
Internet Engineering Task Force fge. Galiegue, Ed.
Internet-Draft
Intended status: Informational K. Zyp
Expires: August 5, 2013 SitePen (USA)
 G. Court
 February 1, 2013

JSON Schema: interactive and non interactive validation
draft-fge-json-schema-validation-00

Abstract

 JSON Schema (application/schema+json) has several purposes, one of
 which is instance validation. The validation process may be
 interactive or non interactive. For instance, applications may use
 JSON Schema to build a user interface enabling interactive content
 generation in addition to user input checking, or validate data
 retrieved from various sources. This specification describes schema
 keywords dedicated to validation purposes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 5, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Galiegue, et al. Expires August 5, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Schema February 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
3. Interoperability considerations 4
3.1. Validation of string instances 4
3.2. Validation of numeric instances 4
3.3. Regular expressions 5

4. General validation considerations 5
4.1. Keywords and instance primitive types 5
4.2. Inter-dependent keywords 6
4.3. Default values for missing keywords 6
4.4. Validation of container instances 6

5. Validation keywords sorted by instance types 6
 5.1. Validation keywords for numeric instances (number and
 integer) . 6

5.1.1. multipleOf . 6
5.1.2. maximum and exclusiveMaximum 6
5.1.3. minimum and exclusiveMinimum 7

5.2. Validation keywords for strings 8
5.2.1. maxLength . 8
5.2.2. minLength . 8
5.2.3. pattern . 8

5.3. Validation keywords for arrays 9
5.3.1. additionalItems and items 9
5.3.2. maxItems . 10
5.3.3. minItems . 10
5.3.4. uniqueItems . 11

5.4. Validation keywords for objects 11
5.4.1. maxProperties . 11
5.4.2. minProperties . 11
5.4.3. required . 12

 5.4.4. additionalProperties, properties and
 patternProperties 12

5.4.5. dependencies . 14
5.5. Validation keywords for any instance type 15
5.5.1. enum . 15
5.5.2. type . 15
5.5.3. allOf . 16
5.5.4. anyOf . 16
5.5.5. oneOf . 16
5.5.6. not . 17
5.5.7. definitions . 17

Galiegue, et al. Expires August 5, 2013 [Page 2]

Internet-Draft JSON Schema February 2013

6. Metadata keywords . 17
6.1. "title" and "description" 18
6.1.1. Valid values . 18
6.1.2. Purpose . 18

6.2. "default" . 18
6.2.1. Valid values . 18
6.2.2. Purpose . 18

7. Semantic validation with "format" 18
7.1. Foreword . 18
7.2. Implementation requirements 19
7.3. Defined attributes . 19
7.3.1. date-time . 19
7.3.2. email . 19
7.3.3. hostname . 19
7.3.4. ipv4 . 20
7.3.5. ipv6 . 20
7.3.6. uri . 20

8. Reference algorithms for calculating children schemas 20
8.1. Foreword . 20
8.2. Array elements . 21
8.2.1. Defining characteristic 21
8.2.2. Implied keywords and default values. 21
8.2.3. Calculation . 21

8.3. Object members . 22
8.3.1. Defining characteristic 22
8.3.2. Implied keywords 22
8.3.3. Calculation . 22

9. Security considerations 23
10. IANA Considerations . 23
11. References . 23
11.1. Normative References 23
11.2. Informative References 23

Appendix A. ChangeLog . 24

Galiegue, et al. Expires August 5, 2013 [Page 3]

Internet-Draft JSON Schema February 2013

1. Introduction

 JSON Schema can be used to require that a given JSON document (an
 instance) satisfies a certain number of criteria. These criteria are
 materialized by a set of keywords which are described in this
 specification. In addition, a set of keywords is defined to assist
 in interactive instance generation. Those are also described in this
 specification.

 This specification will use the terminology defined by the JSON
 Schema core specification. It is advised that readers have a copy of
 this specification.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification uses the term "container instance" to refer to
 both array and object instances. It uses the term "children
 instances" to refer to array elements or object member values.

 This specification uses the term "property set" to refer to the set
 of an object's member names; for instance, the property set of JSON
 Object { "a": 1, "b": 2 } is ["a", "b"].

