
Network Working Group R. Fielding, Ed.
Internet-Draft Day Software
Obsoletes: 2068, 2616, 2617 J. Gettys
(if approved) J. Mogul
Intended status: Standards Track HP
Expires: May 14, 2008 H. Frystyk
 Microsoft
 L. Masinter
 Adobe Systems
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 November 11, 2007

HTTP/1.1, part 1: URIs, Connections, and Message Parsing
draft-fielding-http-p1-messaging-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 14, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Fielding, et al. Expires May 14, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft HTTP/1.1 November 2007

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World Wide Web global
 information initiative since 1990. This document is Part 1 of the
 eight-part specification that defines the protocol referred to as
 "HTTP/1.1" and, taken together, updates RFC 2616 and RFC 2617. Part
 1 provides an overview of HTTP and its associated terminology,
 defines the "http" and "https" Uniform Resource Identifier (URI)
 schemes, defines the generic message syntax and parsing requirements
 for HTTP message frames, and describes general security concerns for
 implementations.

Table of Contents

1. Introduction . 4
1.1. Purpose . 4
1.2. Requirements . 5
1.3. Terminology . 5
1.4. Overall Operation . 8

2. Notational Conventions and Generic Grammar 10
2.1. Augmented BNF . 10
2.2. Basic Rules . 12

3. Protocol Parameters . 14
3.1. HTTP Version . 14
3.2. Uniform Resource Identifiers 15
3.2.1. General Syntax . 15
3.2.2. http URL . 16
3.2.3. URI Comparison . 16

3.3. Date/Time Formats . 17
3.3.1. Full Date . 17

3.4. Transfer Codings . 18
3.4.1. Chunked Transfer Coding 19

4. HTTP Message . 21
4.1. Message Types . 21
4.2. Message Headers . 22
4.3. Message Body . 23
4.4. Message Length . 24
4.5. General Header Fields 25

5. Request . 25
5.1. Request-Line . 26
5.1.1. Method . 26
5.1.2. Request-URI . 26

5.2. The Resource Identified by a Request 28
6. Response . 28
6.1. Status-Line . 29

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617

Fielding, et al. Expires May 14, 2008 [Page 2]

Internet-Draft HTTP/1.1 November 2007

6.1.1. Status Code and Reason Phrase 29
7. Connections . 29
7.1. Persistent Connections 30
7.1.1. Purpose . 30
7.1.2. Overall Operation 30
7.1.3. Proxy Servers . 32
7.1.4. Practical Considerations 32

7.2. Message Transmission Requirements 33
7.2.1. Persistent Connections and Flow Control 33
7.2.2. Monitoring Connections for Error Status Messages . . . 33
7.2.3. Use of the 100 (Continue) Status 34

 7.2.4. Client Behavior if Server Prematurely Closes
 Connection . 36

8. Header Field Definitions 36
8.1. Connection . 37
8.2. Content-Length . 38
8.3. Date . 38
8.3.1. Clockless Origin Server Operation 39

8.4. Host . 39
8.5. TE . 40
8.6. Trailer . 41
8.7. Transfer-Encoding . 42
8.8. Upgrade . 42
8.9. Via . 43

9. IANA Considerations . 45
10. Security Considerations 45
10.1. Personal Information 45
10.2. Abuse of Server Log Information 45
10.3. Attacks Based On File and Path Names 46
10.4. DNS Spoofing . 46
10.5. Proxies and Caching 47
10.6. Denial of Service Attacks on Proxies 47

11. Acknowledgments . 48
12. References . 49
Appendix A. Internet Media Type message/http and

 application/http 52
Appendix B. Tolerant Applications 53
Appendix C. Conversion of Date Formats 54
Appendix D. Compatibility with Previous Versions 54
D.1. Changes from HTTP/1.0 55

 D.1.1. Changes to Simplify Multi-homed Web Servers and
 Conserve IP Addresses 55

D.2. Compatibility with HTTP/1.0 Persistent Connections 56
D.3. Changes from RFC 2068 56

 Index . 57
 Authors' Addresses . 60
 Intellectual Property and Copyright Statements 63

https://datatracker.ietf.org/doc/html/rfc2068

Fielding, et al. Expires May 14, 2008 [Page 3]

Internet-Draft HTTP/1.1 November 2007

1. Introduction

 This document will define aspects of HTTP related to overall network
 operation, message framing, interaction with transport protocols, and
 URI schemes. Right now it only includes the extracted relevant
 sections of [RFC2616] and [RFC2617].

1.1. Purpose

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World-Wide Web global
 information initiative since 1990. The first version of HTTP,
 referred to as HTTP/0.9, was a simple protocol for raw data transfer
 across the Internet. HTTP/1.0, as defined by RFC 1945 [RFC1945],
 improved the protocol by allowing messages to be in the format of
 MIME-like messages, containing metainformation about the data
 transferred and modifiers on the request/response semantics.
 However, HTTP/1.0 does not sufficiently take into consideration the
 effects of hierarchical proxies, caching, the need for persistent
 connections, or virtual hosts. In addition, the proliferation of
 incompletely-implemented applications calling themselves "HTTP/1.0"
 has necessitated a protocol version change in order for two
 communicating applications to determine each other's true
 capabilities.

 This specification defines the protocol referred to as "HTTP/1.1".
 This protocol includes more stringent requirements than HTTP/1.0 in
 order to ensure reliable implementation of its features.

 Practical information systems require more functionality than simple
 retrieval, including search, front-end update, and annotation. HTTP
 allows an open-ended set of methods and headers that indicate the
 purpose of a request [RFC2324]. It builds on the discipline of
 reference provided by the Uniform Resource Identifier (URI)
 [RFC1630], as a location (URL) [RFC1738] or name (URN) [RFC1737], for
 indicating the resource to which a method is to be applied. Messages
 are passed in a format similar to that used by Internet mail [RFC822]
 as defined by the Multipurpose Internet Mail Extensions (MIME)
 [RFC2045].

 HTTP is also used as a generic protocol for communication between
 user agents and proxies/gateways to other Internet systems, including
 those supported by the SMTP [RFC821], NNTP [RFC3977], FTP [RFC959],
 Gopher [RFC1436], and WAIS [WAIS] protocols. In this way, HTTP
 allows basic hypermedia access to resources available from diverse
 applications.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2324
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1737
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc3977
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1436

Fielding, et al. Expires May 14, 2008 [Page 4]

Internet-Draft HTTP/1.1 November 2007

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocols it
 implements. An implementation that satisfies all the MUST or
 REQUIRED level and all the SHOULD level requirements for its
 protocols is said to be "unconditionally compliant"; one that
 satisfies all the MUST level requirements but not all the SHOULD
 level requirements for its protocols is said to be "conditionally
 compliant."

1.3. Terminology

 This specification uses a number of terms to refer to the roles
 played by participants in, and objects of, the HTTP communication.

 connection

 A transport layer virtual circuit established between two programs
 for the purpose of communication.

 message

 The basic unit of HTTP communication, consisting of a structured
 sequence of octets matching the syntax defined in Section 4 and
 transmitted via the connection.

 request

 An HTTP request message, as defined in Section 5.

 response

 An HTTP response message, as defined in Section 6.

 resource

 A network data object or service that can be identified by a URI,
 as defined in Section 3.2. Resources may be available in multiple
 representations (e.g. multiple languages, data formats, size, and
 resolutions) or vary in other ways.

 entity

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Fielding, et al. Expires May 14, 2008 [Page 5]

Internet-Draft HTTP/1.1 November 2007

 The information transferred as the payload of a request or
 response. An entity consists of metainformation in the form of
 entity-header fields and content in the form of an entity-body, as
 described in [Part 3].

 representation

 An entity included with a response that is subject to content
 negotiation, as described in [Part 3]. There may exist multiple
 representations associated with a particular response status.

 content negotiation

 The mechanism for selecting the appropriate representation when
 servicing a request, as described in [Part 3]. The representation
 of entities in any response can be negotiated (including error
 responses).

 variant

 A resource may have one, or more than one, representation(s)
 associated with it at any given instant. Each of these
 representations is termed a `variant'. Use of the term `variant'
 does not necessarily imply that the resource is subject to content
 negotiation.

 client

 A program that establishes connections for the purpose of sending
 requests.

 user agent

 The client which initiates a request. These are often browsers,
 editors, spiders (web-traversing robots), or other end user tools.

 server

 An application program that accepts connections in order to
 service requests by sending back responses. Any given program may
 be capable of being both a client and a server; our use of these
 terms refers only to the role being performed by the program for a
 particular connection, rather than to the program's capabilities
 in general. Likewise, any server may act as an origin server,
 proxy, gateway, or tunnel, switching behavior based on the nature
 of each request.

 origin server

Fielding, et al. Expires May 14, 2008 [Page 6]

Internet-Draft HTTP/1.1 November 2007

 The server on which a given resource resides or is to be created.

 proxy

 An intermediary program which acts as both a server and a client
 for the purpose of making requests on behalf of other clients.
 Requests are serviced internally or by passing them on, with
 possible translation, to other servers. A proxy MUST implement
 both the client and server requirements of this specification. A
 "transparent proxy" is a proxy that does not modify the request or
 response beyond what is required for proxy authentication and
 identification. A "non-transparent proxy" is a proxy that
 modifies the request or response in order to provide some added
 service to the user agent, such as group annotation services,
 media type transformation, protocol reduction, or anonymity
 filtering. Except where either transparent or non-transparent
 behavior is explicitly stated, the HTTP proxy requirements apply
 to both types of proxies.

 gateway

 A server which acts as an intermediary for some other server.
 Unlike a proxy, a gateway receives requests as if it were the
 origin server for the requested resource; the requesting client
 may not be aware that it is communicating with a gateway.

 tunnel

 An intermediary program which is acting as a blind relay between
 two connections. Once active, a tunnel is not considered a party
 to the HTTP communication, though the tunnel may have been
 initiated by an HTTP request. The tunnel ceases to exist when
 both ends of the relayed connections are closed.

 cache

 A program's local store of response messages and the subsystem
 that controls its message storage, retrieval, and deletion. A
 cache stores cacheable responses in order to reduce the response
 time and network bandwidth consumption on future, equivalent
 requests. Any client or server may include a cache, though a
 cache cannot be used by a server that is acting as a tunnel.

 cacheable

 A response is cacheable if a cache is allowed to store a copy of
 the response message for use in answering subsequent requests.
 The rules for determining the cacheability of HTTP responses are

Fielding, et al. Expires May 14, 2008 [Page 7]

Internet-Draft HTTP/1.1 November 2007

 defined in [Part 6]. Even if a resource is cacheable, there may
 be additional constraints on whether a cache can use the cached
 copy for a particular request.

 upstream/downstream

 Upstream and downstream describe the flow of a message: all
 messages flow from upstream to downstream.

 inbound/outbound

 Inbound and outbound refer to the request and response paths for
 messages: "inbound" means "traveling toward the origin server",
 and "outbound" means "traveling toward the user agent"

1.4. Overall Operation

 The HTTP protocol is a request/response protocol. A client sends a
 request to the server in the form of a request method, URI, and
 protocol version, followed by a MIME-like message containing request
 modifiers, client information, and possible body content over a
 connection with a server. The server responds with a status line,
 including the message's protocol version and a success or error code,
 followed by a MIME-like message containing server information, entity
 metainformation, and possible entity-body content. The relationship
 between HTTP and MIME is described in [Part 3].

 Most HTTP communication is initiated by a user agent and consists of
 a request to be applied to a resource on some origin server. In the
 simplest case, this may be accomplished via a single connection (v)
 between the user agent (UA) and the origin server (O).

 request chain ------------------------>
 UA -------------------v------------------- O
 <----------------------- response chain

 A more complicated situation occurs when one or more intermediaries
 are present in the request/response chain. There are three common
 forms of intermediary: proxy, gateway, and tunnel. A proxy is a
 forwarding agent, receiving requests for a URI in its absolute form,
 rewriting all or part of the message, and forwarding the reformatted
 request toward the server identified by the URI. A gateway is a
 receiving agent, acting as a layer above some other server(s) and, if
 necessary, translating the requests to the underlying server's
 protocol. A tunnel acts as a relay point between two connections
 without changing the messages; tunnels are used when the
 communication needs to pass through an intermediary (such as a
 firewall) even when the intermediary cannot understand the contents

Fielding, et al. Expires May 14, 2008 [Page 8]

Internet-Draft HTTP/1.1 November 2007

 of the messages.

 request chain -------------------------------------->
 UA -----v----- A -----v----- B -----v----- C -----v----- O
 <------------------------------------- response chain

 The figure above shows three intermediaries (A, B, and C) between the
 user agent and origin server. A request or response message that
 travels the whole chain will pass through four separate connections.
 This distinction is important because some HTTP communication options
 may apply only to the connection with the nearest, non-tunnel
 neighbor, only to the end-points of the chain, or to all connections
 along the chain. Although the diagram is linear, each participant
 may be engaged in multiple, simultaneous communications. For
 example, B may be receiving requests from many clients other than A,
 and/or forwarding requests to servers other than C, at the same time
 that it is handling A's request.

