
Workgroup: Web Authorization Protocol

Internet-Draft: draft-fett-oauth-dpop-04

Published: 4 March 2020

Intended Status: Standards Track

Expires: 5 September 2020

Authors: D. Fett

yes.com

B. Campbell

Ping Identity

J. Bradley

Yubico

T. Lodderstedt

yes.com

M. Jones

Microsoft

D. Waite

Ping Identity

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer

(DPoP)

Abstract

This document describes a mechanism for sender-constraining OAuth

2.0 tokens via a proof-of-possession mechanism on the application

level. This mechanism allows for the detection of replay attacks

with access and refresh tokens.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Main Objective

3. Concept

4. DPoP Proof JWTs

4.1. Syntax

4.2. Checking DPoP Proofs

5. Token Request (Binding Tokens to a Public Key)

6. Resource Access (Proof of Possession for Access Tokens)

7. Public Key Confirmation

8. Acknowledgements

9. Security Considerations

9.1. DPoP Proof Replay

9.2. Signed JWT Swapping

9.3. Signature Algorithms

9.4. Message Integrity

10. IANA Considerations

10.1. OAuth Access Token Type Registration

10.2. JSON Web Signature and Encryption Type Values Registration

11. Normative References

12. Informative References

Appendix A. Document History

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. Introduction

[RFC8705] describes methods to bind (sender-constrain) access tokens

using mutual Transport Layer Security (TLS) authentication with X.

509 certificates.

[I-D.ietf-oauth-token-binding] provides mechanisms to sender-

constrain access tokens using HTTP token binding.

Due to a sub-par user experience of TLS client authentication in

user agents and a lack of support for HTTP token binding, neither

mechanism can be used if an OAuth client is a Single Page

Application (SPA) running in a web browser.

This document outlines an application-level sender-constraining for

access and refresh tokens that can be used in cases where neither

mTLS nor OAuth Token Binding are available. It uses proof-of-

possession based on a public/private key pair and application-level

signing.

DPoP can be used with public clients and, in case of confidential

clients, can be combined with any client authentication method.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response", and

"client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Main Objective

Under the attacker model defined in [I-D.ietf-oauth-security-

topics], the mechanism defined by this specification aims to prevent

token replay at a different endpoint.

More precisely, if an adversary is able to get hold of an access

token or refresh token because it set up a counterfeit authorization

server or resource server, the adversary is not able to replay the

respective token at another authorization or resource server.

Secondary objectives are discussed in Section 9.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3. Concept

The main data structure introduced by this specification is a DPoP

proof JWT, described in detail below. A client uses a DPoP proof JWT

to prove the possession of a private key belonging to a certain

public key. Roughly speaking, a DPoP proof is a signature over some

data of the HTTP request to which it is attached to and a timestamp.

+--------+ +---------------+

| |--(A)-- Token Request ------------------->| |

| Client | (DPoP Proof) | Authorization |

| | | Server |

| |<-(B)-- DPoP-bound Access Token ----------| |

| | (token_type=DPoP) +---------------+

| | PoP Refresh Token for public clients

| |

| | +---------------+

| |--(C)-- DPoP-bound Access Token --------->| |

| | (DPoP Proof) | Resource |

| | | Server |

| |<-(D)-- Protected Resource ---------------| |

| | +---------------+

+--------+

Figure 1

Figure 1: Basic DPoP Flow

The basic steps of an OAuth flow with DPoP are shown in Figure 1:

(A) In the Token Request, the client sends an authorization code

to the authorization server in order to obtain an access token

(and potentially a refresh token). The client attaches a DPoP

proof to the request in an HTTP header.

(B) The AS binds (sender-constrains) the access token to the

public key claimed by the client in the DPoP proof; that is, the

access token cannot be used without proving possession of the

respective private key. This is signaled to the client by using

the token_type value DPoP.

If a refresh token is issued to a public client, it is sender-

constrained in the same way. For confidential clients, refresh

tokens are bound to the client_id, which is more flexible than

binding it to a particular public key.