 Elements in an array value are said to be unique if no two elements
 of this array are equal, as defined by the core specification.

3. Interoperability considerations

3.1. Validation of string instances

 It should be noted that the nul character (\x00) is valid in a JSON
 string. An instance to validate may contain a string value with this
 character, regardless of the ability of the underlying programming
 language to deal with such data.

3.2. Validation of numeric instances

 The JSON specification does not define any bounds to the scale or
 precision of numeric values. JSON Schema does not define any such
 bounds either. This means that numeric instances processed by JSON
 Schema can be arbitrarily large and/or have an arbitrarily large
 decimal part, regardless of the ability of the underlying programming
 language to deal with such data.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Galiegue, et al. Expires August 5, 2013 [Page 4]

Internet-Draft JSON Schema February 2013

3.3. Regular expressions

 Two validation keywords, "pattern" and "patternProperties", use
 regular expressions to express constraints. These regular
 expressions SHOULD be valid according to the ECMA 262 [ecma262]
 regular expression dialect.

 Furthermore, given the high disparity in regular expression
 constructs support, schema authors SHOULD limit themselves to the
 following regular expression tokens:

 individual Unicode characters, as defined by the JSON
 specification [RFC4627];

 simple character classes ([abc]), range character classes ([a-z]);

 complemented character classes ([^abc], [^a-z]);

 simple quantifiers: "+" (one or more), "*" (zero or more), "?"
 (zero or one), and their lazy versions ("+?", "*?", "??");

 range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at
 least x, at most y, occurrences), {x,} (x occurrences or more),
 and their lazy versions;

 the beginning-of-input ("^") and end-of-input ("$") anchors;

 simple grouping ("(...)") and alternation ("|").

 Finally, implementations MUST NOT consider that regular expressions
 are anchored, neither at the beginning nor at the end. This means,
 for instance, that "es" matches "expression".

4. General validation considerations

4.1. Keywords and instance primitive types

 Some validation keywords only apply to one or more primitive types.
 When the primitive type of the instance cannot be validated by a
 given keyword, validation for this keyword and instance SHOULD
 succeed.

 This specification groups keywords in different sections, according
 to the primitive type, or types, these keywords validate. Note that
 some keywords validate all instance types.

https://datatracker.ietf.org/doc/html/rfc4627

Galiegue, et al. Expires August 5, 2013 [Page 5]

Internet-Draft JSON Schema February 2013

4.2. Inter-dependent keywords

 In order to validate an instance, some keywords are influenced by the
 presence (or absence) of other keywords. In this case, all these
 keywords will be grouped in the same section.

4.3. Default values for missing keywords

 Some keywords, if absent, MAY be regarded by implementations as
 having a default value. In this case, the default value will be
 mentioned.

4.4. Validation of container instances

 Keywords with the possibility to validate container instances (arrays
 or objects) only validate the instances themselves and not their
 children (array items or object properties). Some of these keywords
 do, however, contain information which is necessary for calculating
 which schema(s) a child must be valid against. The algorithms to
 calculate a child instance's relevant schema(s) are explained in a
 separate section.

 It should be noted that while an array element will only have to
 validate against one schema, object member values may have to
 validate against more than one schema.

5. Validation keywords sorted by instance types

5.1. Validation keywords for numeric instances (number and integer)

5.1.1. multipleOf

5.1.1.1. Valid values

 The value of "multipleOf" MUST be a JSON number. This number MUST be
 strictly greater than 0.

5.1.1.2. Conditions for successful validation

 A numeric instance is valid against "multipleOf" if the result of the
 division of the instance by this keyword's value is an integer.

5.1.2. maximum and exclusiveMaximum

5.1.2.1. Valid values

 The value of "maximum" MUST be a JSON number. The value of
 "exclusiveMaximum" MUST be a boolean.

Galiegue, et al. Expires August 5, 2013 [Page 6]

Internet-Draft JSON Schema February 2013

 If "exclusiveMaximum" is present, "maximum" MUST also be present.