 Any party to the communication which is not acting as a tunnel may
 employ an internal cache for handling requests. The effect of a
 cache is that the request/response chain is shortened if one of the
 participants along the chain has a cached response applicable to that
 request. The following illustrates the resulting chain if B has a
 cached copy of an earlier response from O (via C) for a request which
 has not been cached by UA or A.

 request chain ---------->
 UA -----v----- A -----v----- B - - - - - - C - - - - - - O
 <--------- response chain

 Not all responses are usefully cacheable, and some requests may
 contain modifiers which place special requirements on cache behavior.
 HTTP requirements for cache behavior and cacheable responses are
 defined in [Part 6].

 In fact, there are a wide variety of architectures and configurations
 of caches and proxies currently being experimented with or deployed
 across the World Wide Web. These systems include national hierarchies
 of proxy caches to save transoceanic bandwidth, systems that
 broadcast or multicast cache entries, organizations that distribute
 subsets of cached data via CD-ROM, and so on. HTTP systems are used
 in corporate intranets over high-bandwidth links, and for access via
 PDAs with low-power radio links and intermittent connectivity. The
 goal of HTTP/1.1 is to support the wide diversity of configurations
 already deployed while introducing protocol constructs that meet the
 needs of those who build web applications that require high
 reliability and, failing that, at least reliable indications of
 failure.

Fielding, et al. Expires May 14, 2008 [Page 9]

Internet-Draft HTTP/1.1 November 2007

 HTTP communication usually takes place over TCP/IP connections. The
 default port is TCP 80 [RFC1700], but other ports can be used. This
 does not preclude HTTP from being implemented on top of any other
 protocol on the Internet, or on other networks. HTTP only presumes a
 reliable transport; any protocol that provides such guarantees can be
 used; the mapping of the HTTP/1.1 request and response structures
 onto the transport data units of the protocol in question is outside
 the scope of this specification.

 In HTTP/1.0, most implementations used a new connection for each
 request/response exchange. In HTTP/1.1, a connection may be used for
 one or more request/response exchanges, although connections may be
 closed for a variety of reasons (see Section 7.1).

2. Notational Conventions and Generic Grammar

2.1. Augmented BNF

 All of the mechanisms specified in this document are described in
 both prose and an augmented Backus-Naur Form (BNF) similar to that
 used by RFC 822 [RFC822]. Implementors will need to be familiar with
 the notation in order to understand this specification. The
 augmented BNF includes the following constructs:

 name = definition

 The name of a rule is simply the name itself (without any
 enclosing "<" and ">") and is separated from its definition by the
 equal "=" character. White space is only significant in that
 indentation of continuation lines is used to indicate a rule
 definition that spans more than one line. Certain basic rules are
 in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
 brackets are used within definitions whenever their presence will
 facilitate discerning the use of rule names.

 "literal"

 Quotation marks surround literal text. Unless stated otherwise,
 the text is case-insensitive.

 rule1 | rule2

 Elements separated by a bar ("|") are alternatives, e.g., "yes |
 no" will accept yes or no.

 (rule1 rule2)

https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Fielding, et al. Expires May 14, 2008 [Page 10]

Internet-Draft HTTP/1.1 November 2007

 Elements enclosed in parentheses are treated as a single element.
 Thus, "(elem (foo | bar) elem)" allows the token sequences "elem
 foo elem" and "elem bar elem".

 *rule

 The character "*" preceding an element indicates repetition. The
 full form is "<n>*<m>element" indicating at least <n> and at most
 <m> occurrences of element. Default values are 0 and infinity so
 that "*(element)" allows any number, including zero; "1*element"
 requires at least one; and "1*2element" allows one or two.

 [rule]

 Square brackets enclose optional elements; "[foo bar]" is
 equivalent to "*1(foo bar)".

 N rule

 Specific repetition: "<n>(element)" is equivalent to
 "<n>*<n>(element)"; that is, exactly <n> occurrences of (element).
 Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
 alphabetic characters.

 #rule

 A construct "#" is defined, similar to "*", for defining lists of
 elements. The full form is "<n>#<m>element" indicating at least
 <n> and at most <m> elements, each separated by one or more commas
 (",") and OPTIONAL linear white space (LWS). This makes the usual
 form of lists very easy; a rule such as

 (*LWS element *(*LWS "," *LWS element))

 can be shown as

 1#element

 Wherever this construct is used, null elements are allowed, but do
 not contribute to the count of elements present. That is,
 "(element), , (element) " is permitted, but counts as only two
 elements. Therefore, where at least one element is required, at
 least one non-null element MUST be present. Default values are 0
 and infinity so that "#element" allows any number, including zero;
 "1#element" requires at least one; and "1#2element" allows one or
 two.

 ; comment

Fielding, et al. Expires May 14, 2008 [Page 11]

Internet-Draft HTTP/1.1 November 2007

 A semi-colon, set off some distance to the right of rule text,
 starts a comment that continues to the end of line. This is a
 simple way of including useful notes in parallel with the
 specifications.

 implied *LWS

 The grammar described by this specification is word-based. Except
 where noted otherwise, linear white space (LWS) can be included
 between any two adjacent words (token or quoted-string), and
 between adjacent words and separators, without changing the
 interpretation of a field. At least one delimiter (LWS and/or
 separators) MUST exist between any two tokens (for the definition
 of "token" below), since they would otherwise be interpreted as a
 single token.

2.2. Basic Rules

 The following rules are used throughout this specification to
 describe basic parsing constructs. The US-ASCII coded character set
 is defined by ANSI X3.4-1986 [USASCII].

 OCTET = <any 8-bit sequence of data>
 CHAR = <any US-ASCII character (octets 0 - 127)>
 UPALPHA = <any US-ASCII uppercase letter "A".."Z">
 LOALPHA = <any US-ASCII lowercase letter "a".."z">
 ALPHA = UPALPHA | LOALPHA
 DIGIT = <any US-ASCII digit "0".."9">
 CTL = <any US-ASCII control character
 (octets 0 - 31) and DEL (127)>
 CR = <US-ASCII CR, carriage return (13)>
 LF = <US-ASCII LF, linefeed (10)>
 SP = <US-ASCII SP, space (32)>
 HT = <US-ASCII HT, horizontal-tab (9)>
 <"> = <US-ASCII double-quote mark (34)>

 HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
 protocol elements except the entity-body (see Appendix B for tolerant
 applications). The end-of-line marker within an entity-body is
 defined by its associated media type, as described in [Part 3].

 CRLF = CR LF

 HTTP/1.1 header field values can be folded onto multiple lines if the
 continuation line begins with a space or horizontal tab. All linear
 white space, including folding, has the same semantics as SP. A
 recipient MAY replace any linear white space with a single SP before
 interpreting the field value or forwarding the message downstream.

Fielding, et al. Expires May 14, 2008 [Page 12]

Internet-Draft HTTP/1.1 November 2007

 LWS = [CRLF] 1*(SP | HT)

 The TEXT rule is only used for descriptive field contents and values
 that are not intended to be interpreted by the message parser. Words
 of *TEXT MAY contain characters from character sets other than ISO-
 8859-1 [ISO-8859] only when encoded according to the rules of RFC

2047 [RFC2047].

 TEXT = <any OCTET except CTLs,
 but including LWS>

 A CRLF is allowed in the definition of TEXT only as part of a header
 field continuation. It is expected that the folding LWS will be
 replaced with a single SP before interpretation of the TEXT value.

 Hexadecimal numeric characters are used in several protocol elements.

 HEX = "A" | "B" | "C" | "D" | "E" | "F"
 | "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

 Many HTTP/1.1 header field values consist of words separated by LWS
 or special characters. These special characters MUST be in a quoted
 string to be used within a parameter value (as defined in

Section 3.4).

 token = 1*<any CHAR except CTLs or separators>
 separators = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

 Comments can be included in some HTTP header fields by surrounding
 the comment text with parentheses. Comments are only allowed in
 fields containing "comment" as part of their field value definition.
 In all other fields, parentheses are considered part of the field
 value.

 comment = "(" *(ctext | quoted-pair | comment) ")"
 ctext = <any TEXT excluding "(" and ")">

 A string of text is parsed as a single word if it is quoted using
 double-quote marks.

 quoted-string = (<"> *(qdtext | quoted-pair) <">)
 qdtext = <any TEXT except <">>

 The backslash character ("\") MAY be used as a single-character
 quoting mechanism only within quoted-string and comment constructs.

https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047

Fielding, et al. Expires May 14, 2008 [Page 13]

Internet-Draft HTTP/1.1 November 2007

 quoted-pair = "\" CHAR

3. Protocol Parameters

3.1. HTTP Version

 HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
 of the protocol. The protocol versioning policy is intended to allow
 the sender to indicate the format of a message and its capacity for
 understanding further HTTP communication, rather than the features
 obtained via that communication. No change is made to the version
 number for the addition of message components which do not affect
 communication behavior or which only add to extensible field values.
 The <minor> number is incremented when the changes made to the
 protocol add features which do not change the general message parsing
 algorithm, but which may add to the message semantics and imply
 additional capabilities of the sender. The <major> number is
 incremented when the format of a message within the protocol is
 changed. See RFC 2145 [RFC2145] for a fuller explanation.

 The version of an HTTP message is indicated by an HTTP-Version field
 in the first line of the message. HTTP-Version is case-sensitive.

 HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

 Note that the major and minor numbers MUST be treated as separate
 integers and that each MAY be incremented higher than a single digit.
 Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is
 lower than HTTP/12.3. Leading zeros MUST be ignored by recipients
 and MUST NOT be sent.

 An application that sends a request or response message that includes
 HTTP-Version of "HTTP/1.1" MUST be at least conditionally compliant
 with this specification. Applications that are at least
 conditionally compliant with this specification SHOULD use an HTTP-
 Version of "HTTP/1.1" in their messages, and MUST do so for any
 message that is not compatible with HTTP/1.0. For more details on
 when to send specific HTTP-Version values, see RFC 2145 [RFC2145].

 The HTTP version of an application is the highest HTTP version for
 which the application is at least conditionally compliant.

 Proxy and gateway applications need to be careful when forwarding
 messages in protocol versions different from that of the application.
 Since the protocol version indicates the protocol capability of the
 sender, a proxy/gateway MUST NOT send a message with a version
 indicator which is greater than its actual version. If a higher

https://datatracker.ietf.org/doc/html/rfc2145
https://datatracker.ietf.org/doc/html/rfc2145
https://datatracker.ietf.org/doc/html/rfc2145
https://datatracker.ietf.org/doc/html/rfc2145

Fielding, et al. Expires May 14, 2008 [Page 14]

Internet-Draft HTTP/1.1 November 2007

 version request is received, the proxy/gateway MUST either downgrade
 the request version, or respond with an error, or switch to tunnel
 behavior.

 Due to interoperability problems with HTTP/1.0 proxies discovered
 since the publication of RFC 2068 [RFC2068], caching proxies MUST,
 gateways MAY, and tunnels MUST NOT upgrade the request to the highest
 version they support. The proxy/gateway's response to that request
 MUST be in the same major version as the request.

 Note: Converting between versions of HTTP may involve modification
 of header fields required or forbidden by the versions involved.

3.2. Uniform Resource Identifiers

 URIs have been known by many names: WWW addresses, Universal Document
 Identifiers, Universal Resource Identifiers [RFC1630], and finally
 the combination of Uniform Resource Locators (URL) [RFC1738] and
 Names (URN) [RFC1737]. As far as HTTP is concerned, Uniform Resource
 Identifiers are simply formatted strings which identify--via name,
 location, or any other characteristic--a resource.

3.2.1. General Syntax

 URIs in HTTP can be represented in absolute form or relative to some
 known base URI [RFC1808], depending upon the context of their use.
 The two forms are differentiated by the fact that absolute URIs
 always begin with a scheme name followed by a colon. For definitive
 information on URL syntax and semantics, see "Uniform Resource
 Identifiers (URI): Generic Syntax and Semantics," RFC 2396 [RFC2396]
 (which replaces RFCs 1738 [RFC1738] and RFC 1808 [RFC1808]). This
 specification adopts the definitions of "URI-reference",
 "absoluteURI", "relativeURI", "port", "host","abs_path", "rel_path",
 and "authority" from that specification.

 The HTTP protocol does not place any a priori limit on the length of
 a URI. Servers MUST be able to handle the URI of any resource they
 serve, and SHOULD be able to handle URIs of unbounded length if they
 provide GET-based forms that could generate such URIs. A server
 SHOULD return 414 (Request-URI Too Long) status if a URI is longer
 than the server can handle (see [Part 2]).

 Note: Servers ought to be cautious about depending on URI lengths
 above 255 bytes, because some older client or proxy
 implementations might not properly support these lengths.