(C) If the client wants to use the access token, it has to prove

possession of the private key by, again, adding a header to the

request that carries the DPoP proof. The resource server needs to

receive information about the public key to which the access

¶

¶

¶

*

¶

*

¶

*

¶

*

token is bound. This information is either encoded directly into

the access token (for JWT structured access tokens), or provided

at the token introspection endpoint of the authorization server

(not shown).

(D) The resource server refuses to serve the request if the

signature check fails or the data in the DPoP proof is wrong,

e.g., the request URI does not match the URI claim in the DPoP

proof JWT.

When a refresh token that is sender-constrained using DPoP is

used by the client, the client has to provide a DPoP proof just

as in the case of a resource access. The new access token will be

bound to the same public key.

The mechanism presented herein is not a client authentication

method. In fact, a primary use case is public clients (single page

applications) that do not use client authentication. Nonetheless,

DPoP is designed such that it is compatible with private_key_jwt and

all other client authentication methods.

DPoP does not directly ensure message integrity but relies on the

TLS layer for that purpose. See Section 9 for details.

4. DPoP Proof JWTs

DPoP uses so-called DPoP proof JWTs for binding public keys and

proving knowledge about private keys.

4.1. Syntax

A DPoP proof is a JWT ([RFC7519]) that is signed (using JWS,

[RFC7515]) using a private key chosen by the client (see below). The

header of a DPoP JWT contains at least the following parameters:

typ: type header, value dpop+jwt (REQUIRED).

alg: a digital signature algorithm identifier as per [RFC7518]

(REQUIRED). MUST NOT be none or an identifier for a symmetric

algorithm (MAC).

jwk: representing the public key chosen by the client, in JWK

format, as defined in [RFC7515] (REQUIRED)

The body of a DPoP proof contains at least the following claims:

jti: Unique identifier for the DPoP proof JWT (REQUIRED). The

value MUST be assigned such that there is a negligible

probability that the same value will be assigned to any other

DPoP proof used in the same context during the time window of

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

*

validity. Such uniqueness can be accomplished by encoding

(base64url or any other suitable encoding) at least 96 bits of

pseudorandom data or by using a version 4 UUID string according

to [RFC4122]. The jti SHOULD be used by the server for replay

detection and prevention, see Section 9.1.

htm: The HTTP method for the request to which the JWT is

attached, as defined in [RFC7231] (REQUIRED).

htu: The HTTP URI used for the request, without query and

fragment parts (REQUIRED).

iat: Time at which the JWT was created (REQUIRED).

Figure 2 shows the JSON header and payload of a DPoP proof JWT.

Figure 2

Figure 2: Example JWT content for DPoP proof header.

Note: To keep DPoP simple to implement, only the HTTP method and URI

are signed in DPoP proofs. Nonetheless, DPoP proofs can be extended

to contain other information of the HTTP request (see also Section

9.4).

4.2. Checking DPoP Proofs

To check if a string that was received as part of an HTTP Request is

a valid DPoP proof, the receiving server MUST ensure that

the string value is a well-formed JWT,

all required claims are contained in the JWT,

¶

*

¶

*

¶

* ¶

¶

{

 "typ":"dpop+jwt",

 "alg":"ES256",

 "jwk": {

 "kty":"EC",

 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",

 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",

 "crv":"P-256"

 }

}.{

 "jti":"-BwC3ESc6acc2lTc",

 "htm":"POST",

 "htu":"https://server.example.com/token",

 "iat":1562262616

}

¶

¶

¶

1. ¶

2. ¶

the typ field in the header has the value dpop+jwt,

the algorithm in the header of the JWT indicates an asymmetric

digital signature algorithm, is not none, is supported by the

application, and is deemed secure,

that the JWT is signed using the public key contained in the

jwk header of the JWT,

the htm claim matches the HTTP method value of the HTTP request

in which the JWT was received (case-insensitive),

the htu claims matches the HTTP URI value for the HTTP request

in which the JWT was received, ignoring any query and fragment

parts,

the token was issued within an acceptable timeframe (see

Section 9.1), and

that, within a reasonable consideration of accuracy and

resource utilization, a JWT with the same jti value has not

been received previously (see Section 9.1).