5.1.2.2. Conditions for successful validation

 Successful validation depends on the presence and value of
 "exclusiveMaximum":

 if "exclusiveMaximum" is not present, or has boolean value false,
 then the instance is valid if it is lower than, or equal to, the
 value of "maximum";

 if "exclusiveMaximum" has boolean value true, the instance is
 valid if it is strictly lower than the value of "maximum".

5.1.2.3. Default value

 "exclusiveMaximum", if absent, may be considered as being present
 with boolean value false.

5.1.3. minimum and exclusiveMinimum

5.1.3.1. Valid values

 The value of "minimum" MUST be a JSON number. The value of
 "exclusiveMinimum" MUST be a boolean.

 If "exclusiveMinimum" is present, "minimum" MUST also be present.

5.1.3.2. Conditions for successful validation

 Successful validation depends on the presence and value of
 "exclusiveMinimum":

 if "exclusiveMinimum" is not present, or has boolean value false,
 then the instance is valid if it is greater than, or equal to, the
 value of "minimum";

 if "exclusiveMinimum" is present and has boolean value true, the
 instance is valid if it is strictly greater than the value of
 "minimum".

5.1.3.3. Default value

 "exclusiveMinimum", if absent, may be considered as being present
 with boolean value false.

Galiegue, et al. Expires August 5, 2013 [Page 7]

Internet-Draft JSON Schema February 2013

5.2. Validation keywords for strings

5.2.1. maxLength

5.2.1.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.2.1.2. Conditions for successful validation

 A string instance is valid against this keyword if its length is less
 than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 4627 [RFC4627].

5.2.2. minLength

5.2.2.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.2.2.2. Conditions for successful validation

 A string instance is valid against this keyword if its length is
 greater than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 4627 [RFC4627].

5.2.2.3. Default value

 "minLength", if absent, may be considered as being present with
 integer value 0.

5.2.3. pattern

5.2.3.1. Valid values

 The value of this keyword MUST be a string. This string SHOULD be a
 valid regular expression, according to the ECMA 262 regular
 expression dialect.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Galiegue, et al. Expires August 5, 2013 [Page 8]

Internet-Draft JSON Schema February 2013

5.2.3.2. Conditions for successful validation

 A string instance is considered valid if the regular expression
 matches the instance successfully. Recall: regular expressions are
 not implicitly anchored.

5.3. Validation keywords for arrays

5.3.1. additionalItems and items

5.3.1.1. Valid values

 The value of "additionalItems" MUST be either a boolean or an object.
 If it is an object, this object MUST be a valid JSON Schema.

 The value of "items" MUST be either an object or an array. If it is
 an object, this object MUST be a valid JSON Schema. If it is an
 array, items of this array MUST be objects, and each of these objects
 MUST be a valid JSON Schema.

5.3.1.2. Conditions for successful validation

 Successful validation of an array instance with regards to these two
 keywords is determined as follows:

 if "items" is not present, or its value is an object, validation
 of the instance always succeeds, regardless of the value of
 "additionalItems";

 if the value of "additionalItems" is boolean value true or an
 object, validation of the instance always succeeds;

 if the value of "additionalItems" is boolean value false and the
 value of "items" is an array, the instance is valid if its size is
 less than, or equal to, the size of "items".

5.3.1.3. Example

 The following example covers the case where "additionalItems" has
 boolean value false and "items" is an array, since this is the only
 situation under which an instance may fail to validate successfully.

 This is an example schema:

 {
 "items": [{}, {}, {}],
 "additionalItems": false

Galiegue, et al. Expires August 5, 2013 [Page 9]

Internet-Draft JSON Schema February 2013

 }

 With this schema, the following instances are valid:

 [] (an empty array),

 [[1, 2, 3, 4], [5, 6, 7, 8]],

 [1, 2, 3];

 the following instances are invalid:

 [1, 2, 3, 4],

 [null, { "a": "b" }, true, 31.000002020013]

5.3.1.4. Default values

 If either keyword is absent, it may be considered present with an
 empty schema.

5.3.2. maxItems

5.3.2.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.3.2.2. Conditions for successful validation

 An array instance is valid against "maxItems" if its size is less
 than, or equal to, the value of this keyword.