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1737
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc1808

Fielding, et al. Expires May 14, 2008 [Page 15]

Internet-Draft HTTP/1.1 November 2007

3.2.2. http URL

 The "http" scheme is used to locate network resources via the HTTP
 protocol. This section defines the scheme-specific syntax and
 semantics for http URLs.

 http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

 If the port is empty or not given, port 80 is assumed. The semantics
 are that the identified resource is located at the server listening
 for TCP connections on that port of that host, and the Request-URI
 for the resource is abs_path (Section 5.1.2). The use of IP
 addresses in URLs SHOULD be avoided whenever possible (see RFC 1900
 [RFC1900]). If the abs_path is not present in the URL, it MUST be
 given as "/" when used as a Request-URI for a resource
 (Section 5.1.2). If a proxy receives a host name which is not a
 fully qualified domain name, it MAY add its domain to the host name
 it received. If a proxy receives a fully qualified domain name, the
 proxy MUST NOT change the host name.

3.2.3. URI Comparison

 When comparing two URIs to decide if they match or not, a client
 SHOULD use a case-sensitive octet-by-octet comparison of the entire
 URIs, with these exceptions:

 o A port that is empty or not given is equivalent to the default
 port for that URI-reference;

 o Comparisons of host names MUST be case-insensitive;

 o Comparisons of scheme names MUST be case-insensitive;

 o An empty abs_path is equivalent to an abs_path of "/".

 Characters other than those in the "reserved" set (see RFC 2396
 [RFC2396]) are equivalent to their ""%" HEX HEX" encoding.

 For example, the following three URIs are equivalent:

http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html

https://datatracker.ietf.org/doc/html/rfc1900
https://datatracker.ietf.org/doc/html/rfc1900
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2396
http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html

Fielding, et al. Expires May 14, 2008 [Page 16]

Internet-Draft HTTP/1.1 November 2007

3.3. Date/Time Formats

3.3.1. Full Date

 HTTP applications have historically allowed three different formats
 for the representation of date/time stamps:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
 Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format
 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

 The first format is preferred as an Internet standard and represents
 a fixed-length subset of that defined by RFC 1123 [RFC1123] (an
 update to RFC 822 [RFC822]). The other formats are described here
 only for compatibility with obsolete implementations. HTTP/1.1
 clients and servers that parse the date value MUST accept all three
 formats (for compatibility with HTTP/1.0), though they MUST only
 generate the RFC 1123 format for representing HTTP-date values in
 header fields. See Appendix B for further information.

 Note: Recipients of date values are encouraged to be robust in
 accepting date values that may have been sent by non-HTTP
 applications, as is sometimes the case when retrieving or posting
 messages via proxies/gateways to SMTP or NNTP.

 All HTTP date/time stamps MUST be represented in Greenwich Mean Time
 (GMT), without exception. For the purposes of HTTP, GMT is exactly
 equal to UTC (Coordinated Universal Time). This is indicated in the
 first two formats by the inclusion of "GMT" as the three-letter
 abbreviation for time zone, and MUST be assumed when reading the
 asctime format. HTTP-date is case sensitive and MUST NOT include
 additional LWS beyond that specifically included as SP in the
 grammar.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1123

Fielding, et al. Expires May 14, 2008 [Page 17]

Internet-Draft HTTP/1.1 November 2007

 HTTP-date = rfc1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"

 asctime-date = wkday SP date3 SP time SP 4DIGIT
 date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
 date2 = 2DIGIT "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)
 date3 = month SP (2DIGIT | (SP 1DIGIT))
 ; month day (e.g., Jun 2)
 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; 00:00:00 - 23:59:59
 wkday = "Mon" | "Tue" | "Wed"
 | "Thu" | "Fri" | "Sat" | "Sun"
 weekday = "Monday" | "Tuesday" | "Wednesday"
 | "Thursday" | "Friday" | "Saturday" | "Sunday"
 month = "Jan" | "Feb" | "Mar" | "Apr"
 | "May" | "Jun" | "Jul" | "Aug"
 | "Sep" | "Oct" | "Nov" | "Dec"

 Note: HTTP requirements for the date/time stamp format apply only to
 their usage within the protocol stream. Clients and servers are not
 required to use these formats for user presentation, request logging,
 etc.

3.4. Transfer Codings

 Transfer-coding values are used to indicate an encoding
 transformation that has been, can be, or may need to be applied to an
 entity-body in order to ensure "safe transport" through the network.
 This differs from a content coding in that the transfer-coding is a
 property of the message, not of the original entity.

 transfer-coding = "chunked" | transfer-extension
 transfer-extension = token *(";" parameter)

 Parameters are in the form of attribute/value pairs.

 parameter = attribute "=" value
 attribute = token
 value = token | quoted-string

 All transfer-coding values are case-insensitive. HTTP/1.1 uses
 transfer-coding values in the TE header field (Section 8.5) and in
 the Transfer-Encoding header field (Section 8.7).

 Whenever a transfer-coding is applied to a message-body, the set of
 transfer-codings MUST include "chunked", unless the message is

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc850

Fielding, et al. Expires May 14, 2008 [Page 18]

Internet-Draft HTTP/1.1 November 2007

 terminated by closing the connection. When the "chunked" transfer-
 coding is used, it MUST be the last transfer-coding applied to the
 message-body. The "chunked" transfer-coding MUST NOT be applied more
 than once to a message-body. These rules allow the recipient to
 determine the transfer-length of the message (Section 4.4).

 Transfer-codings are analogous to the Content-Transfer-Encoding
 values of MIME [RFC2045], which were designed to enable safe
 transport of binary data over a 7-bit transport service. However,
 safe transport has a different focus for an 8bit-clean transfer
 protocol. In HTTP, the only unsafe characteristic of message-bodies
 is the difficulty in determining the exact body length (Section 4.4),
 or the desire to encrypt data over a shared transport.

 The Internet Assigned Numbers Authority (IANA) acts as a registry for
 transfer-coding value tokens. Initially, the registry contains the
 following tokens: "chunked" (Section 3.4.1), "gzip" ([Part 3]),
 "compress" ([Part 3]), and "deflate" ([Part 3]).

 New transfer-coding value tokens SHOULD be registered in the same way
 as new content-coding value tokens ([Part 3]).

 A server which receives an entity-body with a transfer-coding it does
 not understand SHOULD return 501 (Unimplemented), and close the
 connection. A server MUST NOT send transfer-codings to an HTTP/1.0
 client.

3.4.1. Chunked Transfer Coding

 The chunked encoding modifies the body of a message in order to
 transfer it as a series of chunks, each with its own size indicator,
 followed by an OPTIONAL trailer containing entity-header fields.
 This allows dynamically produced content to be transferred along with
 the information necessary for the recipient to verify that it has
 received the full message.

https://datatracker.ietf.org/doc/html/rfc2045

Fielding, et al. Expires May 14, 2008 [Page 19]

Internet-Draft HTTP/1.1 November 2007

 Chunked-Body = *chunk
 last-chunk
 trailer
 CRLF

 chunk = chunk-size [chunk-extension] CRLF
 chunk-data CRLF
 chunk-size = 1*HEX
 last-chunk = 1*("0") [chunk-extension] CRLF

 chunk-extension= *(";" chunk-ext-name ["=" chunk-ext-val])
 chunk-ext-name = token
 chunk-ext-val = token | quoted-string
 chunk-data = chunk-size(OCTET)
 trailer = *(entity-header CRLF)

 The chunk-size field is a string of hex digits indicating the size of
 the chunk-data in octets. The chunked encoding is ended by any chunk
 whose size is zero, followed by the trailer, which is terminated by
 an empty line.

 The trailer allows the sender to include additional HTTP header
 fields at the end of the message. The Trailer header field can be
 used to indicate which header fields are included in a trailer (see

Section 8.6).

 A server using chunked transfer-coding in a response MUST NOT use the
 trailer for any header fields unless at least one of the following is
 true:

 1. the request included a TE header field that indicates "trailers"
 is acceptable in the transfer-coding of the response, as
 described in Section 8.5; or,

 2. the server is the origin server for the response, the trailer
 fields consist entirely of optional metadata, and the recipient
 could use the message (in a manner acceptable to the origin
 server) without receiving this metadata. In other words, the
 origin server is willing to accept the possibility that the
 trailer fields might be silently discarded along the path to the
 client.

 This requirement prevents an interoperability failure when the
 message is being received by an HTTP/1.1 (or later) proxy and
 forwarded to an HTTP/1.0 recipient. It avoids a situation where
 compliance with the protocol would have necessitated a possibly
 infinite buffer on the proxy.

Fielding, et al. Expires May 14, 2008 [Page 20]

Internet-Draft HTTP/1.1 November 2007

 A process for decoding the "chunked" transfer-coding can be
 represented in pseudo-code as:

 length := 0
 read chunk-size, chunk-extension (if any) and CRLF
 while (chunk-size > 0) {
 read chunk-data and CRLF
 append chunk-data to entity-body
 length := length + chunk-size
 read chunk-size and CRLF
 }
 read entity-header
 while (entity-header not empty) {
 append entity-header to existing header fields
 read entity-header
 }
 Content-Length := length
 Remove "chunked" from Transfer-Encoding

 All HTTP/1.1 applications MUST be able to receive and decode the
 "chunked" transfer-coding, and MUST ignore chunk-extension extensions
 they do not understand.

4. HTTP Message

4.1. Message Types

 HTTP messages consist of requests from client to server and responses
 from server to client.

 HTTP-message = Request | Response ; HTTP/1.1 messages

 Request (Section 5) and Response (Section 6) messages use the generic
 message format of RFC 822 [RFC822] for transferring entities (the
 payload of the message). Both types of message consist of a start-
 line, zero or more header fields (also known as "headers"), an empty
 line (i.e., a line with nothing preceding the CRLF) indicating the
 end of the header fields, and possibly a message-body.

 generic-message = start-line
 *(message-header CRLF)
 CRLF
 [message-body]
 start-line = Request-Line | Status-Line

 In the interest of robustness, servers SHOULD ignore any empty
 line(s) received where a Request-Line is expected. In other words,

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Fielding, et al. Expires May 14, 2008 [Page 21]

Internet-Draft HTTP/1.1 November 2007

 if the server is reading the protocol stream at the beginning of a
 message and receives a CRLF first, it should ignore the CRLF.

 Certain buggy HTTP/1.0 client implementations generate extra CRLF's
 after a POST request. To restate what is explicitly forbidden by the
 BNF, an HTTP/1.1 client MUST NOT preface or follow a request with an
 extra CRLF.

4.2. Message Headers

 HTTP header fields, which include general-header (Section 4.5),
 request-header ([Part 2]), response-header ([Part 2]), and entity-
 header ([Part 3]) fields, follow the same generic format as that
 given in Section 3.1 of RFC 822 [RFC822]. Each header field consists
 of a name followed by a colon (":") and the field value. Field names
 are case-insensitive. The field value MAY be preceded by any amount
 of LWS, though a single SP is preferred. Header fields can be
 extended over multiple lines by preceding each extra line with at
 least one SP or HT. Applications ought to follow "common form",
 where one is known or indicated, when generating HTTP constructs,
 since there might exist some implementations that fail to accept
 anything beyond the common forms.

 message-header = field-name ":" [field-value]
 field-name = token
 field-value = *(field-content | LWS)
 field-content = <the OCTETs making up the field-value
 and consisting of either *TEXT or combinations
 of token, separators, and quoted-string>

 The field-content does not include any leading or trailing LWS:
 linear white space occurring before the first non-whitespace
 character of the field-value or after the last non-whitespace
 character of the field-value. Such leading or trailing LWS MAY be
 removed without changing the semantics of the field value. Any LWS
 that occurs between field-content MAY be replaced with a single SP
 before interpreting the field value or forwarding the message
 downstream.

 The order in which header fields with differing field names are
 received is not significant. However, it is "good practice" to send
 general-header fields first, followed by request-header or response-
 header fields, and ending with the entity-header fields.

 Multiple message-header fields with the same field-name MAY be
 present in a message if and only if the entire field-value for that
 header field is defined as a comma-separated list [i.e., #(values)].
 It MUST be possible to combine the multiple header fields into one

https://datatracker.ietf.org/doc/html/rfc822#section-3.1
https://datatracker.ietf.org/doc/html/rfc822

Fielding, et al. Expires May 14, 2008 [Page 22]

Internet-Draft HTTP/1.1 November 2007

 "field-name: field-value" pair, without changing the semantics of the
 message, by appending each subsequent field-value to the first, each
 separated by a comma. The order in which header fields with the same
 field-name are received is therefore significant to the
 interpretation of the combined field value, and thus a proxy MUST NOT
 change the order of these field values when a message is forwarded.

4.3. Message Body

 The message-body (if any) of an HTTP message is used to carry the
 entity-body associated with the request or response. The message-
 body differs from the entity-body only when a transfer-coding has
 been applied, as indicated by the Transfer-Encoding header field
 (Section 8.7).

 message-body = entity-body
 | <entity-body encoded as per Transfer-Encoding>

 Transfer-Encoding MUST be used to indicate any transfer-codings
 applied by an application to ensure safe and proper transfer of the
 message. Transfer-Encoding is a property of the message, not of the
 entity, and thus MAY be added or removed by any application along the
 request/response chain. (However, Section 3.4 places restrictions on
 when certain transfer-codings may be used.)

