
Network Working Group R. Fielding
Internet-Draft Adobe Systems Incorporated
Intended status: Informational M. Nottingham
Expires: March 27, 2016 September 24, 2015

The Key HTTP Response Header Field
draft-fielding-http-key-03

Abstract

 The 'Key' header field for HTTP responses allows an origin server to
 describe the secondary cache key ([RFC7234], section 4.1) for a
 resource, by conveying what is effectively a short algorithm that can
 be used upon later requests to determine if a stored response is
 reusable for a given request.

 Key has the advantage of avoiding an additional round trip for
 validation whenever a new request differs slightly, but not
 significantly, from prior requests.

 Key also informs user agents of the request characteristics that
 might result in different content, which can be useful if the user
 agent is not sending request header fields in order to reduce the
 risk of fingerprinting.

Note to Readers

 The issues list for this draft can be found at
https://github.com/mnot/I-D/labels/key .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2016.

Fielding & Nottingham Expires March 27, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1
https://github.com/mnot/I-D/labels/key
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft The Key HTTP Response Header Field September 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Examples . 3
1.2. Notational Conventions 4

2. The "Key" Response Header Field 4
2.1. Relationship with Vary 5
2.2. Calculating a Secondary Cache Key 6
2.2.1. Creating a Header Field Value 8
2.2.2. Failing Parameter Processing 9

2.3. Key Parameters . 9
2.3.1. div . 9
2.3.2. partition . 10
2.3.3. match . 11
2.3.4. substr . 12
2.3.5. param . 13

3. IANA Considerations . 15
3.1. Procedure . 15
3.2. Registrations . 15

4. Security Considerations 15
5. References . 16
5.1. Normative References 16
5.2. Informative References 16

Appendix A. Acknowledgements 17
 Authors' Addresses . 17

1. Introduction

 In HTTP caching [RFC7234], the Vary response header field effectively
 modifies the key used to store and access a response to include
 information from the request's headers. This "secondary cache key"
 allows proactive content negotiation [RFC7231] to work with caches.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7231

Fielding & Nottingham Expires March 27, 2016 [Page 2]

Internet-Draft The Key HTTP Response Header Field September 2015

 Vary's operation is generic; it works well when caches understand the
 semantics of the selecting headers. For example, the Accept-Language
 request header field has a well-defined syntax for expressing the
 client's preferences; a cache that understands this header field can
 select the appropriate response (based upon its Content-Language
 header field) and serve it to a client, without any knowledge of the
 underlying resource.

 Vary does not work as well when the criteria for selecting a response
 are specific to the resource. For example, if the nature of the
 response depends upon the presence or absence of a particular Cookie
 ([RFC6265]) in a request, Vary doesn't have a mechanism to offer
 enough fine-grained, resource-specific information to aid a cache's
 selection of the appropriate response.

 This document defines a new response header field, "Key", that allows
 resources to describe the secondary cache key in a fine-grained,
 resource-specific manner, leading to improved cache efficiency when
 responses depend upon such headers.

1.1. Examples

 For example, this response header field:

 Key: cookie;param=_sess;param=ID

 indicates that the selected response depends upon the "_sess" and
 "ID" cookie values.

 This Key:

 Key: user-agent;substr=MSIE

 indicates that there are two possible secondary cache keys for this
 resource; one for requests whose User-Agent header field contains
 "MSIE", and another for those that don't.

 A more complex example:

 Key: user-agent;substr=MSIE;Substr="mobile", Cookie;param="ID"

 indicates that the selected response depends on the presence of two
 strings in the User-Agent request header field, as well as the value
 of the "ID" cookie request header field.

https://datatracker.ietf.org/doc/html/rfc6265

Fielding & Nottingham Expires March 27, 2016 [Page 3]

Internet-Draft The Key HTTP Response Header Field September 2015

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234] (including the DQUOTE rule), and the list rule extension
 defined in [RFC7230], Section 7. It includes by reference the field-
 name, quoted-string and quoted-pair rules from that document, and the
 parameter rule from [RFC7231].

2. The "Key" Response Header Field

 The "Key" response header field describes the portions of the request
 that the resource currently uses to select representations.

 As such, its semantics are similar to the "Vary" response header
 field, but it allows more fine-grained description, using "key
 parameters".

 Caches can use this information as part of determining whether a
 stored response can be used to satisfy a given request. When a cache
 knows and fully understands the Key header field for a given
 resource, it MAY ignore the Vary response header field in any stored
 responses for it.