Servers SHOULD employ Syntax-Based Normalization and Scheme-Based

Normalization in accordance with Section 6.2.2. and Section 6.2.3.

of [RFC3986] before comparing the htu claim.

5. Token Request (Binding Tokens to a Public Key)

To bind a token to a public key in the token request, the client

MUST provide a valid DPoP proof JWT in a DPoP header. The HTTPS

request shown in Figure 3 illustrates the protocol for this (with

extra line breaks for display purposes only).

Figure 3

3. ¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

¶

¶

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg

 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

Figure 3: Token Request for a DPoP sender-constrained token.

The HTTP header DPoP MUST contain a valid DPoP proof.

The authorization server, after checking the validity of the DPoP

proof, MUST associate the access token issued at the token endpoint

with the public key. It then sets token_type to DPoP in the token

response.

A client typically cannot know whether a certain AS supports DPoP.

It therefore SHOULD use the value of the token_type parameter

returned from the AS to determine support for DPoP: If the token

type returned is Bearer or another value, the AS does not support

DPoP. If it is DPoP, DPoP is supported. Only then, the client needs

to send the DPoP header in subsequent requests and use the token

type DPoP in the Authorization header as described below.

If a refresh token is issued to a public client at the token

endpoint and a valid DPoP proof is presented, the refresh token MUST

be bound to the public key contained in the header of the DPoP proof

JWT.

If a DPoP-bound refresh token is to be used at the token endpoint by

a public client, the AS MUST ensure that the DPoP proof contains the

same public key as the one the refresh token is bound to. The access

token issued MUST be bound to the public key contained in the DPoP

proof.

6. Resource Access (Proof of Possession for Access Tokens)

To make use of an access token that is token-bound to a public key

using DPoP, a client MUST prove the possession of the corresponding

private key by providing a DPoP proof in the DPoP request header.

The DPoP-bound access token must be sent in the Authorization header

with the prefix DPoP.

If a resource server detects that an access token that is to be used

for resource access is bound to a public key using DPoP (via the

methods described in Section 7) it MUST check that a header DPoP was

received in the HTTP request, and check the header's contents

according to the rules in Section 4.2.

The resource server MUST NOT grant access to the resource unless all

checks are successful.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 4

Figure 4: Protected Resource Request with a DPoP sender-constrained

access token.

7. Public Key Confirmation

It MUST be ensured that resource servers can reliably identify

whether a token is bound using DPoP and learn the public key to

which the token is bound.

Access tokens that are represented as JSON Web Tokens (JWT)

[RFC7519] MUST contain information about the DPoP public key (in JWK

format) in the member jkt of the cnf claim, as shown in Figure 5.

The value in jkt MUST be the base64url encoding [RFC7515] of the JWK

SHA-256 Thumbprint (according to [RFC7638]) of the public key to

which the access token is bound.

Figure 5

Figure 5: Example access token body with cnf claim.

GET /protectedresource HTTP/1.1

Host: resource.example.org

Authorization: DPoP eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWI

 iOiJzb21lb25lQGV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbX

 BsZS5jb20iLCJhdWQiOiJodHRwczovL3Jlc291cmNlLmV4YW1wbGUub3JnIiwibmJmI

 joxNTYyMjYyNjExLCJleHAiOjE1NjIyNjYyMTYsImNuZiI6eyJqa3QiOiIwWmNPQ09S

 Wk5ZeS1EV3BxcTMwalp5SkdIVE4wZDJIZ2xCVjN1aWd1QTRJIn19.vsFiVqHCyIkBYu

 50c69bmPJsj8qYlsXfuC6nZcLl8YYRNOhqMuRXu6oSZHe2dGZY0ODNaGg1cg-kVigzY

 hF1MQ

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj

 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z

 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOH0.lNhmpAX1WwmpBvwhok4E74kWCiGB

 NdavjLAeevGy32H3dbF0Jbri69Nm2ukkwb-uyUI4AUg1JSskfWIyo4UCbQ

¶

¶

¶

¶

{

 "sub":"someone@example.com",

 "iss":"https://server.example.com",

 "aud":"https://resource.example.org",

 "nbf":1562262611,

 "exp":1562266216,

 "cnf":{

 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"

 }

}

¶

When access token introspection is used, the same cnf claim as above

MUST be contained in the introspection response.