 The rules for when a message-body is allowed in a message differ for
 requests and responses.

 The presence of a message-body in a request is signaled by the
 inclusion of a Content-Length or Transfer-Encoding header field in
 the request's message-headers. A message-body MUST NOT be included
 in a request if the specification of the request method ([Part 2])
 does not allow sending an entity-body in requests. A server SHOULD
 read and forward a message-body on any request; if the request method
 does not include defined semantics for an entity-body, then the
 message-body SHOULD be ignored when handling the request.

 For response messages, whether or not a message-body is included with
 a message is dependent on both the request method and the response
 status code (Section 6.1.1). All responses to the HEAD request
 method MUST NOT include a message-body, even though the presence of
 entity-header fields might lead one to believe they do. All 1xx
 (informational), 204 (no content), and 304 (not modified) responses
 MUST NOT include a message-body. All other responses do include a
 message-body, although it MAY be of zero length.

Fielding, et al. Expires May 14, 2008 [Page 23]

Internet-Draft HTTP/1.1 November 2007

4.4. Message Length

 The transfer-length of a message is the length of the message-body as
 it appears in the message; that is, after any transfer-codings have
 been applied. When a message-body is included with a message, the
 transfer-length of that body is determined by one of the following
 (in order of precedence):

 1. Any response message which "MUST NOT" include a message-body
 (such as the 1xx, 204, and 304 responses and any response to a
 HEAD request) is always terminated by the first empty line after
 the header fields, regardless of the entity-header fields present
 in the message.

 2. If a Transfer-Encoding header field (Section 8.7) is present,
 then the transfer-length is defined by use of the "chunked"
 transfer-coding (Section 3.4), unless the message is terminated
 by closing the connection.

 3. If a Content-Length header field (Section 8.2) is present, its
 decimal value in OCTETs represents both the entity-length and the
 transfer-length. The Content-Length header field MUST NOT be
 sent if these two lengths are different (i.e., if a Transfer-
 Encoding header field is present). If a message is received with
 both a Transfer-Encoding header field and a Content-Length header
 field, the latter MUST be ignored.

 4. If the message uses the media type "multipart/byteranges", and
 the transfer-length is not otherwise specified, then this self-
 delimiting media type defines the transfer-length. This media
 type MUST NOT be used unless the sender knows that the recipient
 can parse it; the presence in a request of a Range header with
 multiple byte-range specifiers from a 1.1 client implies that the
 client can parse multipart/byteranges responses.

 A range header might be forwarded by a 1.0 proxy that does not
 understand multipart/byteranges; in this case the server MUST
 delimit the message using methods defined in items 1, 3 or 5
 of this section.

 5. By the server closing the connection. (Closing the connection
 cannot be used to indicate the end of a request body, since that
 would leave no possibility for the server to send back a
 response.)

 For compatibility with HTTP/1.0 applications, HTTP/1.1 requests
 containing a message-body MUST include a valid Content-Length header
 field unless the server is known to be HTTP/1.1 compliant. If a

Fielding, et al. Expires May 14, 2008 [Page 24]

Internet-Draft HTTP/1.1 November 2007

 request contains a message-body and a Content-Length is not given,
 the server SHOULD respond with 400 (bad request) if it cannot
 determine the length of the message, or with 411 (length required) if
 it wishes to insist on receiving a valid Content-Length.

 All HTTP/1.1 applications that receive entities MUST accept the
 "chunked" transfer-coding (Section 3.4), thus allowing this mechanism
 to be used for messages when the message length cannot be determined
 in advance.

 Messages MUST NOT include both a Content-Length header field and a
 transfer-coding. If the message does include a transfer-coding, the
 Content-Length MUST be ignored.

 When a Content-Length is given in a message where a message-body is
 allowed, its field value MUST exactly match the number of OCTETs in
 the message-body. HTTP/1.1 user agents MUST notify the user when an
 invalid length is received and detected.

4.5. General Header Fields

 There are a few header fields which have general applicability for
 both request and response messages, but which do not apply to the
 entity being transferred. These header fields apply only to the
 message being transmitted.

 general-header = Cache-Control ; [Part 6]
 | Connection ; Section 8.1
 | Date ; Section 8.3
 | Pragma ; [Part 6]
 | Trailer ; Section 8.6
 | Transfer-Encoding ; Section 8.7
 | Upgrade ; Section 8.8
 | Via ; Section 8.9
 | Warning ; [Part 6]

 General-header field names can be extended reliably only in
 combination with a change in the protocol version. However, new or
 experimental header fields may be given the semantics of general
 header fields if all parties in the communication recognize them to
 be general-header fields. Unrecognized header fields are treated as
 entity-header fields.

5. Request

 A request message from a client to a server includes, within the
 first line of that message, the method to be applied to the resource,

Fielding, et al. Expires May 14, 2008 [Page 25]

Internet-Draft HTTP/1.1 November 2007

 the identifier of the resource, and the protocol version in use.

 Request = Request-Line ; Section 5.1
 *((general-header ; Section 4.5
 | request-header ; [Part 2]
 | entity-header) CRLF) ; [Part 3]
 CRLF
 [message-body] ; Section 4.3

5.1. Request-Line

 The Request-Line begins with a method token, followed by the Request-
 URI and the protocol version, and ending with CRLF. The elements are
 separated by SP characters. No CR or LF is allowed except in the
 final CRLF sequence.

 Request-Line = Method SP Request-URI SP HTTP-Version CRLF

5.1.1. Method

 The Method token indicates the method to be performed on the resource
 identified by the Request-URI. The method is case-sensitive.

 Method = token

5.1.2. Request-URI

 The Request-URI is a Uniform Resource Identifier (Section 3.2) and
 identifies the resource upon which to apply the request.

 Request-URI = "*"
 | absoluteURI
 | (abs_path ["?" query])
 | authority

 The four options for Request-URI are dependent on the nature of the
 request. The asterisk "*" means that the request does not apply to a
 particular resource, but to the server itself, and is only allowed
 when the method used does not necessarily apply to a resource. One
 example would be

 OPTIONS * HTTP/1.1

 The absoluteURI form is REQUIRED when the request is being made to a
 proxy. The proxy is requested to forward the request or service it
 from a valid cache, and return the response. Note that the proxy MAY
 forward the request on to another proxy or directly to the server
 specified by the absoluteURI. In order to avoid request loops, a

Fielding, et al. Expires May 14, 2008 [Page 26]

Internet-Draft HTTP/1.1 November 2007

 proxy MUST be able to recognize all of its server names, including
 any aliases, local variations, and the numeric IP address. An
 example Request-Line would be:

 GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

 To allow for transition to absoluteURIs in all requests in future
 versions of HTTP, all HTTP/1.1 servers MUST accept the absoluteURI
 form in requests, even though HTTP/1.1 clients will only generate
 them in requests to proxies.

 The authority form is only used by the CONNECT method ([Part 2]).

 The most common form of Request-URI is that used to identify a
 resource on an origin server or gateway. In this case the absolute
 path of the URI MUST be transmitted (see Section 3.2.1, abs_path) as
 the Request-URI, and the network location of the URI (authority) MUST
 be transmitted in a Host header field. For example, a client wishing
 to retrieve the resource above directly from the origin server would
 create a TCP connection to port 80 of the host "www.w3.org" and send
 the lines:

 GET /pub/WWW/TheProject.html HTTP/1.1
 Host: www.w3.org

 followed by the remainder of the Request. Note that the absolute
 path cannot be empty; if none is present in the original URI, it MUST
 be given as "/" (the server root).

 The Request-URI is transmitted in the format specified in
Section 3.2.1. If the Request-URI is encoded using the "% HEX HEX"

 encoding [RFC2396], the origin server MUST decode the Request-URI in
 order to properly interpret the request. Servers SHOULD respond to
 invalid Request-URIs with an appropriate status code.

 A transparent proxy MUST NOT rewrite the "abs_path" part of the
 received Request-URI when forwarding it to the next inbound server,
 except as noted above to replace a null abs_path with "/".

 Note: The "no rewrite" rule prevents the proxy from changing the
 meaning of the request when the origin server is improperly using
 a non-reserved URI character for a reserved purpose. Implementors
 should be aware that some pre-HTTP/1.1 proxies have been known to
 rewrite the Request-URI.

http://www.w3.org/pub/WWW/TheProject.html
https://datatracker.ietf.org/doc/html/rfc2396

Fielding, et al. Expires May 14, 2008 [Page 27]

Internet-Draft HTTP/1.1 November 2007

5.2. The Resource Identified by a Request

 The exact resource identified by an Internet request is determined by
 examining both the Request-URI and the Host header field.

 An origin server that does not allow resources to differ by the
 requested host MAY ignore the Host header field value when
 determining the resource identified by an HTTP/1.1 request. (But see

Appendix D.1.1 for other requirements on Host support in HTTP/1.1.)

 An origin server that does differentiate resources based on the host
 requested (sometimes referred to as virtual hosts or vanity host
 names) MUST use the following rules for determining the requested
 resource on an HTTP/1.1 request:

 1. If Request-URI is an absoluteURI, the host is part of the
 Request-URI. Any Host header field value in the request MUST be
 ignored.

 2. If the Request-URI is not an absoluteURI, and the request
 includes a Host header field, the host is determined by the Host
 header field value.

 3. If the host as determined by rule 1 or 2 is not a valid host on
 the server, the response MUST be a 400 (Bad Request) error
 message.

 Recipients of an HTTP/1.0 request that lacks a Host header field MAY
 attempt to use heuristics (e.g., examination of the URI path for
 something unique to a particular host) in order to determine what
 exact resource is being requested.

6. Response

 After receiving and interpreting a request message, a server responds
 with an HTTP response message.

 Response = Status-Line ; Section 6.1
 *((general-header ; Section 4.5
 | response-header ; [Part 2]
 | entity-header) CRLF) ; [Part 3]
 CRLF
 [message-body] ; Section 4.3

Fielding, et al. Expires May 14, 2008 [Page 28]

Internet-Draft HTTP/1.1 November 2007

6.1. Status-Line

 The first line of a Response message is the Status-Line, consisting
 of the protocol version followed by a numeric status code and its
 associated textual phrase, with each element separated by SP
 characters. No CR or LF is allowed except in the final CRLF
 sequence.

 Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

6.1.1. Status Code and Reason Phrase

 The Status-Code element is a 3-digit integer result code of the
 attempt to understand and satisfy the request. These codes are fully
 defined in [Part 2]. The Reason-Phrase is intended to give a short
 textual description of the Status-Code. The Status-Code is intended
 for use by automata and the Reason-Phrase is intended for the human
 user. The client is not required to examine or display the Reason-
 Phrase.

 The first digit of the Status-Code defines the class of response.
 The last two digits do not have any categorization role. There are 5
 values for the first digit:

 o 1xx: Informational - Request received, continuing process

 o 2xx: Success - The action was successfully received, understood,
 and accepted

 o 3xx: Redirection - Further action must be taken in order to
 complete the request

 o 4xx: Client Error - The request contains bad syntax or cannot be
 fulfilled

 o 5xx: Server Error - The server failed to fulfill an apparently
 valid request

 Status-Code = 3DIGIT
 Reason-Phrase = *<TEXT, excluding CR, LF>

7. Connections

Fielding, et al. Expires May 14, 2008 [Page 29]

Internet-Draft HTTP/1.1 November 2007

7.1. Persistent Connections

7.1.1. Purpose

 Prior to persistent connections, a separate TCP connection was
 established to fetch each URL, increasing the load on HTTP servers
 and causing congestion on the Internet. The use of inline images and
 other associated data often require a client to make multiple
 requests of the same server in a short amount of time. Analysis of
 these performance problems and results from a prototype
 implementation are available [Pad1995] [Spe]. Implementation
 experience and measurements of actual HTTP/1.1 (RFC 2068)
 implementations show good results [Nie1997]. Alternatives have also
 been explored, for example, T/TCP [Tou1998].

 Persistent HTTP connections have a number of advantages:

 o By opening and closing fewer TCP connections, CPU time is saved in
 routers and hosts (clients, servers, proxies, gateways, tunnels,
 or caches), and memory used for TCP protocol control blocks can be
 saved in hosts.

 o HTTP requests and responses can be pipelined on a connection.
 Pipelining allows a client to make multiple requests without
 waiting for each response, allowing a single TCP connection to be
 used much more efficiently, with much lower elapsed time.

 o Network congestion is reduced by reducing the number of packets
 caused by TCP opens, and by allowing TCP sufficient time to
 determine the congestion state of the network.

 o Latency on subsequent requests is reduced since there is no time
 spent in TCP's connection opening handshake.

 o HTTP can evolve more gracefully, since errors can be reported
 without the penalty of closing the TCP connection. Clients using
 future versions of HTTP might optimistically try a new feature,
 but if communicating with an older server, retry with old
 semantics after an error is reported.

 HTTP implementations SHOULD implement persistent connections.

