
Network Working Group R. Fielding, Ed.
Internet-Draft Day Software
Obsoletes: 2068, 2616, 2617 J. Gettys
(if approved) J. Mogul
Intended status: Standards Track HP
Expires: May 14, 2008 H. Frystyk
 Microsoft
 L. Masinter
 Adobe Systems
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 November 11, 2007

HTTP/1.1, part 4: Conditional Requests
draft-fielding-http-p4-conditional-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 14, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Fielding, et al. Expires May 14, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft HTTP/1.1, part 4 November 2007

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World Wide Web global
 information initiative since 1990. This document is Part 4 of the
 eight-part specification that defines the protocol referred to as
 "HTTP/1.1" and, taken together, updates RFC 2616 and RFC 2617. Part
 4 defines request header fields for indicating conditional requests
 and the rules for constructing responses to those requests.

Table of Contents

1. Introduction . 3
2. Entity Tags . 3
3. Weak and Strong Validators 3
4. Rules for When to Use Entity Tags and Last-Modified Dates . . 6
5. Header Field Definitions 8
5.1. ETag . 8
5.2. If-Match . 8
5.3. If-Modified-Since . 9
5.4. If-None-Match . 11
5.5. If-Unmodified-Since 12
5.6. Last-Modified . 13

6. IANA Considerations . 13
7. Security Considerations 14
8. Acknowledgments . 14
9. References . 14

 Index . 14
 Authors' Addresses . 15
 Intellectual Property and Copyright Statements 17

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617

Fielding, et al. Expires May 14, 2008 [Page 2]

Internet-Draft HTTP/1.1, part 4 November 2007

1. Introduction

 This document will define aspects of HTTP related to conditional
 request messages based on time stamps and entity-tags. Right now it
 only includes the extracted relevant sections of RFC 2616 [RFC2616]
 without edit.

2. Entity Tags

 Entity tags are used for comparing two or more entities from the same
 requested resource. HTTP/1.1 uses entity tags in the ETag
 (Section 5.1), If-Match (Section 5.2), If-None-Match (Section 5.4),
 and If-Range ([Part 5]) header fields. The definition of how they
 are used and compared as cache validators is in Section 3. An entity
 tag consists of an opaque quoted string, possibly prefixed by a
 weakness indicator.

 entity-tag = [weak] opaque-tag
 weak = "W/"
 opaque-tag = quoted-string

 A "strong entity tag" MAY be shared by two entities of a resource
 only if they are equivalent by octet equality.

 A "weak entity tag," indicated by the "W/" prefix, MAY be shared by
 two entities of a resource only if the entities are equivalent and
 could be substituted for each other with no significant change in
 semantics. A weak entity tag can only be used for weak comparison.

 An entity tag MUST be unique across all versions of all entities
 associated with a particular resource. A given entity tag value MAY
 be used for entities obtained by requests on different URIs. The use
 of the same entity tag value in conjunction with entities obtained by
 requests on different URIs does not imply the equivalence of those
 entities.

3. Weak and Strong Validators

 Since both origin servers and caches will compare two validators to
 decide if they represent the same or different entities, one normally
 would expect that if the entity (the entity-body or any entity-
 headers) changes in any way, then the associated validator would
 change as well. If this is true, then we call this validator a
 "strong validator."

 However, there might be cases when a server prefers to change the

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Fielding, et al. Expires May 14, 2008 [Page 3]

Internet-Draft HTTP/1.1, part 4 November 2007

 validator only on semantically significant changes, and not when
 insignificant aspects of the entity change. A validator that does
 not always change when the resource changes is a "weak validator."

 Entity tags are normally "strong validators," but the protocol
 provides a mechanism to tag an entity tag as "weak." One can think
 of a strong validator as one that changes whenever the bits of an
 entity changes, while a weak value changes whenever the meaning of an
 entity changes. Alternatively, one can think of a strong validator
 as part of an identifier for a specific entity, while a weak
 validator is part of an identifier for a set of semantically
 equivalent entities.

 Note: One example of a strong validator is an integer that is
 incremented in stable storage every time an entity is changed.

 An entity's modification time, if represented with one-second
 resolution, could be a weak validator, since it is possible that
 the resource might be modified twice during a single second.

 Support for weak validators is optional. However, weak validators
 allow for more efficient caching of equivalent objects; for
 example, a hit counter on a site is probably good enough if it is
 updated every few days or weeks, and any value during that period
 is likely "good enough" to be equivalent.

 A "use" of a validator is either when a client generates a request
 and includes the validator in a validating header field, or when a
 server compares two validators.