 Additionally, user agents can use Key to discover if additional
 request header fields might influence the resource's selection of
 responses.

 The Key field-value is a comma-delimited list of selecting header
 fields (similar to Vary), with zero to many parameters each,
 delimited by semicolons. Whitespace is not allowed in the field-
 value between each field-name and its parameter set.

 Key = 1#field-name *(";" parameter)

 Note that, as per [RFC7231], parameter names are case-insensitive,
 and parameter values can be double-quoted strings (potentially with
 ""-escaped characters inside).

 The following header fields have the same effect:

 Vary: Accept-Encoding, Cookie
 Key: Accept-Encoding, Cookie

 However, Key's use of parameters allows:

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231

Fielding & Nottingham Expires March 27, 2016 [Page 4]

Internet-Draft The Key HTTP Response Header Field September 2015

 Key: Accept-Encoding, Cookie;param=foo

 to indicate that the secondary cache key depends upon the Accept-
 Encoding header field and the "foo" Cookie.

 One important difference between Vary and Key is how they are
 applied. Vary is specified to be specific to the response it occurs
 within, whereas Key is specific to the resource (as identified by the
 request URL) it is associated with. The most recent key you receive
 for a given resource is applicable to all responses from that
 resource.

 This difference allows more efficient implementation (and reflects
 practices that many caches use in implementing Vary already).

 This specification defines a selection of Key parameters to address
 common use cases such as selection upon individual Cookie header
 fields, User-Agent substrings and numerical ranges. Future
 parameters may define further capabilities.

2.1. Relationship with Vary

 Origin servers SHOULD still send Vary when using Key, to ensure
 backwards compatibility.

 For example,

 Vary: User-Agent
 Key: User-Agent;substr="mozilla"

 Note that, in some cases, it may be better to explicitly use "Vary:
 *" if clients and caches don't have any practical way to use the Vary
 header field's value. For example,

 Vary: *
 Key: Cookie;param="ID"

 Except when Vary: * is used, the set of headers used in Key SHOULD
 reflect the same request header fields as Vary does, even if they
 don't have parameters. For example,

 Vary: Accept-Encoding, User-Agent
 Key: Accept-Encoding, User-Agent;substr="mozilla"

 Here, Accept-Encoding is included in Key without parameters; caches
 MAY treat these as they do values in the Vary header, relying upon
 knowledge of their generic semantics to select an appropriate
 response.

Fielding & Nottingham Expires March 27, 2016 [Page 5]

Internet-Draft The Key HTTP Response Header Field September 2015

2.2. Calculating a Secondary Cache Key

 When used by a cache to determine whether a stored response can be
 used to satisfy a presented request, each field-name in Key
 identifies a potential request header, just as with the Vary response
 header field.

 However, each of these can have zero to many key parameters that
 change how the response selection process (as defined in [RFC7234],
 Section 4.3)) works.

 In particular, when a cache fully implements this specification, it
 creates a secondary cache key for every request by following the
 instructions in the Key header field, ignoring the Vary header for
 this purpose.

 Then, when a new request is presented, the secondary cache key
 generated for that request can be compared to the stored one to find
 the appropriate response, to determine if it can be selected.

 To generate a secondary cache key for a given request (including that
 which is stored with a response) using Key, the following steps are
 taken:

 1. If the Key header field is not present on the most recent
 cacheable (as per [RFC7234], Section 3)) response seen for the
 resource, abort this algorithm (i.e., fall back to using Vary to
 determine the secondary cache key).

 2. Let "key_value" be the most recently seen Key header field value
 for the resource, as the result of Creating a Header Field Value
 (Section 2.2.1).

 3. Let "secondary_key" be an empty string.

 4. Create "key_list" by splitting "key_value" on "," characters.

 5. For "key_item" in "key_list":

 1. Remove any leading and trailing WSP from "key_item".

 2. If "key_item" does not contain a ";" character, fail
 parameter processing (Section 2.2.2) and skip to the next
 "key_item".

 3. Let "field_name" be the string before the first ";" character
 in "key_item".

https://datatracker.ietf.org/doc/html/rfc7234#section-4.3
https://datatracker.ietf.org/doc/html/rfc7234#section-4.3
https://datatracker.ietf.org/doc/html/rfc7234#section-3

Fielding & Nottingham Expires March 27, 2016 [Page 6]

Internet-Draft The Key HTTP Response Header Field September 2015

 4. Let "field_value" be the result of Creating a Header Field
 Value (Section 2.2.1) with "field_name" as the
 "target_field_name" and the request header list as
 "header_list".