7.1.2. Overall Operation

 A significant difference between HTTP/1.1 and earlier versions of
 HTTP is that persistent connections are the default behavior of any
 HTTP connection. That is, unless otherwise indicated, the client
 SHOULD assume that the server will maintain a persistent connection,

https://datatracker.ietf.org/doc/html/rfc2068

Fielding, et al. Expires May 14, 2008 [Page 30]

Internet-Draft HTTP/1.1 November 2007

 even after error responses from the server.

 Persistent connections provide a mechanism by which a client and a
 server can signal the close of a TCP connection. This signaling
 takes place using the Connection header field (Section 8.1). Once a
 close has been signaled, the client MUST NOT send any more requests
 on that connection.

7.1.2.1. Negotiation

 An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to
 maintain a persistent connection unless a Connection header including
 the connection-token "close" was sent in the request. If the server
 chooses to close the connection immediately after sending the
 response, it SHOULD send a Connection header including the
 connection-token close.

 An HTTP/1.1 client MAY expect a connection to remain open, but would
 decide to keep it open based on whether the response from a server
 contains a Connection header with the connection-token close. In
 case the client does not want to maintain a connection for more than
 that request, it SHOULD send a Connection header including the
 connection-token close.

 If either the client or the server sends the close token in the
 Connection header, that request becomes the last one for the
 connection.

 Clients and servers SHOULD NOT assume that a persistent connection is
 maintained for HTTP versions less than 1.1 unless it is explicitly
 signaled. See Appendix D.2 for more information on backward
 compatibility with HTTP/1.0 clients.

 In order to remain persistent, all messages on the connection MUST
 have a self-defined message length (i.e., one not defined by closure
 of the connection), as described in Section 4.4.

7.1.2.2. Pipelining

 A client that supports persistent connections MAY "pipeline" its
 requests (i.e., send multiple requests without waiting for each
 response). A server MUST send its responses to those requests in the
 same order that the requests were received.

 Clients which assume persistent connections and pipeline immediately
 after connection establishment SHOULD be prepared to retry their
 connection if the first pipelined attempt fails. If a client does
 such a retry, it MUST NOT pipeline before it knows the connection is

Fielding, et al. Expires May 14, 2008 [Page 31]

Internet-Draft HTTP/1.1 November 2007

 persistent. Clients MUST also be prepared to resend their requests
 if the server closes the connection before sending all of the
 corresponding responses.

 Clients SHOULD NOT pipeline requests using non-idempotent methods or
 non-idempotent sequences of methods (see [Part 2]). Otherwise, a
 premature termination of the transport connection could lead to
 indeterminate results. A client wishing to send a non-idempotent
 request SHOULD wait to send that request until it has received the
 response status for the previous request.

7.1.3. Proxy Servers

 It is especially important that proxies correctly implement the
 properties of the Connection header field as specified in

Section 8.1.

 The proxy server MUST signal persistent connections separately with
 its clients and the origin servers (or other proxy servers) that it
 connects to. Each persistent connection applies to only one
 transport link.

 A proxy server MUST NOT establish a HTTP/1.1 persistent connection
 with an HTTP/1.0 client (but see RFC 2068 [RFC2068] for information
 and discussion of the problems with the Keep-Alive header implemented
 by many HTTP/1.0 clients).

7.1.4. Practical Considerations

 Servers will usually have some time-out value beyond which they will
 no longer maintain an inactive connection. Proxy servers might make
 this a higher value since it is likely that the client will be making
 more connections through the same server. The use of persistent
 connections places no requirements on the length (or existence) of
 this time-out for either the client or the server.

 When a client or server wishes to time-out it SHOULD issue a graceful
 close on the transport connection. Clients and servers SHOULD both
 constantly watch for the other side of the transport close, and
 respond to it as appropriate. If a client or server does not detect
 the other side's close promptly it could cause unnecessary resource
 drain on the network.

 A client, server, or proxy MAY close the transport connection at any
 time. For example, a client might have started to send a new request
 at the same time that the server has decided to close the "idle"
 connection. From the server's point of view, the connection is being
 closed while it was idle, but from the client's point of view, a

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

Fielding, et al. Expires May 14, 2008 [Page 32]

Internet-Draft HTTP/1.1 November 2007

 request is in progress.

 This means that clients, servers, and proxies MUST be able to recover
 from asynchronous close events. Client software SHOULD reopen the
 transport connection and retransmit the aborted sequence of requests
 without user interaction so long as the request sequence is
 idempotent (see [Part 2]). Non-idempotent methods or sequences MUST
 NOT be automatically retried, although user agents MAY offer a human
 operator the choice of retrying the request(s). Confirmation by
 user-agent software with semantic understanding of the application
 MAY substitute for user confirmation. The automatic retry SHOULD NOT
 be repeated if the second sequence of requests fails.

 Servers SHOULD always respond to at least one request per connection,
 if at all possible. Servers SHOULD NOT close a connection in the
 middle of transmitting a response, unless a network or client failure
 is suspected.

 Clients that use persistent connections SHOULD limit the number of
 simultaneous connections that they maintain to a given server. A
 single-user client SHOULD NOT maintain more than 2 connections with
 any server or proxy. A proxy SHOULD use up to 2*N connections to
 another server or proxy, where N is the number of simultaneously
 active users. These guidelines are intended to improve HTTP response
 times and avoid congestion.

7.2. Message Transmission Requirements

7.2.1. Persistent Connections and Flow Control

 HTTP/1.1 servers SHOULD maintain persistent connections and use TCP's
 flow control mechanisms to resolve temporary overloads, rather than
 terminating connections with the expectation that clients will retry.
 The latter technique can exacerbate network congestion.

7.2.2. Monitoring Connections for Error Status Messages

 An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
 the network connection for an error status while it is transmitting
 the request. If the client sees an error status, it SHOULD
 immediately cease transmitting the body. If the body is being sent
 using a "chunked" encoding (Section 3.4), a zero length chunk and
 empty trailer MAY be used to prematurely mark the end of the message.
 If the body was preceded by a Content-Length header, the client MUST
 close the connection.

Fielding, et al. Expires May 14, 2008 [Page 33]

Internet-Draft HTTP/1.1 November 2007

7.2.3. Use of the 100 (Continue) Status

 The purpose of the 100 (Continue) status (see [Part 2]) is to allow a
 client that is sending a request message with a request body to
 determine if the origin server is willing to accept the request
 (based on the request headers) before the client sends the request
 body. In some cases, it might either be inappropriate or highly
 inefficient for the client to send the body if the server will reject
 the message without looking at the body.

 Requirements for HTTP/1.1 clients:

 o If a client will wait for a 100 (Continue) response before sending
 the request body, it MUST send an Expect request-header field
 ([Part 2]) with the "100-continue" expectation.

 o A client MUST NOT send an Expect request-header field ([Part 2])
 with the "100-continue" expectation if it does not intend to send
 a request body.

 Because of the presence of older implementations, the protocol allows
 ambiguous situations in which a client may send "Expect: 100-
 continue" without receiving either a 417 (Expectation Failed) status
 or a 100 (Continue) status. Therefore, when a client sends this
 header field to an origin server (possibly via a proxy) from which it
 has never seen a 100 (Continue) status, the client SHOULD NOT wait
 for an indefinite period before sending the request body.

 Requirements for HTTP/1.1 origin servers:

 o Upon receiving a request which includes an Expect request-header
 field with the "100-continue" expectation, an origin server MUST
 either respond with 100 (Continue) status and continue to read
 from the input stream, or respond with a final status code. The
 origin server MUST NOT wait for the request body before sending
 the 100 (Continue) response. If it responds with a final status
 code, it MAY close the transport connection or it MAY continue to
 read and discard the rest of the request. It MUST NOT perform the
 requested method if it returns a final status code.

 o An origin server SHOULD NOT send a 100 (Continue) response if the
 request message does not include an Expect request-header field
 with the "100-continue" expectation, and MUST NOT send a 100
 (Continue) response if such a request comes from an HTTP/1.0 (or
 earlier) client. There is an exception to this rule: for
 compatibility with RFC 2068, a server MAY send a 100 (Continue)
 status in response to an HTTP/1.1 PUT or POST request that does
 not include an Expect request-header field with the "100-continue"

https://datatracker.ietf.org/doc/html/rfc2068

Fielding, et al. Expires May 14, 2008 [Page 34]

Internet-Draft HTTP/1.1 November 2007

 expectation. This exception, the purpose of which is to minimize
 any client processing delays associated with an undeclared wait
 for 100 (Continue) status, applies only to HTTP/1.1 requests, and
 not to requests with any other HTTP-version value.

 o An origin server MAY omit a 100 (Continue) response if it has
 already received some or all of the request body for the
 corresponding request.

 o An origin server that sends a 100 (Continue) response MUST
 ultimately send a final status code, once the request body is
 received and processed, unless it terminates the transport
 connection prematurely.

 o If an origin server receives a request that does not include an
 Expect request-header field with the "100-continue" expectation,
 the request includes a request body, and the server responds with
 a final status code before reading the entire request body from
 the transport connection, then the server SHOULD NOT close the
 transport connection until it has read the entire request, or
 until the client closes the connection. Otherwise, the client
 might not reliably receive the response message. However, this
 requirement is not be construed as preventing a server from
 defending itself against denial-of-service attacks, or from badly
 broken client implementations.

 Requirements for HTTP/1.1 proxies:

 o If a proxy receives a request that includes an Expect request-
 header field with the "100-continue" expectation, and the proxy
 either knows that the next-hop server complies with HTTP/1.1 or
 higher, or does not know the HTTP version of the next-hop server,
 it MUST forward the request, including the Expect header field.

 o If the proxy knows that the version of the next-hop server is
 HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST
 respond with a 417 (Expectation Failed) status.

 o Proxies SHOULD maintain a cache recording the HTTP version numbers
 received from recently-referenced next-hop servers.

 o A proxy MUST NOT forward a 100 (Continue) response if the request
 message was received from an HTTP/1.0 (or earlier) client and did
 not include an Expect request-header field with the "100-continue"
 expectation. This requirement overrides the general rule for
 forwarding of 1xx responses (see [Part 2]).

Fielding, et al. Expires May 14, 2008 [Page 35]

Internet-Draft HTTP/1.1 November 2007

7.2.4. Client Behavior if Server Prematurely Closes Connection

 If an HTTP/1.1 client sends a request which includes a request body,
 but which does not include an Expect request-header field with the
 "100-continue" expectation, and if the client is not directly
 connected to an HTTP/1.1 origin server, and if the client sees the
 connection close before receiving any status from the server, the
 client SHOULD retry the request. If the client does retry this
 request, it MAY use the following "binary exponential backoff"
 algorithm to be assured of obtaining a reliable response:

 1. Initiate a new connection to the server

 2. Transmit the request-headers

 3. Initialize a variable R to the estimated round-trip time to the
 server (e.g., based on the time it took to establish the
 connection), or to a constant value of 5 seconds if the round-
 trip time is not available.

 4. Compute T = R * (2**N), where N is the number of previous retries
 of this request.

 5. Wait either for an error response from the server, or for T
 seconds (whichever comes first)

 6. If no error response is received, after T seconds transmit the
 body of the request.

 7. If client sees that the connection is closed prematurely, repeat
 from step 1 until the request is accepted, an error response is
 received, or the user becomes impatient and terminates the retry
 process.

 If at any point an error status is received, the client

 o SHOULD NOT continue and

 o SHOULD close the connection if it has not completed sending the
 request message.

8. Header Field Definitions

 This section defines the syntax and semantics of all standard
 HTTP/1.1 header fields. For entity-header fields, both sender and
 recipient refer to either the client or the server, depending on who
 sends and who receives the entity.

Fielding, et al. Expires May 14, 2008 [Page 36]

Internet-Draft HTTP/1.1 November 2007

8.1. Connection

 The Connection general-header field allows the sender to specify
 options that are desired for that particular connection and MUST NOT
 be communicated by proxies over further connections.

 The Connection header has the following grammar:

 Connection = "Connection" ":" 1#(connection-token)
 connection-token = token

 HTTP/1.1 proxies MUST parse the Connection header field before a
 message is forwarded and, for each connection-token in this field,
 remove any header field(s) from the message with the same name as the
 connection-token. Connection options are signaled by the presence of
 a connection-token in the Connection header field, not by any
 corresponding additional header field(s), since the additional header
 field may not be sent if there are no parameters associated with that
 connection option.

 Message headers listed in the Connection header MUST NOT include end-
 to-end headers, such as Cache-Control.

 HTTP/1.1 defines the "close" connection option for the sender to
 signal that the connection will be closed after completion of the
 response. For example,

 Connection: close

 in either the request or the response header fields indicates that
 the connection SHOULD NOT be considered `persistent' (Section 7.1)
 after the current request/response is complete.

 An HTTP/1.1 client that does not support persistent connections MUST
 include the "close" connection option in every request message.

 An HTTP/1.1 server that does not support persistent connections MUST
 include the "close" connection option in every response message that
 does not have a 1xx (informational) status code.

 A system receiving an HTTP/1.0 (or lower-version) message that
 includes a Connection header MUST, for each connection-token in this
 field, remove and ignore any header field(s) from the message with
 the same name as the connection-token. This protects against
 mistaken forwarding of such header fields by pre-HTTP/1.1 proxies.
 See Appendix D.2.