 Strong validators are usable in any context. Weak validators are
 only usable in contexts that do not depend on exact equality of an
 entity. For example, either kind is usable for a conditional GET of
 a full entity. However, only a strong validator is usable for a sub-
 range retrieval, since otherwise the client might end up with an
 internally inconsistent entity.

 Clients MAY issue simple (non-subrange) GET requests with either weak
 validators or strong validators. Clients MUST NOT use weak
 validators in other forms of request.

 The only function that the HTTP/1.1 protocol defines on validators is
 comparison. There are two validator comparison functions, depending
 on whether the comparison context allows the use of weak validators
 or not:

 o The strong comparison function: in order to be considered equal,
 both validators MUST be identical in every way, and both MUST NOT

Fielding, et al. Expires May 14, 2008 [Page 4]

Internet-Draft HTTP/1.1, part 4 November 2007

 be weak.

 o The weak comparison function: in order to be considered equal,
 both validators MUST be identical in every way, but either or both
 of them MAY be tagged as "weak" without affecting the result.

 An entity tag is strong unless it is explicitly tagged as weak.
Section 2 gives the syntax for entity tags.

 A Last-Modified time, when used as a validator in a request, is
 implicitly weak unless it is possible to deduce that it is strong,
 using the following rules:

 o The validator is being compared by an origin server to the actual
 current validator for the entity and,

 o That origin server reliably knows that the associated entity did
 not change twice during the second covered by the presented
 validator.

 or

 o The validator is about to be used by a client in an If-Modified-
 Since or If-Unmodified-Since header, because the client has a
 cache entry for the associated entity, and

 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and

 o The presented Last-Modified time is at least 60 seconds before the
 Date value.

 or

 o The validator is being compared by an intermediate cache to the
 validator stored in its cache entry for the entity, and

 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and

 o The presented Last-Modified time is at least 60 seconds before the
 Date value.

 This method relies on the fact that if two different responses were
 sent by the origin server during the same second, but both had the
 same Last-Modified time, then at least one of those responses would
 have a Date value equal to its Last-Modified time. The arbitrary 60-
 second limit guards against the possibility that the Date and Last-

Fielding, et al. Expires May 14, 2008 [Page 5]

Internet-Draft HTTP/1.1, part 4 November 2007

 Modified values are generated from different clocks, or at somewhat
 different times during the preparation of the response. An
 implementation MAY use a value larger than 60 seconds, if it is
 believed that 60 seconds is too short.

 If a client wishes to perform a sub-range retrieval on a value for
 which it has only a Last-Modified time and no opaque validator, it
 MAY do this only if the Last-Modified time is strong in the sense
 described here.

 A cache or origin server receiving a conditional request, other than
 a full-body GET request, MUST use the strong comparison function to
 evaluate the condition.

 These rules allow HTTP/1.1 caches and clients to safely perform sub-
 range retrievals on values that have been obtained from HTTP/1.0
 servers.

4. Rules for When to Use Entity Tags and Last-Modified Dates

 We adopt a set of rules and recommendations for origin servers,
 clients, and caches regarding when various validator types ought to
 be used, and for what purposes.

 HTTP/1.1 origin servers:

 o SHOULD send an entity tag validator unless it is not feasible to
 generate one.

 o MAY send a weak entity tag instead of a strong entity tag, if
 performance considerations support the use of weak entity tags, or
 if it is unfeasible to send a strong entity tag.

 o SHOULD send a Last-Modified value if it is feasible to send one,
 unless the risk of a breakdown in semantic transparency that could
 result from using this date in an If-Modified-Since header would
 lead to serious problems.

 In other words, the preferred behavior for an HTTP/1.1 origin server
 is to send both a strong entity tag and a Last-Modified value.

 In order to be legal, a strong entity tag MUST change whenever the
 associated entity value changes in any way. A weak entity tag SHOULD
 change whenever the associated entity changes in a semantically
 significant way.

Fielding, et al. Expires May 14, 2008 [Page 6]

Internet-Draft HTTP/1.1, part 4 November 2007

 Note: in order to provide semantically transparent caching, an
 origin server must avoid reusing a specific strong entity tag
 value for two different entities, or reusing a specific weak
 entity tag value for two semantically different entities. Cache
 entries might persist for arbitrarily long periods, regardless of
 expiration times, so it might be inappropriate to expect that a
 cache will never again attempt to validate an entry using a
 validator that it obtained at some point in the past.

 HTTP/1.1 clients:

 o If an entity tag has been provided by the origin server, MUST use
 that entity tag in any cache-conditional request (using If-Match
 or If-None-Match).

 o If only a Last-Modified value has been provided by the origin
 server, SHOULD use that value in non-subrange cache-conditional
 requests (using If-Modified-Since).

 o If only a Last-Modified value has been provided by an HTTP/1.0
 origin server, MAY use that value in subrange cache-conditional
 requests (using If-Unmodified-Since:). The user agent SHOULD
 provide a way to disable this, in case of difficulty.

 o If both an entity tag and a Last-Modified value have been provided
 by the origin server, SHOULD use both validators in cache-
 conditional requests. This allows both HTTP/1.0 and HTTP/1.1
 caches to respond appropriately.