 5. Let "parameters" be the string after the first ";" character
 in "key_item".

 6. Create "param_list" by splitting "parameters" on ";"
 characters, excepting ";" characters within quoted strings,
 as per [RFC7230] Section 3.2.6.

 7. For "parameter" in "param_list":

 1. If "parameter" does not contain a "=", fail parameter
 processing (Section 2.2.2) and skip to the next
 "key_item".

 2. Let "param_name" be the string before the first "="
 character in "parameter", case-normalized to lowercase.

 3. If "param_name" does not identify a Key parameter
 processing algorithm that is implemented, fail parameter
 processing (Section 2.2.2) and skip to the next
 "key_item".

 4. Let "param_value" be the string after the first "="
 character in "parameter".

 5. If the first and last characters of "param_value" are
 both DQUOTE:

 1. Remove the first and last characters of
 "param_value".

 2. Replace quoted-pairs within "param_value" with the
 octet following the backslash, as per [RFC7230]
 Section 3.2.6.

 6. If "param_value" does not conform to the syntax defined
 for it by the parameter definition, fail parameter
 processing Section 2.2.2 and skip to the next "key_item".

 7. Run the identified processing algorithm on "field_value"
 with the "param_value", and append the result to
 "secondary_key". If parameter processing fails

Section 2.2.2, skip to the next "key_item".

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Fielding & Nottingham Expires March 27, 2016 [Page 7]

Internet-Draft The Key HTTP Response Header Field September 2015

 8. Append a separator character (e.g., NULL) to
 "secondary_key".

 6. Return "secondary_key".

 Note that this specification does not require that exact algorithm to
 be implemented. However, implementations' observable behavior MUST
 be identical to running it. This includes parameter processing
 algorithms; implementations MAY use different internal artefacts for
 secondary cache keys, as long as the results are the same.

 Likewise, while the secondary cache key associated with both stored
 and presented requests is required to use the most recently seen Key
 header field for the resource in question, this can be achieved using
 a variety of implementation strategies, including (but not limited
 to):

 o Generating a new secondary cache key for every stored response
 associated with the resource upon each request.

 o Caching the secondary cache key with the stored request/response
 pair and re-generating it when the Key header field is observed to
 change.

 o Caching the secondary cache key with the stored response and
 invalidating the stored response(s) when the Key header field is
 observed to change.

2.2.1. Creating a Header Field Value

 Given a header field name "target_field_name" and "header_list", a
 list of ("field_name", "field_value") tuples:

 1. Let "target_field_values" be an empty list.

 2. For each ("field_name", "field_value") tuple in "header_list":

 1. If "field_name" does not match "target_field_name", skip to
 the next tuple.

 2. Strip leading and trailing WSP from "field_value" and append
 it to "target_field_values".

 3. If "target_field_values" is empty, return an empty string.

 4. Return the concatenation of "target_field_values", separating
 each with "," characters.

Fielding & Nottingham Expires March 27, 2016 [Page 8]

Internet-Draft The Key HTTP Response Header Field September 2015

2.2.2. Failing Parameter Processing

 In some cases, a key parameter cannot determine a secondary cache key
 corresponding to its nominated header field value. When this
 happens, Key processing needs to fail safely, so that the correct
 behavior is observed.

 When this happens, implementations MUST either behave as if the Key
 header was not present, or assure that the nominated header fields
 being compared match, as per [RFC7234], Section 4.1.

2.3. Key Parameters

 A Key parameter associates a name with a specific processing
 algorithm that takes two inputs; a HTTP header value "header_value"
 (as described in Section 2.2.1), and "parameter_value", a string that
 indicates how the identified header should be processed.

 The set of key parameters (and their associated processing
 algorithms) is extensible; see Section 3. This document defines the
 following key parameters:

2.3.1. div

 The "div" parameter normalizes positive integer header values into
 groups by dividing them by a configured value.

 Its value's syntax is:

 div = 1*DIGIT

 To process a set of header fields against a div parameter, follow
 these steps (or their equivalent):

 1. If "parameter_value" is "0", fail parameter processing
Section 2.2.2.

 2. If "header_value" is the empty string, return "none".

 3. If "header_value" contains a ",", remove it and all subsequent
 characters.

 4. Remove all WSP characters from "header_value".

 5. If "header_value" does not match the div ABNF rule, fail
 parameter processing (Section 2.2.2).

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Fielding & Nottingham Expires March 27, 2016 [Page 9]

Internet-Draft The Key HTTP Response Header Field September 2015

 6. Return the quotient of "header_value" / "parameter_value"
 (omitting the modulus).

 For example, the Key:

 Key: Bar;div=5

 indicates that the "Bar" header's field value should be partitioned
 into groups of 5. Thus, the following field values would be
 considered the same (because, divided by 5, they all result in 1):

 Bar: 1
 Bar: 3 , 42
 Bar: 4, 1

 whereas these would be considered to be in a different group
 (because, divided by 5, they all result in 2);

 Bar: 12
 Bar: 10
 Bar: 14, 1

2.3.2. partition

 The "partition" parameter normalizes positive numeric header values
 into pre-defined segments.