Fielding, et al. Expires May 14, 2008 [Page 37]

Internet-Draft HTTP/1.1 November 2007

8.2. Content-Length

 The Content-Length entity-header field indicates the size of the
 entity-body, in decimal number of OCTETs, sent to the recipient or,
 in the case of the HEAD method, the size of the entity-body that
 would have been sent had the request been a GET.

 Content-Length = "Content-Length" ":" 1*DIGIT

 An example is

 Content-Length: 3495

 Applications SHOULD use this field to indicate the transfer-length of
 the message-body, unless this is prohibited by the rules in

Section 4.4.

 Any Content-Length greater than or equal to zero is a valid value.
Section 4.4 describes how to determine the length of a message-body

 if a Content-Length is not given.

 Note that the meaning of this field is significantly different from
 the corresponding definition in MIME, where it is an optional field
 used within the "message/external-body" content-type. In HTTP, it
 SHOULD be sent whenever the message's length can be determined prior
 to being transferred, unless this is prohibited by the rules in

Section 4.4.

8.3. Date

 The Date general-header field represents the date and time at which
 the message was originated, having the same semantics as orig-date in

RFC 822. The field value is an HTTP-date, as described in
Section 3.3.1; it MUST be sent in rfc1123-date format.

 Date = "Date" ":" HTTP-date

 An example is

 Date: Tue, 15 Nov 1994 08:12:31 GMT

 Origin servers MUST include a Date header field in all responses,
 except in these cases:

 1. If the response status code is 100 (Continue) or 101 (Switching
 Protocols), the response MAY include a Date header field, at the
 server's option.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1123

Fielding, et al. Expires May 14, 2008 [Page 38]

Internet-Draft HTTP/1.1 November 2007

 2. If the response status code conveys a server error, e.g. 500
 (Internal Server Error) or 503 (Service Unavailable), and it is
 inconvenient or impossible to generate a valid Date.

 3. If the server does not have a clock that can provide a reasonable
 approximation of the current time, its responses MUST NOT include
 a Date header field. In this case, the rules in Section 8.3.1
 MUST be followed.

 A received message that does not have a Date header field MUST be
 assigned one by the recipient if the message will be cached by that
 recipient or gatewayed via a protocol which requires a Date. An HTTP
 implementation without a clock MUST NOT cache responses without
 revalidating them on every use. An HTTP cache, especially a shared
 cache, SHOULD use a mechanism, such as NTP [RFC1305], to synchronize
 its clock with a reliable external standard.

 Clients SHOULD only send a Date header field in messages that include
 an entity-body, as in the case of the PUT and POST requests, and even
 then it is optional. A client without a clock MUST NOT send a Date
 header field in a request.

 The HTTP-date sent in a Date header SHOULD NOT represent a date and
 time subsequent to the generation of the message. It SHOULD
 represent the best available approximation of the date and time of
 message generation, unless the implementation has no means of
 generating a reasonably accurate date and time. In theory, the date
 ought to represent the moment just before the entity is generated.
 In practice, the date can be generated at any time during the message
 origination without affecting its semantic value.

8.3.1. Clockless Origin Server Operation

 Some origin server implementations might not have a clock available.
 An origin server without a clock MUST NOT assign Expires or Last-
 Modified values to a response, unless these values were associated
 with the resource by a system or user with a reliable clock. It MAY
 assign an Expires value that is known, at or before server
 configuration time, to be in the past (this allows "pre-expiration"
 of responses without storing separate Expires values for each
 resource).

8.4. Host

 The Host request-header field specifies the Internet host and port
 number of the resource being requested, as obtained from the original
 URI given by the user or referring resource (generally an HTTP URL,
 as described in Section 3.2.2). The Host field value MUST represent

https://datatracker.ietf.org/doc/html/rfc1305

Fielding, et al. Expires May 14, 2008 [Page 39]

Internet-Draft HTTP/1.1 November 2007

 the naming authority of the origin server or gateway given by the
 original URL. This allows the origin server or gateway to
 differentiate between internally-ambiguous URLs, such as the root "/"
 URL of a server for multiple host names on a single IP address.

 Host = "Host" ":" host [":" port] ; Section 3.2.2

 A "host" without any trailing port information implies the default
 port for the service requested (e.g., "80" for an HTTP URL). For
 example, a request on the origin server for
 <http://www.w3.org/pub/WWW/> would properly include:

 GET /pub/WWW/ HTTP/1.1
 Host: www.w3.org

 A client MUST include a Host header field in all HTTP/1.1 request
 messages . If the requested URI does not include an Internet host
 name for the service being requested, then the Host header field MUST
 be given with an empty value. An HTTP/1.1 proxy MUST ensure that any
 request message it forwards does contain an appropriate Host header
 field that identifies the service being requested by the proxy. All
 Internet-based HTTP/1.1 servers MUST respond with a 400 (Bad Request)
 status code to any HTTP/1.1 request message which lacks a Host header
 field.

 See sections 5.2 and D.1.1 for other requirements relating to Host.

8.5. TE

 The TE request-header field indicates what extension transfer-codings
 it is willing to accept in the response and whether or not it is
 willing to accept trailer fields in a chunked transfer-coding. Its
 value may consist of the keyword "trailers" and/or a comma-separated
 list of extension transfer-coding names with optional accept
 parameters (as described in Section 3.4).

 TE = "TE" ":" #(t-codings)
 t-codings = "trailers" | (transfer-extension [accept-params])

 The presence of the keyword "trailers" indicates that the client is
 willing to accept trailer fields in a chunked transfer-coding, as
 defined in Section 3.4.1. This keyword is reserved for use with
 transfer-coding values even though it does not itself represent a
 transfer-coding.

 Examples of its use are:

http://www.w3.org/pub/WWW/

Fielding, et al. Expires May 14, 2008 [Page 40]

Internet-Draft HTTP/1.1 November 2007

 TE: deflate
 TE:
 TE: trailers, deflate;q=0.5

 The TE header field only applies to the immediate connection.
 Therefore, the keyword MUST be supplied within a Connection header
 field (Section 8.1) whenever TE is present in an HTTP/1.1 message.

 A server tests whether a transfer-coding is acceptable, according to
 a TE field, using these rules:

 1. The "chunked" transfer-coding is always acceptable. If the
 keyword "trailers" is listed, the client indicates that it is
 willing to accept trailer fields in the chunked response on
 behalf of itself and any downstream clients. The implication is
 that, if given, the client is stating that either all downstream
 clients are willing to accept trailer fields in the forwarded
 response, or that it will attempt to buffer the response on
 behalf of downstream recipients.

 Note: HTTP/1.1 does not define any means to limit the size of a
 chunked response such that a client can be assured of buffering
 the entire response.

 2. If the transfer-coding being tested is one of the transfer-
 codings listed in the TE field, then it is acceptable unless it
 is accompanied by a qvalue of 0. (As defined in [Part 3], a
 qvalue of 0 means "not acceptable.")

 3. If multiple transfer-codings are acceptable, then the acceptable
 transfer-coding with the highest non-zero qvalue is preferred.
 The "chunked" transfer-coding always has a qvalue of 1.

 If the TE field-value is empty or if no TE field is present, the only
 transfer-coding is "chunked". A message with no transfer-coding is
 always acceptable.

8.6. Trailer

 The Trailer general field value indicates that the given set of
 header fields is present in the trailer of a message encoded with
 chunked transfer-coding.

 Trailer = "Trailer" ":" 1#field-name

 An HTTP/1.1 message SHOULD include a Trailer header field in a
 message using chunked transfer-coding with a non-empty trailer.
 Doing so allows the recipient to know which header fields to expect

Fielding, et al. Expires May 14, 2008 [Page 41]

Internet-Draft HTTP/1.1 November 2007

 in the trailer.

 If no Trailer header field is present, the trailer SHOULD NOT include
 any header fields. See Section 3.4.1 for restrictions on the use of
 trailer fields in a "chunked" transfer-coding.

 Message header fields listed in the Trailer header field MUST NOT
 include the following header fields:

 o Transfer-Encoding

 o Content-Length

 o Trailer

8.7. Transfer-Encoding

 The Transfer-Encoding general-header field indicates what (if any)
 type of transformation has been applied to the message body in order
 to safely transfer it between the sender and the recipient. This
 differs from the content-coding in that the transfer-coding is a
 property of the message, not of the entity.

 Transfer-Encoding = "Transfer-Encoding" ":" 1#transfer-coding

 Transfer-codings are defined in Section 3.4. An example is:

 Transfer-Encoding: chunked

 If multiple encodings have been applied to an entity, the transfer-
 codings MUST be listed in the order in which they were applied.
 Additional information about the encoding parameters MAY be provided
 by other entity-header fields not defined by this specification.

 Many older HTTP/1.0 applications do not understand the Transfer-
 Encoding header.

8.8. Upgrade

 The Upgrade general-header allows the client to specify what
 additional communication protocols it supports and would like to use
 if the server finds it appropriate to switch protocols. The server
 MUST use the Upgrade header field within a 101 (Switching Protocols)
 response to indicate which protocol(s) are being switched.

 Upgrade = "Upgrade" ":" 1#product

 For example,

Fielding, et al. Expires May 14, 2008 [Page 42]

Internet-Draft HTTP/1.1 November 2007

 Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

 The Upgrade header field is intended to provide a simple mechanism
 for transition from HTTP/1.1 to some other, incompatible protocol.
 It does so by allowing the client to advertise its desire to use
 another protocol, such as a later version of HTTP with a higher major
 version number, even though the current request has been made using
 HTTP/1.1. This eases the difficult transition between incompatible
 protocols by allowing the client to initiate a request in the more
 commonly supported protocol while indicating to the server that it
 would like to use a "better" protocol if available (where "better" is
 determined by the server, possibly according to the nature of the
 method and/or resource being requested).

 The Upgrade header field only applies to switching application-layer
 protocols upon the existing transport-layer connection. Upgrade
 cannot be used to insist on a protocol change; its acceptance and use
 by the server is optional. The capabilities and nature of the
 application-layer communication after the protocol change is entirely
 dependent upon the new protocol chosen, although the first action
 after changing the protocol MUST be a response to the initial HTTP
 request containing the Upgrade header field.

 The Upgrade header field only applies to the immediate connection.
 Therefore, the upgrade keyword MUST be supplied within a Connection
 header field (Section 8.1) whenever Upgrade is present in an HTTP/1.1
 message.

 The Upgrade header field cannot be used to indicate a switch to a
 protocol on a different connection. For that purpose, it is more
 appropriate to use a 301, 302, 303, or 305 redirection response.

 This specification only defines the protocol name "HTTP" for use by
 the family of Hypertext Transfer Protocols, as defined by the HTTP
 version rules of Section 3.1 and future updates to this
 specification. Any token can be used as a protocol name; however, it
 will only be useful if both the client and server associate the name
 with the same protocol.

8.9. Via

 The Via general-header field MUST be used by gateways and proxies to
 indicate the intermediate protocols and recipients between the user
 agent and the server on requests, and between the origin server and
 the client on responses. It is analogous to the "Received" field of

RFC 822 [RFC822] and is intended to be used for tracking message
 forwards, avoiding request loops, and identifying the protocol
 capabilities of all senders along the request/response chain.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Fielding, et al. Expires May 14, 2008 [Page 43]

Internet-Draft HTTP/1.1 November 2007

 Via = "Via" ":" 1#(received-protocol received-by [comment])
 received-protocol = [protocol-name "/"] protocol-version
 protocol-name = token
 protocol-version = token
 received-by = (host [":" port]) | pseudonym
 pseudonym = token

 The received-protocol indicates the protocol version of the message
 received by the server or client along each segment of the request/
 response chain. The received-protocol version is appended to the Via
 field value when the message is forwarded so that information about
 the protocol capabilities of upstream applications remains visible to
 all recipients.

 The protocol-name is optional if and only if it would be "HTTP". The
 received-by field is normally the host and optional port number of a
 recipient server or client that subsequently forwarded the message.
 However, if the real host is considered to be sensitive information,
 it MAY be replaced by a pseudonym. If the port is not given, it MAY
 be assumed to be the default port of the received-protocol.

 Multiple Via field values represents each proxy or gateway that has
 forwarded the message. Each recipient MUST append its information
 such that the end result is ordered according to the sequence of
 forwarding applications.

 Comments MAY be used in the Via header field to identify the software
 of the recipient proxy or gateway, analogous to the User-Agent and
 Server header fields. However, all comments in the Via field are
 optional and MAY be removed by any recipient prior to forwarding the
 message.

 For example, a request message could be sent from an HTTP/1.0 user
 agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
 forward the request to a public proxy at nowhere.com, which completes
 the request by forwarding it to the origin server at www.ics.uci.edu.
 The request received by www.ics.uci.edu would then have the following
 Via header field:

 Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

 Proxies and gateways used as a portal through a network firewall
 SHOULD NOT, by default, forward the names and ports of hosts within
 the firewall region. This information SHOULD only be propagated if
 explicitly enabled. If not enabled, the received-by host of any host
 behind the firewall SHOULD be replaced by an appropriate pseudonym
 for that host.