 An HTTP/1.1 origin server, upon receiving a conditional request that
 includes both a Last-Modified date (e.g., in an If-Modified-Since or
 If-Unmodified-Since header field) and one or more entity tags (e.g.,
 in an If-Match, If-None-Match, or If-Range header field) as cache
 validators, MUST NOT return a response status of 304 (Not Modified)
 unless doing so is consistent with all of the conditional header
 fields in the request.

 An HTTP/1.1 caching proxy, upon receiving a conditional request that
 includes both a Last-Modified date and one or more entity tags as
 cache validators, MUST NOT return a locally cached response to the
 client unless that cached response is consistent with all of the
 conditional header fields in the request.

 Note: The general principle behind these rules is that HTTP/1.1
 servers and clients should transmit as much non-redundant
 information as is available in their responses and requests.
 HTTP/1.1 systems receiving this information will make the most
 conservative assumptions about the validators they receive.

Fielding, et al. Expires May 14, 2008 [Page 7]

Internet-Draft HTTP/1.1, part 4 November 2007

 HTTP/1.0 clients and caches will ignore entity tags. Generally,
 last-modified values received or used by these systems will
 support transparent and efficient caching, and so HTTP/1.1 origin
 servers should provide Last-Modified values. In those rare cases
 where the use of a Last-Modified value as a validator by an
 HTTP/1.0 system could result in a serious problem, then HTTP/1.1
 origin servers should not provide one.

5. Header Field Definitions

 This section defines the syntax and semantics of all standard
 HTTP/1.1 header fields. For entity-header fields, both sender and
 recipient refer to either the client or the server, depending on who
 sends and who receives the entity.

5.1. ETag

 The ETag response-header field provides the current value of the
 entity tag for the requested variant. The headers used with entity
 tags are described in sections 5.2, 5.4 and [Part 5]. The entity tag
 MAY be used for comparison with other entities from the same resource
 (see Section 3).

 ETag = "ETag" ":" entity-tag

 Examples:

 ETag: "xyzzy"
 ETag: W/"xyzzy"
 ETag: ""

5.2. If-Match

 The If-Match request-header field is used with a method to make it
 conditional. A client that has one or more entities previously
 obtained from the resource can verify that one of those entities is
 current by including a list of their associated entity tags in the
 If-Match header field. Entity tags are defined in Section 2. The
 purpose of this feature is to allow efficient updates of cached
 information with a minimum amount of transaction overhead. It is
 also used, on updating requests, to prevent inadvertent modification
 of the wrong version of a resource. As a special case, the value "*"
 matches any current entity of the resource.

 If-Match = "If-Match" ":" ("*" | 1#entity-tag)

 If any of the entity tags match the entity tag of the entity that

Fielding, et al. Expires May 14, 2008 [Page 8]

Internet-Draft HTTP/1.1, part 4 November 2007

 would have been returned in the response to a similar GET request
 (without the If-Match header) on that resource, or if "*" is given
 and any current entity exists for that resource, then the server MAY
 perform the requested method as if the If-Match header field did not
 exist.

 A server MUST use the strong comparison function (see Section 3) to
 compare the entity tags in If-Match.

 If none of the entity tags match, or if "*" is given and no current
 entity exists, the server MUST NOT perform the requested method, and
 MUST return a 412 (Precondition Failed) response. This behavior is
 most useful when the client wants to prevent an updating method, such
 as PUT, from modifying a resource that has changed since the client
 last retrieved it.

 If the request would, without the If-Match header field, result in
 anything other than a 2xx or 412 status, then the If-Match header
 MUST be ignored.

 The meaning of "If-Match: *" is that the method SHOULD be performed
 if the representation selected by the origin server (or by a cache,
 possibly using the Vary mechanism, see [Part 6]) exists, and MUST NOT
 be performed if the representation does not exist.

 A request intended to update a resource (e.g., a PUT) MAY include an
 If-Match header field to signal that the request method MUST NOT be
 applied if the entity corresponding to the If-Match value (a single
 entity tag) is no longer a representation of that resource. This
 allows the user to indicate that they do not wish the request to be
 successful if the resource has been changed without their knowledge.
 Examples:

 If-Match: "xyzzy"
 If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-Match: *

 The result of a request having both an If-Match header field and
 either an If-None-Match or an If-Modified-Since header fields is
 undefined by this specification.