Resource servers MUST ensure that the fingerprint of the public key

in the DPoP proof JWT equals the value in the jkt claim in the

access token or introspection response.

8. Acknowledgements

We would like to thank David Waite, Filip Skokan, Mike Engan, and

Justin Richer for their valuable input and feedback.

This document resulted from discussions at the 4th OAuth Security

Workshop in Stuttgart, Germany. We thank the organizers of this

workshop (Ralf Kusters, Guido Schmitz).

9. Security Considerations

In DPoP, the prevention of token replay at a different endpoint (see

Section 2) is achieved through the binding of the DPoP proof to a

certain URI and HTTP method. DPoP does not, however, achieve the

same level of protection as TLS-based methods such as OAuth Mutual

TLS [RFC8705] or OAuth Token Binding [I-D.ietf-oauth-token-binding]

(see also Section 9.1 and Section 9.4). TLS-based mechanisms can

leverage a tight integration between the TLS layer and the

application layer to achieve a very high level of message integrity

and replay protection. Therefore, it is RECOMMENDED to prefer TLS-

based methods over DPoP if such methods are suitable for the

scenario at hand.

9.1. DPoP Proof Replay

If an adversary is able to get hold of a DPoP proof JWT, the

adversary could replay that token at the same endpoint (the HTTP

endpoint and method are enforced via the respective claims in the

JWTs). To prevent this, servers MUST only accept DPoP proofs for a

limited time window after their iat time, preferably only for a

relatively brief period. Servers SHOULD store the jti value of each

DPoP proof for the time window in which the respective DPoP proof

JWT would be accepted and decline HTTP requests for which the jti

value has been seen before. In order to guard against memory

exhaustion attacks a server SHOULD reject DPoP proof JWTs with

unnecessarily large jti values or store only a hash thereof.

Note: To accommodate for clock offsets, the server MAY accept DPoP

proofs that carry an iat time in the near future (e.g., up to a few

seconds in the future).

¶

¶

¶

¶

¶

¶

¶

9.2. Signed JWT Swapping

Servers accepting signed DPoP proof JWTs MUST check the typ field in

the headers of the JWTs to ensure that adversaries cannot use JWTs

created for other purposes in the DPoP headers.

9.3. Signature Algorithms

Implementers MUST ensure that only asymmetric digital signature

algorithms that are deemed secure can be used for signing DPoP

proofs. In particular, the algorithm none MUST NOT be allowed.

9.4. Message Integrity

DPoP does not ensure the integrity of the payload or headers of

requests. The signature of DPoP proofs only contains the HTTP URI

and method, but not, for example, the message body or other request

headers.

This is an intentional design decision to keep DPoP simple to use,

but as described, makes DPoP potentially susceptible to replay

attacks where an attacker is able to modify message contents and

headers. In many setups, the message integrity and confidentiality

provided by TLS is sufficient to provide a good level of protection.

Implementers that have stronger requirements on the integrity of

messages are encouraged to either use TLS-based mechanisms or signed

requests. TLS-based mechanisms are in particular OAuth Mutual TLS

[RFC8705] and OAuth Token Binding [I-D.ietf-oauth-token-binding].

Note: While signatures on (parts of) requests are out of the scope

of this specification, signatures or information to be signed can be

added into DPoP proofs.

10. IANA Considerations

10.1. OAuth Access Token Type Registration

This specification registers the following access token type in the

OAuth Access Token Types registry defined in [RFC6749].