Fielding, et al. Expires May 14, 2008 [Page 44]

Internet-Draft HTTP/1.1 November 2007

 For organizations that have strong privacy requirements for hiding
 internal structures, a proxy MAY combine an ordered subsequence of
 Via header field entries with identical received-protocol values into
 a single such entry. For example,

 Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

 could be collapsed to

 Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

 Applications SHOULD NOT combine multiple entries unless they are all
 under the same organizational control and the hosts have already been
 replaced by pseudonyms. Applications MUST NOT combine entries which
 have different received-protocol values.

9. IANA Considerations

 TBD.

10. Security Considerations

 This section is meant to inform application developers, information
 providers, and users of the security limitations in HTTP/1.1 as
 described by this document. The discussion does not include
 definitive solutions to the problems revealed, though it does make
 some suggestions for reducing security risks.

10.1. Personal Information

 HTTP clients are often privy to large amounts of personal information
 (e.g. the user's name, location, mail address, passwords, encryption
 keys, etc.), and SHOULD be very careful to prevent unintentional
 leakage of this information via the HTTP protocol to other sources.
 We very strongly recommend that a convenient interface be provided
 for the user to control dissemination of such information, and that
 designers and implementors be particularly careful in this area.
 History shows that errors in this area often create serious security
 and/or privacy problems and generate highly adverse publicity for the
 implementor's company.

10.2. Abuse of Server Log Information

 A server is in the position to save personal data about a user's
 requests which might identify their reading patterns or subjects of
 interest. This information is clearly confidential in nature and its

Fielding, et al. Expires May 14, 2008 [Page 45]

Internet-Draft HTTP/1.1 November 2007

 handling can be constrained by law in certain countries. People
 using the HTTP protocol to provide data are responsible for ensuring
 that such material is not distributed without the permission of any
 individuals that are identifiable by the published results.

10.3. Attacks Based On File and Path Names

 Implementations of HTTP origin servers SHOULD be careful to restrict
 the documents returned by HTTP requests to be only those that were
 intended by the server administrators. If an HTTP server translates
 HTTP URIs directly into file system calls, the server MUST take
 special care not to serve files that were not intended to be
 delivered to HTTP clients. For example, UNIX, Microsoft Windows, and
 other operating systems use ".." as a path component to indicate a
 directory level above the current one. On such a system, an HTTP
 server MUST disallow any such construct in the Request-URI if it
 would otherwise allow access to a resource outside those intended to
 be accessible via the HTTP server. Similarly, files intended for
 reference only internally to the server (such as access control
 files, configuration files, and script code) MUST be protected from
 inappropriate retrieval, since they might contain sensitive
 information. Experience has shown that minor bugs in such HTTP
 server implementations have turned into security risks.

10.4. DNS Spoofing

 Clients using HTTP rely heavily on the Domain Name Service, and are
 thus generally prone to security attacks based on the deliberate mis-
 association of IP addresses and DNS names. Clients need to be
 cautious in assuming the continuing validity of an IP number/DNS name
 association.

 In particular, HTTP clients SHOULD rely on their name resolver for
 confirmation of an IP number/DNS name association, rather than
 caching the result of previous host name lookups. Many platforms
 already can cache host name lookups locally when appropriate, and
 they SHOULD be configured to do so. It is proper for these lookups
 to be cached, however, only when the TTL (Time To Live) information
 reported by the name server makes it likely that the cached
 information will remain useful.

 If HTTP clients cache the results of host name lookups in order to
 achieve a performance improvement, they MUST observe the TTL
 information reported by DNS.

 If HTTP clients do not observe this rule, they could be spoofed when
 a previously-accessed server's IP address changes. As network
 renumbering is expected to become increasingly common [RFC1900], the

https://datatracker.ietf.org/doc/html/rfc1900

Fielding, et al. Expires May 14, 2008 [Page 46]

Internet-Draft HTTP/1.1 November 2007

 possibility of this form of attack will grow. Observing this
 requirement thus reduces this potential security vulnerability.

 This requirement also improves the load-balancing behavior of clients
 for replicated servers using the same DNS name and reduces the
 likelihood of a user's experiencing failure in accessing sites which
 use that strategy.

10.5. Proxies and Caching

 By their very nature, HTTP proxies are men-in-the-middle, and
 represent an opportunity for man-in-the-middle attacks. Compromise
 of the systems on which the proxies run can result in serious
 security and privacy problems. Proxies have access to security-
 related information, personal information about individual users and
 organizations, and proprietary information belonging to users and
 content providers. A compromised proxy, or a proxy implemented or
 configured without regard to security and privacy considerations,
 might be used in the commission of a wide range of potential attacks.

 Proxy operators should protect the systems on which proxies run as
 they would protect any system that contains or transports sensitive
 information. In particular, log information gathered at proxies
 often contains highly sensitive personal information, and/or
 information about organizations. Log information should be carefully
 guarded, and appropriate guidelines for use developed and followed.
 (Section 10.2).

 Proxy implementors should consider the privacy and security
 implications of their design and coding decisions, and of the
 configuration options they provide to proxy operators (especially the
 default configuration).

 Users of a proxy need to be aware that they are no trustworthier than
 the people who run the proxy; HTTP itself cannot solve this problem.

 The judicious use of cryptography, when appropriate, may suffice to
 protect against a broad range of security and privacy attacks. Such
 cryptography is beyond the scope of the HTTP/1.1 specification.

10.6. Denial of Service Attacks on Proxies

 They exist. They are hard to defend against. Research continues.
 Beware.

Fielding, et al. Expires May 14, 2008 [Page 47]

Internet-Draft HTTP/1.1 November 2007

11. Acknowledgments

 This specification makes heavy use of the augmented BNF and generic
 constructs defined by David H. Crocker for RFC 822 [RFC822].
 Similarly, it reuses many of the definitions provided by Nathaniel
 Borenstein and Ned Freed for MIME [RFC2045]. We hope that their
 inclusion in this specification will help reduce past confusion over
 the relationship between HTTP and Internet mail message formats.

 The HTTP protocol has evolved considerably over the years. It has
 benefited from a large and active developer community--the many
 people who have participated on the www-talk mailing list--and it is
 that community which has been most responsible for the success of
 HTTP and of the World-Wide Web in general. Marc Andreessen, Robert
 Cailliau, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois
 Groff, Phillip M. Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob
 McCool, Lou Montulli, Dave Raggett, Tony Sanders, and Marc
 VanHeyningen deserve special recognition for their efforts in
 defining early aspects of the protocol.

 This document has benefited greatly from the comments of all those
 participating in the HTTP-WG. In addition to those already
 mentioned, the following individuals have contributed to this
 specification:

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc2045

Fielding, et al. Expires May 14, 2008 [Page 48]

Internet-Draft HTTP/1.1 November 2007

 Gary Adams Ross Patterson
 Harald Tveit Alvestrand Albert Lunde
 Keith Ball John C. Mallery
 Brian Behlendorf Jean-Philippe Martin-Flatin
 Paul Burchard Mitra
 Maurizio Codogno David Morris
 Mike Cowlishaw Gavin Nicol
 Roman Czyborra Bill Perry
 Michael A. Dolan Jeffrey Perry
 David J. Fiander Scott Powers
 Alan Freier Owen Rees
 Marc Hedlund Luigi Rizzo
 Greg Herlihy David Robinson
 Koen Holtman Marc Salomon
 Alex Hopmann Rich Salz
 Bob Jernigan Allan M. Schiffman
 Shel Kaphan Jim Seidman
 Rohit Khare Chuck Shotton
 John Klensin Eric W. Sink
 Martijn Koster Simon E. Spero
 Alexei Kosut Richard N. Taylor
 David M. Kristol Robert S. Thau
 Daniel LaLiberte Bill (BearHeart) Weinman
 Ben Laurie Francois Yergeau
 Paul J. Leach Mary Ellen Zurko
 Daniel DuBois Josh Cohen

 Based on an XML translation of RFC 2616 by Julian Reschke.

12. References

 [ISO-8859]
 International Organization for Standardization,
 "Information technology - 8-bit single byte coded graphic
 - character sets", 1987-1990.

 Part 1: Latin alphabet No. 1, ISO-8859-1:1987. Part 2:
 Latin alphabet No. 2, ISO-8859-2, 1987. Part 3: Latin
 alphabet No. 3, ISO-8859-3, 1988. Part 4: Latin alphabet
 No. 4, ISO-8859-4, 1988. Part 5: Latin/Cyrillic alphabet,
 ISO-8859-5, 1988. Part 6: Latin/Arabic alphabet, ISO-
 8859-6, 1987. Part 7: Latin/Greek alphabet, ISO-8859-7,
 1987. Part 8: Latin/Hebrew alphabet, ISO-8859-8, 1988.
 Part 9: Latin alphabet No. 5, ISO-8859-9, 1990.

 [Nie1997] Nielsen, H., Gettys, J., Prud'hommeaux, E., Lie, H., and
 C. Lilley, "Network Performance Effects of HTTP/1.1, CSS1,

https://datatracker.ietf.org/doc/html/rfc2616

Fielding, et al. Expires May 14, 2008 [Page 49]

Internet-Draft HTTP/1.1 November 2007

 and PNG", Proceedings of ACM SIGCOMM '97, Cannes France ,
 Sep 1997.

 [Pad1995] Padmanabhan, V. and J. Mogul, "Improving HTTP Latency",
 Computer Networks and ISDN Systems v. 28, pp. 25-35,
 Dec 1995.

 Slightly revised version of paper in Proc. 2nd
 International WWW Conference '94: Mosaic and the Web, Oct.
 1994, which is available at <http://www.ncsa.uiuc.edu/SDG/

IT94/Proceedings/DDay/mogul/HTTPLatency.html>.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305, March 1992.

 [RFC1436] Anklesaria, F., McCahill, M., Lindner, P., Johnson, D.,
 Torrey, D., and B. Alberti, "The Internet Gopher Protocol
 (a distributed document search and retrieval protocol)",

RFC 1436, March 1993.

 [RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses
 of Objects on the Network as used in the World-Wide Web",

RFC 1630, June 1994.

 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, October 1994.

 [RFC1737] Masinter, L. and K. Sollins, "Functional Requirements for
 Uniform Resource Names", RFC 1737, December 1994.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC1808] Fielding, R., "Relative Uniform Resource Locators",
RFC 1808, June 1995.

 [RFC1900] Carpenter, B. and Y. Rekhter, "Renumbering Needs Work",
RFC 1900, February 1996.

 [RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1436
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1737
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc1900
https://datatracker.ietf.org/doc/html/rfc1945

Fielding, et al. Expires May 14, 2008 [Page 50]

Internet-Draft HTTP/1.1 November 2007

 Bodies", RFC 2045, November 1996.

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",

RFC 2047, November 1996.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, January 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2145] Mogul, J., Fielding, R., Gettys, J., and H. Nielsen, "Use
 and Interpretation of HTTP Version Numbers", RFC 2145,
 May 1997.

 [RFC2324] Masinter, L., "Hyper Text Coffee Pot Control Protocol
 (HTCPCP/1.0)", RFC 2324, April 1998.

 [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3977] Feather, C., "Network News Transfer Protocol (NNTP)",
 October 2006.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC821] Postel, J., "Simple Mail Transfer Protocol", STD 10,
RFC 821, August 1982.

 [RFC822] Crocker, D., "Standard for the format of ARPA Internet
 text messages", STD 11, RFC 822, August 1982.

 [RFC959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2145
https://datatracker.ietf.org/doc/html/rfc2324
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc959

Fielding, et al. Expires May 14, 2008 [Page 51]

Internet-Draft HTTP/1.1 November 2007

 [Spe] Spero, S., "Analysis of HTTP Performance Problems",
 <http://sunsite.unc.edu/mdma-release/http-prob.html>.

 [Tou1998] Touch, J., Heidemann, J., and K. Obraczka, "Analysis of
 HTTP Performance", ISI Research Report ISI/RR-98-463
 (original report dated Aug.1996), Aug 1998,
 <http://www.isi.edu/touch/pubs/http-perf96/>.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [WAIS] Davis, F., Kahle, B., Morris, H., Salem, J., Shen, T.,
 Wang, R., Sui, J., and M. Grinbaum, "WAIS Interface
 Protocol Prototype Functional Specification (v1.5)",
 Thinking Machines Corporation , April 1990.

Appendix A. Internet Media Type message/http and application/http

 In addition to defining the HTTP/1.1 protocol, this document serves
 as the specification for the Internet media type "message/http" and
 "application/http". The message/http type can be used to enclose a
 single HTTP request or response message, provided that it obeys the
 MIME restrictions for all "message" types regarding line length and
 encodings. The application/http type can be used to enclose a
 pipeline of one or more HTTP request or response messages (not
 intermixed). The following is to be registered with IANA [RFC4288].

