet-Draft OAuth DPoP October 2019

 +--------+ +---------------+
	--(A)-- Token Request ------------------->	
Client	(DPoP Proof)	Authorization
		Server
	<-(B)-- DPoP-bound Access Token ----------	
	(token_type=DPoP) +---------------+	
	PoP Refresh Token for public clients	
	+---------------+	
	--(C)-- DPoP-bound Access Token --------->	
	(DPoP Proof)	Resource
		Server
	<-(D)-- Protected Resource ---------------	
	+---------------+	
 +--------+

 Figure 1: Basic DPoP Flow

 The basic steps of an OAuth flow with DPoP are shown in Figure 1:

 o (A) In the Token Request, the client sends an authorization code
 to the authorization server in order to obtain an access token
 (and potentially a refresh token). The client attaches a DPoP
 proof to the request in an HTTP header.

 o (B) The AS binds (sender-constrains) the access token to the
 public key claimed by the client in the DPoP proof; that is, the
 access token cannot be used without proving possession of the
 respective private key. This is signaled to the client by using
 the "token_type" value "DPoP".

 o If a refresh token is issued to a public client, it is sender-
 constrained in the same way. For confidential clients, refresh
 tokens are bound to the "client_id", which is more flexible than
 binding it to a particular public key.

 o (C) If the client wants to use the access token, it has to prove
 possession of the private key by, again, adding a header to the
 request that carries the DPoP proof. The resource server needs to
 receive information about the public key to which the access token
 is bound. This information is either encoded directly into the
 access token (for JWT structured access tokens), or provided at
 the token introspection endpoint of the authorization server (not
 shown).

 o (D) The resource server refuses to serve the request if the
 signature check fails or the data in the DPoP proof is wrong,

Fett, et al. Expires May 2, 2020 [Page 4]

Internet-Draft OAuth DPoP October 2019

 e.g., the request URI does not match the URI claim in the DPoP
 proof JWT.

 o When a refresh token that is sender-constrained using DPoP is used
 by the client, the client has to provide a DPoP proof just as in
 the case of a resource access. The new access token will be bound
 to the same public key.

 The mechanism presented herein is not a client authentication method.
 In fact, a primary use case is public clients (single page
 applications) that do not use client authentication. Nonetheless,
 DPoP is designed such that it is compatible with "private_key_jwt"
 and all other client authentication methods.

 DPoP does not directly ensure message integrity but relies on the TLS
 layer for that purpose. See Section 9 for details.

4. DPoP Proof JWTs

 DPoP uses so-called DPoP proof JWTs for binding public keys and
 proving knowledge about private keys.

4.1. Syntax

 A DPoP proof is a JWT ([RFC7519]) that is signed (using JWS,
 [RFC7515]) using a private key chosen by the client (see below). The
 header of a DPoP JWT contains at least the following parameters:

 o "typ": type header, value "dpop+jwt" (REQUIRED).

 o "alg": a digital signature algorithm identifier as per [RFC7518]
 (REQUIRED). MUST NOT be "none" or an identifier for a symmetric
 algorithm (MAC).

 o "jwk": representing the public key chosen by the client, in JWK
 format, as defined in [RFC7515] (REQUIRED)

 The body of a DPoP proof contains at least the following claims:

 o "jti": Unique identifier for the DPoP proof JWT (REQUIRED). The
 value MUST be assigned such that there is a negligible probability
 that the same value will be assigned to any other DPoP proof used
 in the same context during the time window of validity. Such
 uniqueness can be accomplished by encoding (base64url or any other
 suitable encoding) at least 96 bits of pseudorandom data or by
 using a version 4 UUID string according to [RFC4122]. The "jti"
 SHOULD be used by the server for replay detection and prevention,
 see Section 9.1.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc4122

Fett, et al. Expires May 2, 2020 [Page 5]

Internet-Draft OAuth DPoP October 2019

 o "htm": The HTTP method for the request to which the JWT is
 attached, as defined in [RFC7231] (REQUIRED).

 o "htu": The HTTP URI used for the request, without query and
 fragment parts (REQUIRED).

 o "iat": Time at which the JWT was created (REQUIRED).

 Figure 2 shows the JSON header and payload of a DPoP proof JWT.