Type name: "DPoP"

Additional Token Endpoint Response Parameters: (none)

HTTP Authentication Scheme(s): Bearer

Change controller: IETF

Specification document(s): [[this specification]]

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

[RFC6749]

[RFC7519]

[RFC7638]

[RFC7518]

[RFC7231]

[RFC3986]

[I-D.ietf-oauth-token-binding]

10.2. JSON Web Signature and Encryption Type Values Registration

This specification registers the dpop+jwt type value in the IANA

JSON Web Signature and Encryption Type Values registry [RFC7515]:

"typ" Header Parameter Value: "dpop+jwt"

Abbreviation for MIME Type: None

Change Controller: IETF

Specification Document(s): [[this specification]]

11. Normative References

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Jones, M. and N. Sakimura, "JSON Web Key (JWK)

Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September

2015, <https://www.rfc-editor.org/info/rfc7638>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

12. Informative References

Jones, M., Campbell, B., Bradley, J., and W. Denniss,

"OAuth 2.0 Token Binding", Work in Progress, Internet-

Draft, draft-ietf-oauth-token-binding-08, 19 October

2018, <https://tools.ietf.org/html/draft-ietf-oauth-

token-binding-08>.

¶

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7638
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08

[RFC8174]

[RFC7515]

[RFC4122]

[RFC8705]

[RFC2119]

[I-D.ietf-oauth-security-topics]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", RFC 8705, DOI

10.17487/RFC8705, February 2020, <https://www.rfc-

editor.org/info/rfc8705>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,

"OAuth 2.0 Security Best Current Practice", Work in

Progress, Internet-Draft, draft-ietf-oauth-security-

topics-14, 10 February 2020, <https://tools.ietf.org/

html/draft-ietf-oauth-security-topics-14>.

Appendix A. Document History

[[To be removed from the final specification]]

-04

Update OAuth MTLS reference to RFC 8705

Use the newish RFC v3 XML and HTML format

-03

rework the text around uniqueness requirements on the jti claim

in the DPoP proof JWT

make tokens a bit smaller by using htm, htu, and jkt rather than

http_method, http_uri, and jkt#S256 respectively

¶

¶

* ¶

* ¶

¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-14
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-14

more explicit recommendation to use mTLS if that is available

added David Waite as co-author

editorial updates

-02

added normalization rules for URIs

removed distinction between proof and binding

"jwk" header again used instead of "cnf" claim in DPoP proof

renamed "Bearer-DPoP" token type to "DPoP"

removed ability for key rotation

added security considerations on request integrity

explicit advice on extending DPoP proofs to sign other parts of

the HTTP messages

only use the jkt#S256 in ATs

iat instead of exp in DPoP proof JWTs

updated guidance on token_type evaluation

-01

fixed inconsistencies

moved binding and proof messages to headers instead of parameters

extracted and unified definition of DPoP JWTs

improved description

-00

first draft

Authors' Addresses

Daniel Fett

yes.com

Email: mail@danielfett.de

Brian Campbell

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

mailto:mail@danielfett.de

Ping Identity

Email: bcampbell@pingidentity.com

John Bradley

Yubico

Email: ve7jtb@ve7jtb.com

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

Michael Jones

Microsoft

Email: mbj@microsoft.com

David Waite

Ping Identity

Email: david@alkaline-solutions.com

mailto:bcampbell@pingidentity.com
mailto:ve7jtb@ve7jtb.com
mailto:torsten@lodderstedt.net
mailto:mbj@microsoft.com
mailto:david@alkaline-solutions.com

	OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer (DPoP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Main Objective
	3. Concept
	4. DPoP Proof JWTs
	4.1. Syntax
	4.2. Checking DPoP Proofs

	5. Token Request (Binding Tokens to a Public Key)
	6. Resource Access (Proof of Possession for Access Tokens)
	7. Public Key Confirmation
	8. Acknowledgements
	9. Security Considerations
	9.1. DPoP Proof Replay
	9.2. Signed JWT Swapping
	9.3. Signature Algorithms
	9.4. Message Integrity

	10. IANA Considerations
	10.1. OAuth Access Token Type Registration
	10.2. JSON Web Signature and Encryption Type Values Registration

	11. Normative References
	12. Informative References
	Appendix A. Document History
	Authors' Addresses