 Media Type name: message

 Media subtype name: http

 Required parameters: none

 Optional parameters: version, msgtype

 version: The HTTP-Version number of the enclosed message (e.g.,
 "1.1"). If not present, the version can be determined from the
 first line of the body.

 msgtype: The message type -- "request" or "response". If not
 present, the type can be determined from the first line of the
 body.

http://sunsite.unc.edu/mdma-release/http-prob.html
http://www.isi.edu/touch/pubs/http-perf96/
https://datatracker.ietf.org/doc/html/rfc4288

Fielding, et al. Expires May 14, 2008 [Page 52]

Internet-Draft HTTP/1.1 November 2007

 Encoding considerations: only "7bit", "8bit", or "binary" are
 permitted

 Security considerations: none

 Media Type name: application

 Media subtype name: http

 Required parameters: none

 Optional parameters: version, msgtype

 version: The HTTP-Version number of the enclosed messages (e.g.,
 "1.1"). If not present, the version can be determined from the
 first line of the body.

 msgtype: The message type -- "request" or "response". If not
 present, the type can be determined from the first line of the
 body.

 Encoding considerations: HTTP messages enclosed by this type are in
 "binary" format; use of an appropriate Content-Transfer-Encoding
 is required when transmitted via E-mail.

 Security considerations: none

Appendix B. Tolerant Applications

 Although this document specifies the requirements for the generation
 of HTTP/1.1 messages, not all applications will be correct in their
 implementation. We therefore recommend that operational applications
 be tolerant of deviations whenever those deviations can be
 interpreted unambiguously.

 Clients SHOULD be tolerant in parsing the Status-Line and servers
 tolerant when parsing the Request-Line. In particular, they SHOULD
 accept any amount of SP or HT characters between fields, even though
 only a single SP is required.

 The line terminator for message-header fields is the sequence CRLF.
 However, we recommend that applications, when parsing such headers,
 recognize a single LF as a line terminator and ignore the leading CR.

 The character set of an entity-body SHOULD be labeled as the lowest
 common denominator of the character codes used within that body, with
 the exception that not labeling the entity is preferred over labeling

Fielding, et al. Expires May 14, 2008 [Page 53]

Internet-Draft HTTP/1.1 November 2007

 the entity with the labels US-ASCII or ISO-8859-1. See [Part 3].

 Additional rules for requirements on parsing and encoding of dates
 and other potential problems with date encodings include:

 o HTTP/1.1 clients and caches SHOULD assume that an RFC-850 date
 which appears to be more than 50 years in the future is in fact in
 the past (this helps solve the "year 2000" problem).

 o An HTTP/1.1 implementation MAY internally represent a parsed
 Expires date as earlier than the proper value, but MUST NOT
 internally represent a parsed Expires date as later than the
 proper value.

 o All expiration-related calculations MUST be done in GMT. The
 local time zone MUST NOT influence the calculation or comparison
 of an age or expiration time.

 o If an HTTP header incorrectly carries a date value with a time
 zone other than GMT, it MUST be converted into GMT using the most
 conservative possible conversion.

Appendix C. Conversion of Date Formats

 HTTP/1.1 uses a restricted set of date formats (Section 3.3.1) to
 simplify the process of date comparison. Proxies and gateways from
 other protocols SHOULD ensure that any Date header field present in a
 message conforms to one of the HTTP/1.1 formats and rewrite the date
 if necessary.

Appendix D. Compatibility with Previous Versions

 It is beyond the scope of a protocol specification to mandate
 compliance with previous versions. HTTP/1.1 was deliberately
 designed, however, to make supporting previous versions easy. It is
 worth noting that, at the time of composing this specification
 (1996), we would expect commercial HTTP/1.1 servers to:

 o recognize the format of the Request-Line for HTTP/0.9, 1.0, and
 1.1 requests;

 o understand any valid request in the format of HTTP/0.9, 1.0, or
 1.1;

 o respond appropriately with a message in the same major version
 used by the client.

https://datatracker.ietf.org/doc/html/rfc850

Fielding, et al. Expires May 14, 2008 [Page 54]

Internet-Draft HTTP/1.1 November 2007

 And we would expect HTTP/1.1 clients to:

 o recognize the format of the Status-Line for HTTP/1.0 and 1.1
 responses;

 o understand any valid response in the format of HTTP/0.9, 1.0, or
 1.1.

 For most implementations of HTTP/1.0, each connection is established
 by the client prior to the request and closed by the server after
 sending the response. Some implementations implement the Keep-Alive
 version of persistent connections described in Section 19.7.1 of RFC

2068 [RFC2068].

D.1. Changes from HTTP/1.0

 This section summarizes major differences between versions HTTP/1.0
 and HTTP/1.1.

D.1.1. Changes to Simplify Multi-homed Web Servers and Conserve IP
 Addresses

 The requirements that clients and servers support the Host request-
 header, report an error if the Host request-header (Section 8.4) is
 missing from an HTTP/1.1 request, and accept absolute URIs
 (Section 5.1.2) are among the most important changes defined by this
 specification.

 Older HTTP/1.0 clients assumed a one-to-one relationship of IP
 addresses and servers; there was no other established mechanism for
 distinguishing the intended server of a request than the IP address
 to which that request was directed. The changes outlined above will
 allow the Internet, once older HTTP clients are no longer common, to
 support multiple Web sites from a single IP address, greatly
 simplifying large operational Web servers, where allocation of many
 IP addresses to a single host has created serious problems. The
 Internet will also be able to recover the IP addresses that have been
 allocated for the sole purpose of allowing special-purpose domain
 names to be used in root-level HTTP URLs. Given the rate of growth
 of the Web, and the number of servers already deployed, it is
 extremely important that all implementations of HTTP (including
 updates to existing HTTP/1.0 applications) correctly implement these
 requirements:

 o Both clients and servers MUST support the Host request-header.

 o A client that sends an HTTP/1.1 request MUST send a Host header.

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

Fielding, et al. Expires May 14, 2008 [Page 55]

Internet-Draft HTTP/1.1 November 2007

 o Servers MUST report a 400 (Bad Request) error if an HTTP/1.1
 request does not include a Host request-header.

 o Servers MUST accept absolute URIs.

D.2. Compatibility with HTTP/1.0 Persistent Connections

 Some clients and servers might wish to be compatible with some
 previous implementations of persistent connections in HTTP/1.0
 clients and servers. Persistent connections in HTTP/1.0 are
 explicitly negotiated as they are not the default behavior. HTTP/1.0
 experimental implementations of persistent connections are faulty,
 and the new facilities in HTTP/1.1 are designed to rectify these
 problems. The problem was that some existing 1.0 clients may be
 sending Keep-Alive to a proxy server that doesn't understand
 Connection, which would then erroneously forward it to the next
 inbound server, which would establish the Keep-Alive connection and
 result in a hung HTTP/1.0 proxy waiting for the close on the
 response. The result is that HTTP/1.0 clients must be prevented from
 using Keep-Alive when talking to proxies.

 However, talking to proxies is the most important use of persistent
 connections, so that prohibition is clearly unacceptable. Therefore,
 we need some other mechanism for indicating a persistent connection
 is desired, which is safe to use even when talking to an old proxy
 that ignores Connection. Persistent connections are the default for
 HTTP/1.1 messages; we introduce a new keyword (Connection: close) for
 declaring non-persistence. See Section 8.1.

 The original HTTP/1.0 form of persistent connections (the Connection:
 Keep-Alive and Keep-Alive header) is documented in RFC 2068.
 [RFC2068]

D.3. Changes from RFC 2068

 This specification has been carefully audited to correct and
 disambiguate key word usage; RFC 2068 had many problems in respect to
 the conventions laid out in RFC 2119 [RFC2119].

 Transfer-coding and message lengths all interact in ways that
 required fixing exactly when chunked encoding is used (to allow for
 transfer encoding that may not be self delimiting); it was important
 to straighten out exactly how message lengths are computed.

 The use and interpretation of HTTP version numbers has been clarified
 by RFC 2145. Require proxies to upgrade requests to highest protocol
 version they support to deal with problems discovered in HTTP/1.0
 implementations (Section 3.1)

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2145

Fielding, et al. Expires May 14, 2008 [Page 56]

Internet-Draft HTTP/1.1 November 2007

 Proxies should be able to add Content-Length when appropriate.

 Transfer-coding had significant problems, particularly with
 interactions with chunked encoding. The solution is that transfer-
 codings become as full fledged as content-codings. This involves
 adding an IANA registry for transfer-codings (separate from content
 codings), a new header field (TE) and enabling trailer headers in the
 future. Transfer encoding is a major performance benefit, so it was
 worth fixing [Nie1997]. TE also solves another, obscure, downward
 interoperability problem that could have occurred due to interactions
 between authentication trailers, chunked encoding and HTTP/1.0
 clients.(Section 3.4, 3.4.1, and 8.5)

Index

 A
 application/http Media Type 52

 C
 cache 7
 cacheable 7
 client 6
 connection 5
 Connection header 37
 content negotiation 6
 Content-Length header 38

 D
 Date header 38
 downstream 8

 E
 entity 5

 G
 gateway 7
 Grammar
 ALPHA 12
 asctime-date 18
 attribute 18
 CHAR 12
 chunk 20
 chunk-data 20
 chunk-ext-name 20
 chunk-ext-val 20
 chunk-extension 20
 chunk-size 20

Fielding, et al. Expires May 14, 2008 [Page 57]

Internet-Draft HTTP/1.1 November 2007

 Chunked-Body 20
 comment 13
 Connection 37
 connection-token 37
 Content-Length 38
 CR 12
 CRLF 12
 ctext 13
 CTL 12
 Date 38
 date1 18
 date2 18
 date3 18
 DIGIT 12
 extension-code 29
 extension-method 26
 field-content 22
 field-name 22
 field-value 22
 general-header 25
 generic-message 21
 HEX 13
 Host 40
 HT 12
 HTTP-date 18
 HTTP-message 21
 HTTP-Version 14
 http_URL 16
 last-chunk 20
 LF 12
 LOALPHA 12
 LWS 13
 message-body 23
 message-header 22
 Method 26
 month 18
 OCTET 12
 parameter 18
 protocol-name 44
 protocol-version 44
 pseudonym 44
 qdtext 13
 quoted-pair 14
 quoted-string 13
 Reason-Phrase 29
 received-by 44
 received-protocol 44
 Request 26

Fielding, et al. Expires May 14, 2008 [Page 58]

Internet-Draft HTTP/1.1 November 2007

 Request-Line 26
 Request-URI 26
 Response 28

rfc850-date 18
rfc1123-date 18

 separators 13
 SP 12
 start-line 21
 Status-Code 29
 Status-Line 29
 t-codings 40
 TE 40
 TEXT 13
 time 18
 token 13
 Trailer 41
 trailer 20
 transfer-coding 18
 Transfer-Encoding 42
 transfer-extension 18
 UPALPHA 12
 Upgrade 42
 value 18
 Via 44
 weekday 18
 wkday 18

 H
 Headers
 Connection 37
 Content-Length 38
 Date 38
 Host 39
 TE 40
 Trailer 41
 Transfer-Encoding 42
 Upgrade 42
 Via 43
 Host header 39

 I
 inbound 8

 M
 Media Type
 application/http 52
 message/http 52
 message 5

https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123

Fielding, et al. Expires May 14, 2008 [Page 59]

Internet-Draft HTTP/1.1 November 2007

 message/http Media Type 52

 O
 origin server 6
 outbound 8

 P
 proxy 7

 R
 representation 6
 request 5
 resource 5
 response 5

 S
 server 6

 T
 TE header 40
 Trailer header 41
 Transfer-Encoding header 42
 tunnel 7

 U
 Upgrade header 42
 upstream 8
 user agent 6

 V
 variant 6
 Via header 43

Authors' Addresses

 Roy T. Fielding (editor)
 Day Software
 23 Corporate Plaza DR, Suite 280
 Newport Beach, CA 92660
 USA

 Phone: +1-949-706-5300
 Fax: +1-949-706-5305
 Email: fielding@gbiv.com
 URI: http://roy.gbiv.com/

http://roy.gbiv.com/

Fielding, et al. Expires May 14, 2008 [Page 60]

Internet-Draft HTTP/1.1 November 2007

 James Gettys
 Hewlett-Packard Company
 HP Labs, Cambridge Research Laboratory
 One Cambridge Center
 Cambridge, MA 02138
 USA

 Email: Jim.Gettys@hp.com

 Jeffrey C. Mogul
 Hewlett-Packard Company
 HP Labs, Large Scale Systems Group
 1501 Page Mill Road, MS 1177
 Palo Alto, CA 94304
 USA

 Email: JeffMogul@acm.org

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: henrikn@microsoft.com

 Larry Masinter
 Adobe Systems, Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 Email: LMM@acm.org
 URI: http://larry.masinter.net/

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052

 Email: paulle@microsoft.com

http://larry.masinter.net/

Fielding, et al. Expires May 14, 2008 [Page 61]

Internet-Draft HTTP/1.1 November 2007

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139
 USA

 Fax: +1 (617) 258 8682
 Email: timbl@w3.org

Fielding, et al. Expires May 14, 2008 [Page 62]

Internet-Draft HTTP/1.1 November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Fielding, et al. Expires May 14, 2008 [Page 63]