 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
 }.{
 "jti":"-BwC3ESc6acc2lTc",
 "htm":"POST",
 "htu":"https://server.example.com/token",
 "iat":1562262616
 }

 Figure 2: Example JWT content for "DPoP" proof header.

 Note: To keep DPoP simple to implement, only the HTTP method and URI
 are signed in DPoP proofs. Nonetheless, DPoP proofs can be extended
 to contain other information of the HTTP request (see also

Section 9.4).

4.2. Checking DPoP Proofs

 To check if a string that was received as part of an HTTP Request is
 a valid DPoP proof, the receiving server MUST ensure that

 1. the string value is a well-formed JWT,

 2. all required claims are contained in the JWT,

 3. the "typ" field in the header has the value "dpop+jwt",

 4. the algorithm in the header of the JWT indicates an asymmetric
 digital signature algorithm, is not "none", is supported by the
 application, and is deemed secure,

https://datatracker.ietf.org/doc/html/rfc7231

Fett, et al. Expires May 2, 2020 [Page 6]

Internet-Draft OAuth DPoP October 2019

 5. that the JWT is signed using the public key contained in the
 "jwk" header of the JWT,

 6. the "htm" claim matches the HTTP method value of the HTTP request
 in which the JWT was received (case-insensitive),

 7. the "htu" claims matches the HTTP URI value for the HTTP request
 in which the JWT was received, ignoring any query and fragment
 parts,

 8. the token was issued within an acceptable timeframe (see
Section 9.1), and

 9. that, within a reasonable consideration of accuracy and resource
 utilization, a JWT with the same "jti" value has not been
 received previously (see Section 9.1).

 Servers SHOULD employ Syntax-Based Normalization and Scheme-Based
 Normalization in accordance with Section 6.2.2. and Section 6.2.3. of
 [RFC3986] before comparing the "htu" claim.

5. Token Request (Binding Tokens to a Public Key)

 To bind a token to a public key in the token request, the client MUST
 provide a valid DPoP proof JWT in a "DPoP" header. The HTTPS request
 shown in Figure 3 illustrates the protocol for this (with extra line
 breaks for display purposes only).

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg
 grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

 Figure 3: Token Request for a DPoP sender-constrained token.

 The HTTP header "DPoP" MUST contain a valid DPoP proof.

https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.3

Fett, et al. Expires May 2, 2020 [Page 7]

Internet-Draft OAuth DPoP October 2019

 The authorization server, after checking the validity of the DPoP
 proof, MUST associate the access token issued at the token endpoint
 with the public key. It then sets "token_type" to "DPoP" in the
 token response.

 A client typically cannot know whether a certain AS supports DPoP.
 It therefore SHOULD use the value of the "token_type" parameter
 returned from the AS to determine support for DPoP: If the token type
 returned is "Bearer" or another value, the AS does not support DPoP.
 If it is "DPoP", DPoP is supported. Only then, the client needs to
 send the "DPoP" header in subsequent requests and use the token type
 "DPoP" in the "Authorization" header as described below.

 If a refresh token is issued to a public client at the token endpoint
 and a valid DPoP proof is presented, the refresh token MUST be bound
 to the public key contained in the header of the DPoP proof JWT.

 If a DPoP-bound refresh token is to be used at the token endpoint by
 a public client, the AS MUST ensure that the DPoP proof contains the
 same public key as the one the refresh token is bound to. The access
 token issued MUST be bound to the public key contained in the DPoP
 proof.

6. Resource Access (Proof of Possession for Access Tokens)

 To make use of an access token that is token-bound to a public key
 using DPoP, a client MUST prove the possession of the corresponding
 private key by providing a DPoP proof in the "DPoP" request header.

 The DPoP-bound access token must be sent in the "Authorization"
 header with the prefix "DPoP".

 If a resource server detects that an access token that is to be used
 for resource access is bound to a public key using DPoP (via the
 methods described in Section 7) it MUST check that a header "DPoP"
 was received in the HTTP request, and check the header's contents
 according to the rules in Section 4.2.

 The resource server MUST NOT grant access to the resource unless all
 checks are successful.