5.3.3. minItems

5.3.3.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.3.3.2. Conditions for successful validation

 An array instance is valid against "minItems" if its size is greater
 than, or equal to, the value of this keyword.

Galiegue, et al. Expires August 5, 2013 [Page 10]

Internet-Draft JSON Schema February 2013

5.3.3.3. Default value

 If this keyword is not present, it may be considered present with a
 value of 0.

5.3.4. uniqueItems

5.3.4.1. Valid values

 The value of this keyword MUST be a boolean.

5.3.4.2. Conditions for successful validation

 If this keyword has boolean value false, the instance validates
 successfully. If it has boolean value true, the instance validates
 successfully if all of its elements are unique.

5.3.4.3. Default value

 If not present, this keyword may be considered present with boolean
 value false.

5.4. Validation keywords for objects

5.4.1. maxProperties

5.4.1.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.4.1.2. Conditions for successful validation

 An object instance is valid against "maxProperties" if its number of
 properties is less than, or equal to, the value of this keyword.

5.4.2. minProperties

5.4.2.1. Valid values

 The value of this keyword MUST be an integer. This integer MUST be
 greater than, or equal to, 0.

5.4.2.2. Conditions for successful validation

 An object instance is valid against "minProperties" if its number of
 properties is greater than, or equal to, the value of this keyword.

Galiegue, et al. Expires August 5, 2013 [Page 11]

Internet-Draft JSON Schema February 2013

5.4.2.3. Default value

 If this keyword is not present, it may be considered present with a
 value of 0.

5.4.3. required

5.4.3.1. Valid values

 The value of this keyword MUST be an array. This array MUST have at
 least one element. Elements of this array MUST be strings, and MUST
 be unique.

5.4.3.2. Conditions for successful validation

 An object instance is valid against this keyword if its property set
 contains all elements in this keyword's array value.

5.4.4. additionalProperties, properties and patternProperties

5.4.4.1. Valid values

 The value of "additionalProperties" MUST be a boolean or an object.
 If it is an object, it MUST also be a valid JSON Schema.

 The value of "properties" MUST be an object. Each value of this
 object MUST be an object, and each object MUST be a valid JSON
 Schema.

 The value of "patternProperties" MUST be an object. Each property
 name of this object SHOULD be a valid regular expression, according
 to the ECMA 262 regular expression dialect. Each property value of
 this object MUST be an object, and each object MUST be a valid JSON
 Schema.

5.4.4.2. Conditions for successful validation

 Successful validation of an object instance against these three
 keywords depends on the value of "additionalProperties":

 if its value is boolean true or a schema, validation succeeds;

 if its value is boolean false, the algorithm to determine
 validation success is described below.

Galiegue, et al. Expires August 5, 2013 [Page 12]

Internet-Draft JSON Schema February 2013

5.4.4.3. Default values

 If either "properties" or "patternProperties" are absent, they can be
 considered present with an empty object as a value.

 If "additionalProperties" is absent, it may be considered present
 with an empty schema as a value.

5.4.4.4. If "additionalProperties" has boolean value false

 In this case, validation of the instance depends on the property set
 of "properties" and "patternProperties". In this section, the
 property names of "patternProperties" will be called regexes for
 convenience.

 The first step is to collect the following sets:

 s The property set of the instance to validate.

 p The property set from "properties".

 pp The property set from "patternProperties".

 Having collected these three sets, the process is as follows:

 remove from "s" all elements of "p", if any;

 for each regex in "pp", remove all elements of "s" which this
 regex matches.

 Validation of the instance succeeds if, after these two steps, set
 "s" is empty.

5.4.4.5. Example

 This schema will be used as an example:

 {
 "properties": {
 "p1": {}
 },
 "patternProperties": {
 "p": {},
 "[0-9]": {}
 },
 "additionalProperties": false
 }

Galiegue, et al. Expires August 5, 2013 [Page 13]

Internet-Draft JSON Schema February 2013

 This is the instance to validate:

 {
 "p1": true,
 "p2": null,
 "a32&o": "foobar",
 "": [],
 "fiddle": 42,
 "apple": "pie"
 }

 The three property sets are:

 s ["p1", "p2", "a32&o", "", "fiddle", "apple"]

 p ["p1"]

 pp ["p", "[0-9]"]

 Applying the two steps of the algorithm:

 after the first step, "p1" is removed from "s";

 after the second step, "p2" (matched by "p"), "a32&o" (matched by
 "[0-9]") and "apple" (matched by "p") are removed from "s".