 Its value's syntax is:

 partition = [segment] *(":" [segment])
 segment = [0*DIGIT "."] 1*DIGIT

 To process a set of header fields against a partition parameter,
 follow these steps (or their equivalent):

 1. If "header_value" is the empty string, return "none".

 2. If "header_value" contains a ",", remove it and all subsequent
 characters.

 3. Remove all WSP characters from "header_value".

 4. If "header_value" does not match the segment ABNF rule, fail
 parameter processing (Section 2.2.2).

 5. Let "segment_id" be 0.

Fielding & Nottingham Expires March 27, 2016 [Page 10]

Internet-Draft The Key HTTP Response Header Field September 2015

 6. Create a list "segment_list" by splitting "parameter_value" on
 ":" characters.

 7. For each "segment_value" in "segment_list":

 1. If "header_value" is less than "segment_value" when they are
 numerically compared, skip to step 7.

 2. Increment "segment_id" by 1.

 8. Return "segment_id".

 For example, the Key:

 Key: Foo;partition=20:30:40

 indicates that the "Foo" header's field value should be divided into
 four segments:

 o less than 20

 o 20 to less than 30

 o 30 to less than 40

 o forty or greater

 Thus, the following headers would all be normalized to the first
 segment:

 Foo: 1
 Foo: 0
 Foo: 4, 54
 Foo: 19.9

 whereas the following would fall into the second segment:

 Foo: 20
 Foo: 29.999
 Foo: 24 , 10

2.3.3. match

 The "match" parameter is used to determine if an exact value occurs
 in a list of header values. It is case-sensitive.

 Its value's syntax is:

Fielding & Nottingham Expires March 27, 2016 [Page 11]

Internet-Draft The Key HTTP Response Header Field September 2015

 match = (token / quoted-string)

 To process a set of header fields against a match parameter, follow
 these steps (or their equivalent):

 1. If "header_value" is the empty string, return "none".

 2. Create "header_list" by splitting "header_value" on ","
 characters.

 3. For each "header_item" in "header_list":

 1. Remove leading and trailing WSP characters in "header_item".

 2. If the value of "header_item" is character-for-character
 identical to "parameter_value", return "1".

 4. Return "0".

 For example, the Key:

 Key: Baz;match="charlie"

 Would return "1" for the following header field values:

 Baz: charlie
 Baz: foo, charlie
 Baz: bar, charlie , abc

 and "0" for these:

 Baz: theodore
 Baz: joe, sam
 Baz: "charlie"
 Baz: Charlie
 Baz: cha rlie
 Baz: charlie2

2.3.4. substr

 The "substr" parameter is used to determine if a value occurs as a
 substring of an item in a list of header values. It is case-
 sensitive.

 Its value's syntax is:

 substr = (token / quoted-string)

Fielding & Nottingham Expires March 27, 2016 [Page 12]

Internet-Draft The Key HTTP Response Header Field September 2015

 To process a set of header fields against a substr parameter, follow
 these steps (or their equivalent):

 1. If "header_value" is the empty string, return "none".

 2. Create "header_list" by splitting "header_value" on ","
 characters.

 3. For each "header_item" in "header_list":

 1. Remove leading and trailing WSP characters in "header_item".

 2. If the value of "parameter_value" is character-for-character
 present as a substring of "header_value", return "1".

 4. Return "0".

 For example, the Key:

 Key: Abc;substr=bennet

 Would return "1" for the following header field values:

 Abc: bennet
 Abc: foo, bennet
 Abc: abennet00
 Abc: bar, 99bennet , abc
 Abc: "bennet"

 and "0" for these:

 Abc: theodore
 Abc: joe, sam
 Abc: Bennet
 Abc: Ben net

2.3.5. param

 The "param" parameter considers the request header field as a list of
 key=value parameters, and uses the nominated key's value as the
 secondary cache key.