Fett, et al. Expires May 2, 2020 [Page 8]

Internet-Draft OAuth DPoP October 2019

 GET /protectedresource HTTP/1.1
 Host: resource.example.org
 Authorization: DPoP eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWI
 iOiJzb21lb25lQGV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbX
 BsZS5jb20iLCJhdWQiOiJodHRwczovL3Jlc291cmNlLmV4YW1wbGUub3JnIiwibmJmI
 joxNTYyMjYyNjExLCJleHAiOjE1NjIyNjYyMTYsImNuZiI6eyJqa3QiOiIwWmNPQ09S
 Wk5ZeS1EV3BxcTMwalp5SkdIVE4wZDJIZ2xCVjN1aWd1QTRJIn19.vsFiVqHCyIkBYu
 50c69bmPJsj8qYlsXfuC6nZcLl8YYRNOhqMuRXu6oSZHe2dGZY0ODNaGg1cg-kVigzY
 hF1MQ
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj
 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z
 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOH0.lNhmpAX1WwmpBvwhok4E74kWCiGB
 NdavjLAeevGy32H3dbF0Jbri69Nm2ukkwb-uyUI4AUg1JSskfWIyo4UCbQ

 Figure 4: Protected Resource Request with a DPoP sender-constrained
 access token.

7. Public Key Confirmation

 It MUST be ensured that resource servers can reliably identify
 whether a token is bound using DPoP and learn the public key to which
 the token is bound.

 Access tokens that are represented as JSON Web Tokens (JWT) [RFC7519]
 MUST contain information about the DPoP public key (in JWK format) in
 the member "jkt" of the "cnf" claim, as shown in Figure 5.

 The value in "jkt" MUST be the base64url encoding [RFC7515] of the
 JWK SHA-256 Thumbprint (according to [RFC7638]) of the public key to
 which the access token is bound.

 {
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "aud":"https://resource.example.org",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":{
 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
 }

 Figure 5: Example access token body with "cnf" claim.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7638

Fett, et al. Expires May 2, 2020 [Page 9]

Internet-Draft OAuth DPoP October 2019

 When access token introspection is used, the same "cnf" claim as
 above MUST be contained in the introspection response.

 Resource servers MUST ensure that the fingerprint of the public key
 in the DPoP proof JWT equals the value in the "jkt" claim in the
 access token or introspection response.

8. Acknowledgements

 We would like to thank David Waite, Filip Skokan, Mike Engan, and
 Justin Richer for their valuable input and feedback.

 This document resulted from discussions at the 4th OAuth Security
 Workshop in Stuttgart, Germany. We thank the organizers of this
 workshop (Ralf Kuesters, Guido Schmitz).

9. Security Considerations

 In DPoP, the prevention of token replay at a different endpoint (see
Section 2) is achieved through the binding of the DPoP proof to a

 certain URI and HTTP method. DPoP does not, however, achieve the
 same level of protection as TLS-based methods such as OAuth Mutual
 TLS [I-D.ietf-oauth-mtls] or OAuth Token Binding
 [I-D.ietf-oauth-token-binding] (see also Section 9.1 and

Section 9.4). TLS-based mechanisms can leverage a tight integration
 between the TLS layer and the application layer to achieve a very
 high level of message integrity and replay protection. Therefore, it
 is RECOMMENDED to prefer TLS-based methods over DPoP if such methods
 are suitable for the scenario at hand.

9.1. DPoP Proof Replay

 If an adversary is able to get hold of a DPoP proof JWT, the
 adversary could replay that token at the same endpoint (the HTTP
 endpoint and method are enforced via the respective claims in the
 JWTs). To prevent this, servers MUST only accept DPoP proofs for a
 limited time window after their "iat" time, preferably only for a
 relatively brief period. Servers SHOULD store the "jti" value of
 each DPoP proof for the time window in which the respective DPoP
 proof JWT would be accepted and decline HTTP requests for which the
 "jti" value has been seen before. In order to guard against memory
 exhaustion attacks a server SHOULD reject DPoP proof JWTs with
 unnecessarily large "jti" values or store only a hash thereof.

 Note: To accommodate for clock offsets, the server MAY accept DPoP
 proofs that carry an "iat" time in the near future (e.g., up to a few
 seconds in the future).

Fett, et al. Expires May 2, 2020 [Page 10]

Internet-Draft OAuth DPoP October 2019

9.2. Signed JWT Swapping

 Servers accepting signed DPoP proof JWTs MUST check the "typ" field
 in the headers of the JWTs to ensure that adversaries cannot use JWTs
 created for other purposes in the DPoP headers.