 The set "s" still contains two elements, "" and "fiddle". Validation
 therefore fails.

5.4.5. dependencies

5.4.5.1. Valid values

 This keyword's value MUST be an object. Each value of this object
 MUST be either an object or an array.

 If the value is an object, it MUST be a valid JSON Schema. This is
 called a schema dependency.

 If the value is an array, it MUST have at least one element. Each
 element MUST be a string, and elements in the array MUST be unique.
 This is called a property dependency.

Galiegue, et al. Expires August 5, 2013 [Page 14]

Internet-Draft JSON Schema February 2013

5.4.5.2. Conditions for successful validation

5.4.5.2.1. Schema dependencies

 For all (name, schema) pair of schema dependencies, if the instance
 has a property by this name, then it must also validate successfully
 against the schema.

 Note that this is the instance itself which must validate
 successfully, not the value associated with the property name.

5.4.5.2.2. Property dependencies

 For each (name, propertyset) pair of property dependencies, if the
 instance has a property by this name, then it must also have
 properties with the same names as propertyset.

5.5. Validation keywords for any instance type

5.5.1. enum

5.5.1.1. Valid values

 The value of this keyword MUST be an array. This array MUST have at
 least one element. Elements in the array MUST be unique.

 Elements in the array MAY be of any type, including null.

5.5.1.2. Conditions for successful validation

 An instance validates successfully against this keyword if its value
 is equal to one of the elements in this keyword's array value.

5.5.2. type

5.5.2.1. Valid values

 The value of this keyword MUST be either a string or an array. If it
 is an array, elements of the array MUST be strings and MUST be
 unique.

 String values MUST be one of the seven primitive types defined by the
 core specification.

5.5.2.2. Conditions for successful validation

 An instance matches successfully if its primitive type is one of the
 types defined by keyword. Recall: "number" includes "integer".

Galiegue, et al. Expires August 5, 2013 [Page 15]

Internet-Draft JSON Schema February 2013

5.5.3. allOf

5.5.3.1. Valid values

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

5.5.3.2. Conditions for successful validation

 An instance validates successfully against this keyword if it
 validates successfully against all schemas defined by this keyword's
 value.

5.5.4. anyOf

5.5.4.1. Valid values

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

5.5.4.2. Conditions for successful validation

 An instance validates successfully against this keyword if it
 validates successfully against at least one schema defined by this
 keyword's value.

5.5.5. oneOf

5.5.5.1. Valid values

 This keyword's value MUST be an array. This array MUST have at least
 one element.

 Elements of the array MUST be objects. Each object MUST be a valid
 JSON Schema.

5.5.5.2. Conditions for successful validation

 An instance validates successfully against this keyword if it
 validates successfully against exactly one schema defined by this
 keyword's value.

Galiegue, et al. Expires August 5, 2013 [Page 16]

Internet-Draft JSON Schema February 2013

5.5.6. not

5.5.6.1. Valid values

 This keyword's value MUST be an object. This object MUST be a valid
 JSON Schema.

5.5.6.2. Conditions for successful validation

 An instance is valid against this keyword if it fails to validate
 successfully against the schema defined by this keyword.

5.5.7. definitions

5.5.7.1. Valid values

 This keyword's value MUST be an object. Each member value of this
 object MUST be a valid JSON Schema.

5.5.7.2. Conditions for successful validation

 This keyword plays no role in validation per se. Its role is to
 provide a standardized location for schema authors to inline JSON
 Schemas into a more general schema.

 As an example, here is a schema describing an array of positive
 integers, where the positive integer constraint is a subschema in
 "definitions":

 {
 "type": "array",
 "items": { "$ref": "#/definitions/positiveInteger" },
 "definitions": {
 "positiveInteger": {
 "type": "integer",
 "minimum": 0,
 "exclusiveMinimum": true
 }
 }
 }

6. Metadata keywords

Galiegue, et al. Expires August 5, 2013 [Page 17]

Internet-Draft JSON Schema February 2013

6.1. "title" and "description"

6.1.1. Valid values

 The value of both of these keywords MUST be a string.