 Its value's syntax is:

 param = (token / quoted-string)

 To process a list of header fields against a param parameter, follow
 these steps (or their equivalent):

Fielding & Nottingham Expires March 27, 2016 [Page 13]

Internet-Draft The Key HTTP Response Header Field September 2015

 1. Let "header_list" be an empty list.

 2. Create "header_list_tmp1" by splitting header_value on ","
 characters.

 3. For each "header_item_tmp1" in "header_list_tmp1":

 1. Create "header_list_tmp2" by splitting "header_item_tmp1" on
 ";" characters.

 2. For each "header_item_tmp2" in "header_list_tmp2":

 1. Remove leading and trailing WSP from "header_item_tmp2".

 2. Append "header_item_tmp2" to header_list.

 4. For each "header_item" in "header_list":

 1. If the "=" character does not occur within "header_item",
 skip to the next "header_item".

 2. Let "item_name" be the string occurring before the first "="
 character in "header_item".

 3. If "item_name" does not case-insensitively match
 "parameter_value", skip to the next "header_item".

 4. Return the string occurring after the first "=" character in
 "header_item".

 5. Return the empty string.

 Note that steps 2 and 3 accommodate semicolon-separated values, so
 that it can be used with the Cookie request header field.

 For example, the Key:

 Key: Def;param=liam

 The following headers would return the string (surrounded in single
 quotes) indicated:

 Def: liam=123 // '123'
 Def: mno=456 // ''
 Def: // ''
 Def: abc=123; liam=890 // '890'
 Def: liam="678" // '"678"'

Fielding & Nottingham Expires March 27, 2016 [Page 14]

Internet-Draft The Key HTTP Response Header Field September 2015

3. IANA Considerations

 This specification defines the HTTP Key Parameter Registry,
 maintained at http://www.iana.org/assignments/http-parameters/http-

parameters.xhtml#key .

3.1. Procedure

 Key Parameter registrations MUST include the following fields:

 o Parameter Name: [name]

 o Reference: [Pointer to specification text]

 Values to be added to this namespace require IETF Review (see
Section 4.1 of [RFC5226]) and MUST conform to the purpose of content

 coding defined in this section.

3.2. Registrations

 This specification makes the following entries in the HTTP Key
 Parameter Registry:

 +----------------+---------------+
 | Parameter Name | Reference |
 +----------------+---------------+
 | div | Section 2.3.1 |
 | partition | Section 2.3.2 |
 | match | Section 2.3.3 |
 | substr | Section 2.3.4 |
 | param | Section 2.3.5 |
 +----------------+---------------+

4. Security Considerations

 Because Key is an alternative to Vary, it is possible for caches to
 behave differently based upon whether they implement Key. Likewise,
 because support for any one Key parameter is not required, it is
 possible for different implementations of Key to behave differently.
 In both cases, an attacker might be able to exploit these
 differences.

 This risk is mitigated by the requirement to fall back to Vary when
 unsupported parameters are encountered, coupled with the requirement
 that servers that use Key also include a relevant Vary header.

 An attacker with the ability to inject response headers might be able
 to perform a cache poisoning attack that tailors a response to a

http://www.iana.org/assignments/http-parameters/http-parameters.xhtml#key
http://www.iana.org/assignments/http-parameters/http-parameters.xhtml#key
https://datatracker.ietf.org/doc/html/rfc5226#section-4.1

Fielding & Nottingham Expires March 27, 2016 [Page 15]

Internet-Draft The Key HTTP Response Header Field September 2015

 specific user (e.g., by Keying to a Cookie that's specific to them).
 While the attack is still possible without Key, the ability to tailor
 is new.

 When implemented, Key might result in a larger number of stored
 responses for a given resource in caches; this, in turn, might be
 used to create an attack upon the cache itself. Good cache
 replacement algorithms and denial of service monitoring in cache
 implementations are reasonable mitigations against this risk.

5. References

5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

5.2. Informative References

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc6265
http://www.rfc-editor.org/info/rfc6265

Fielding & Nottingham Expires March 27, 2016 [Page 16]

Internet-Draft The Key HTTP Response Header Field September 2015

Appendix A. Acknowledgements

 Thanks to Ilya Grigorik, Amos Jeffries and Yoav Weiss for their
 feedback.

Authors' Addresses

 Roy T. Fielding
 Adobe Systems Incorporated

 Email: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Mark Nottingham

 Email: mnot@mnot.net
 URI: http://www.mnot.net/

http://roy.gbiv.com/
http://www.mnot.net/

Fielding & Nottingham Expires March 27, 2016 [Page 17]