9.3. Signature Algorithms

 Implementers MUST ensure that only asymmetric digital signature
 algorithms that are deemed secure can be used for signing DPoP
 proofs. In particular, the algorithm "none" MUST NOT be allowed.

9.4. Message Integrity

 DPoP does not ensure the integrity of the payload or headers of
 requests. The signature of DPoP proofs only contains the HTTP URI
 and method, but not, for example, the message body or other request
 headers.

 This is an intentional design decision to keep DPoP simple to use,
 but as described, makes DPoP potentially susceptible to replay
 attacks where an attacker is able to modify message contents and
 headers. In many setups, the message integrity and confidentiality
 provided by TLS is sufficient to provide a good level of protection.

 Implementers that have stronger requirements on the integrity of
 messages are encouraged to either use TLS-based mechanisms or signed
 requests. TLS-based mechanisms are in particular OAuth Mutual TLS
 [I-D.ietf-oauth-mtls] and OAuth Token Binding
 [I-D.ietf-oauth-token-binding].

 Note: While signatures on (parts of) requests are out of the scope of
 this specification, signatures or information to be signed can be
 added into DPoP proofs.

10. IANA Considerations

10.1. OAuth Access Token Type Registration

 This specification registers the following access token type in the
 OAuth Access Token Types registry defined in [RFC6749].

 o Type name: "DPoP"

 o Additional Token Endpoint Response Parameters: (none)

 o HTTP Authentication Scheme(s): Bearer

https://datatracker.ietf.org/doc/html/rfc6749

Fett, et al. Expires May 2, 2020 [Page 11]

Internet-Draft OAuth DPoP October 2019

 o Change controller: IETF

 o Specification document(s): [[this specification]]

10.2. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "dpop+jwt" type value in the IANA
 JSON Web Signature and Encryption Type Values registry [RFC7515]:

 o "typ" Header Parameter Value: "dpop+jwt"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this specification]]

11. References

11.1. Normative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7638
https://www.rfc-editor.org/info/rfc7638

Fett, et al. Expires May 2, 2020 [Page 12]

Internet-Draft OAuth DPoP October 2019

11.2. Informative References

 [I-D.ietf-oauth-mtls]
 Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", draft-ietf-oauth-

mtls-17 (work in progress), August 2019.

 [I-D.ietf-oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", draft-ietf-

oauth-security-topics-13 (work in progress), July 2019.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-08 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Document History

 [[To be removed from the final specification]]

 -03

 o rework the text around uniqueness requirements on the jti claim in
 the DPoP proof JWT

 o make tokens a bit smaller by using "htm", "htu", and "jkt" rather
 than "http_method", "http_uri", and "jkt#S256" respectively

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-17
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-17
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Fett, et al. Expires May 2, 2020 [Page 13]

Internet-Draft OAuth DPoP October 2019

 o more explicit recommendation to use mTLS if that is available

 o added David Waite as co-author

 o editorial updates

 -02

 o added normalization rules for URIs

 o removed distinction between proof and binding

 o "jwk" header again used instead of "cnf" claim in DPoP proof

 o renamed "Bearer-DPoP" token type to "DPoP"

 o removed ability for key rotation

 o added security considerations on request integrity

 o explicit advice on extending DPoP proofs to sign other parts of
 the HTTP messages

 o only use the jkt#S256 in ATs

 o iat instead of exp in DPoP proof JWTs

 o updated guidance on token_type evaluation

 -01

 o fixed inconsistencies

 o moved binding and proof messages to headers instead of parameters

 o extracted and unified definition of DPoP JWTs

 o improved description

 -00

 o first draft

Authors' Addresses

Fett, et al. Expires May 2, 2020 [Page 14]

Internet-Draft OAuth DPoP October 2019

 Daniel Fett
 yes.com

 Email: mail@danielfett.de

 Brian Campbell
 Ping Identity

 Email: bcampbell@pingidentity.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com

 Torsten Lodderstedt
 yes.com

 Email: torsten@lodderstedt.net

 Michael Jones
 Microsoft

 Email: mbj@microsoft.com

 David Waite
 Ping Identity

 Email: david@alkaline-solutions.com

Fett, et al. Expires May 2, 2020 [Page 15]