6.1.2. Purpose

 Both of these keywords can be used to decorate a user interface with
 information about the data produced by this user interface. A title
 will preferrably be short, whereas a description will provide
 explanation about the purpose of the instance described by this
 schema.

 Both of these keywords MAY be used in root schemas, and in any
 subschemas.

6.2. "default"

6.2.1. Valid values

 There are no restrictions placed on the value of this keyword.

6.2.2. Purpose

 This keyword can be used to supply a default JSON value associated
 with a particular schema. It is RECOMMENDED that a default value be
 valid against the associated schema.

 This keyword MAY be used in root schemas, and in any subschemas.

7. Semantic validation with "format"

7.1. Foreword

 Structural validation alone may be insufficient to validate that an
 instance meets all the requirements of an application. The "format"
 keyword is defined to allow interoperable semantic validation for a
 fixed subset of values which are accurately described by
 authoritative resources, be they RFCs or other external
 specifications.

 The value of this keyword is called a format attribute. It MUST be a
 string. A format attribute can generally only validate a given set
 of instance types. If the type of the instance to validate is not in
 this set, validation for this format attribute and instance SHOULD
 succeed.

Galiegue, et al. Expires August 5, 2013 [Page 18]

Internet-Draft JSON Schema February 2013

7.2. Implementation requirements

 Implementations MAY support the "format" keyword. Should they choose
 to do so:

 they SHOULD implement validation for attributes defined below;

 they SHOULD offer an option to disable validation for this
 keyword.

 Implementations MAY add custom format attributes. Save for agreement
 between parties, schema authors SHALL NOT expect a peer
 implementation to support this keyword and/or custom format
 attributes.

7.3. Defined attributes

7.3.1. date-time

7.3.1.1. Applicability

 This attribute applies to string instances.

7.3.1.2. Validation

 A string instance is valid against this attribute if it is a valid
 date representation as defined by RFC 3339, section 5.6 [RFC3339].

7.3.2. email

7.3.2.1. Applicability

 This attribute applies to string instances.

7.3.2.2. Validation

 A string instance is valid against this attribute if it is a valid
 Internet email address as defined by RFC 5322, section 3.4.1
 [RFC5322].

7.3.3. hostname

7.3.3.1. Applicability

 This attribute applies to string instances.

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc5322

Galiegue, et al. Expires August 5, 2013 [Page 19]

Internet-Draft JSON Schema February 2013

7.3.3.2. Validation

 A string instance is valid against this attribute if it is a valid
 representation for an Internet host name, as defined by RFC 1034,
 section 3.1 [RFC1034].

7.3.4. ipv4

7.3.4.1. Applicability

 This attribute applies to string instances.

7.3.4.2. Validation

 A string instance is valid against this attribute if it is a valid
 representation of an IPv4 address according to the "dotted-quad" ABNF
 syntax as defined in RFC 2673, section 3.2 [RFC2673].

7.3.5. ipv6

7.3.5.1. Applicability

 This attribute applies to string instances.

7.3.5.2. Validation

 A string instance is valid against this attribute if it is a valid
 representation of an IPv6 address as defined in RFC 2373, section 2.2
 [RFC2373].

7.3.6. uri

7.3.6.1. Applicability

 This attribute applies to string instances.

7.3.6.2. Validation

 A string instance is valid against this attribute if it is a valid
 URI, according to [RFC3986].

8. Reference algorithms for calculating children schemas

8.1. Foreword

 Calculating the schema, or schemas, a child instance must validate
 against is influenced by the following:

https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2673#section-3.2
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc2373#section-2.2
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc3986

Galiegue, et al. Expires August 5, 2013 [Page 20]

Internet-Draft JSON Schema February 2013

 the container instance type;

 the child instance's defining characteristic in the container
 instance;

 the value of keywords implied in the calculation.

 In addition, it is important that if one or more keyword(s) implied
 in the calculation are not defined, they be considered present with
 their default value, which will be recalled in this section.

8.2. Array elements

8.2.1. Defining characteristic

 The defining characteristic of the child instance is its index within
 the array. Recall: array indices start at 0.

8.2.2. Implied keywords and default values.

 The two implied keywords in this calculation are "items" and
 "additionalItems".

 If either keyword is absent, it is considered present with an empty
 schema as a value. In addition, boolean value true for
 "additionalItems" is considered equivalent to an empty schema.

8.2.3. Calculation

8.2.3.1. If "items" is a schema

 If items is a schema, then the child instance must be valid against
 this schema, regardless of its index, and regardless of the value of
 "additionalItems".

8.2.3.2. If "items" is an array

 In this situation, the schema depends on the index:

 if the index is less than, or equal to, the size of "items", the
 child instance must be valid against the corresponding schema in
 the "items" array;

 otherwise, it must be valid against the schema defined by
 "additionalItems".

Galiegue, et al. Expires August 5, 2013 [Page 21]

Internet-Draft JSON Schema February 2013

8.3. Object members

8.3.1. Defining characteristic

 The defining characteristic is the property name of the child.

8.3.2. Implied keywords

 The three keywords implied in this calculation are "properties",
 "patternProperties" and "additionalProperties".

 If "properties" or "patternProperties" are absent, they are
 considered present with an empty object as a value.

 If "additionalProperties" is absent, it is considered present with an
 empty schema as a value. In addition, boolean value true is
 considered equivalent to an empty schema.

8.3.3. Calculation

8.3.3.1. Names used in this calculation

 The calculation below uses the following names:

 m The property name of the child.

 p The property set from "properties".

 pp The property set from "patternProperties". Elements of this set
 will be called regexes for convenience.

 s The set of schemas for the child instance.

8.3.3.2. First step: schemas in "properties"

 If set "p" contains value "m", then the corresponding schema in
 "properties" is added to "s".

8.3.3.3. Second step: schemas in "patternProperties"

 For each regex in "pp", if it matches "m" successfully, the
 corresponding schema in "patternProperties" is added to "s".

8.3.3.4. Third step: "additionalProperties"

 The schema defined by "additionalProperties" is added to "s" if and
 only if, at this stage, "s" is empty.

Galiegue, et al. Expires August 5, 2013 [Page 22]

Internet-Draft JSON Schema February 2013

9. Security considerations

 JSON Schema validation does not have any additional security
 considerations than those defined by the JSON Schema core
 specification.

10. IANA Considerations

 This specification does not have any influence with regards to IANA.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [RFC2673] Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, August 1999.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [ecma262] "ECMA 262 specification", <http://
www.ecma-international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5322
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Galiegue, et al. Expires August 5, 2013 [Page 23]

Internet-Draft JSON Schema February 2013

Appendix A. ChangeLog

draft-00

 * Initial draft.

 * Salvaged from draft v3.

 * Redefine the "required" keyword.

 * Remove "extends", "disallow"

 * Add "anyOf", "allOf", "oneOf", "not", "definitions",
 "minProperties", "maxProperties".

 * "dependencies" member values can no longer be single strings;
 at least one element is required in a property dependency
 array.

 * Rename "divisibleBy" to "multipleOf".

 * "type" arrays can no longer have schemas; remove "any" as a
 possible value.

 * Rework the "format" section; make support optional.

 * "format": remove attributes "phone", "style", "color"; rename
 "ip-address" to "ipv4"; add references for all attributes.

 * Provide algorithms to calculate schema(s) for array/object
 instances.

 * Add interoperability considerations.

Authors' Addresses

 Francis Galiegue (editor)

 EMail: fgaliegue@gmail.com

https://datatracker.ietf.org/doc/html/draft-00

Galiegue, et al. Expires August 5, 2013 [Page 24]

Internet-Draft JSON Schema February 2013

 Kris Zyp
 SitePen (USA)
 530 Lytton Avenue
 Palo Alto, CA 94301
 USA

 Phone: +1 650 968 8787
 EMail: kris@sitepen.com

 Gary Court
 Calgary, AB
 Canada

 EMail: gary.court@gmail.com

Galiegue, et al. Expires August 5, 2013 [Page 25]