5.3. If-Modified-Since

 The If-Modified-Since request-header field is used with a method to
 make it conditional: if the requested variant has not been modified
 since the time specified in this field, an entity will not be
 returned from the server; instead, a 304 (not modified) response will
 be returned without any message-body.

Fielding, et al. Expires May 14, 2008 [Page 9]

Internet-Draft HTTP/1.1, part 4 November 2007

 If-Modified-Since = "If-Modified-Since" ":" HTTP-date

 An example of the field is:

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 A GET method with an If-Modified-Since header and no Range header
 requests that the identified entity be transferred only if it has
 been modified since the date given by the If-Modified-Since header.
 The algorithm for determining this includes the following cases:

 1. If the request would normally result in anything other than a 200
 (OK) status, or if the passed If-Modified-Since date is invalid,
 the response is exactly the same as for a normal GET. A date
 which is later than the server's current time is invalid.

 2. If the variant has been modified since the If-Modified-Since
 date, the response is exactly the same as for a normal GET.

 3. If the variant has not been modified since a valid If-Modified-
 Since date, the server SHOULD return a 304 (Not Modified)
 response.

 The purpose of this feature is to allow efficient updates of cached
 information with a minimum amount of transaction overhead.

 Note: The Range request-header field modifies the meaning of If-
 Modified-Since; see [Part 5] for full details.

 Note: If-Modified-Since times are interpreted by the server, whose
 clock might not be synchronized with the client.

 Note: When handling an If-Modified-Since header field, some
 servers will use an exact date comparison function, rather than a
 less-than function, for deciding whether to send a 304 (Not
 Modified) response. To get best results when sending an If-
 Modified-Since header field for cache validation, clients are
 advised to use the exact date string received in a previous Last-
 Modified header field whenever possible.

 Note: If a client uses an arbitrary date in the If-Modified-Since
 header instead of a date taken from the Last-Modified header for
 the same request, the client should be aware of the fact that this
 date is interpreted in the server's understanding of time. The
 client should consider unsynchronized clocks and rounding problems
 due to the different encodings of time between the client and
 server. This includes the possibility of race conditions if the
 document has changed between the time it was first requested and

Fielding, et al. Expires May 14, 2008 [Page 10]

Internet-Draft HTTP/1.1, part 4 November 2007

 the If-Modified-Since date of a subsequent request, and the
 possibility of clock-skew-related problems if the If-Modified-
 Since date is derived from the client's clock without correction
 to the server's clock. Corrections for different time bases
 between client and server are at best approximate due to network
 latency.

 The result of a request having both an If-Modified-Since header field
 and either an If-Match or an If-Unmodified-Since header fields is
 undefined by this specification.

5.4. If-None-Match

 The If-None-Match request-header field is used with a method to make
 it conditional. A client that has one or more entities previously
 obtained from the resource can verify that none of those entities is
 current by including a list of their associated entity tags in the
 If-None-Match header field. The purpose of this feature is to allow
 efficient updates of cached information with a minimum amount of
 transaction overhead. It is also used to prevent a method (e.g.
 PUT) from inadvertently modifying an existing resource when the
 client believes that the resource does not exist.

 As a special case, the value "*" matches any current entity of the
 resource.

 If-None-Match = "If-None-Match" ":" ("*" | 1#entity-tag)

 If any of the entity tags match the entity tag of the entity that
 would have been returned in the response to a similar GET request
 (without the If-None-Match header) on that resource, or if "*" is
 given and any current entity exists for that resource, then the
 server MUST NOT perform the requested method, unless required to do
 so because the resource's modification date fails to match that
 supplied in an If-Modified-Since header field in the request.
 Instead, if the request method was GET or HEAD, the server SHOULD
 respond with a 304 (Not Modified) response, including the cache-
 related header fields (particularly ETag) of one of the entities that
 matched. For all other request methods, the server MUST respond with
 a status of 412 (Precondition Failed).

 See Section 3 for rules on how to determine if two entities tags
 match. The weak comparison function can only be used with GET or
 HEAD requests.

 If none of the entity tags match, then the server MAY perform the
 requested method as if the If-None-Match header field did not exist,
 but MUST also ignore any If-Modified-Since header field(s) in the

Fielding, et al. Expires May 14, 2008 [Page 11]

Internet-Draft HTTP/1.1, part 4 November 2007

 request. That is, if no entity tags match, then the server MUST NOT
 return a 304 (Not Modified) response.

 If the request would, without the If-None-Match header field, result
 in anything other than a 2xx or 304 status, then the If-None-Match
 header MUST be ignored. (See Section 4 for a discussion of server
 behavior when both If-Modified-Since and If-None-Match appear in the
 same request.)

 The meaning of "If-None-Match: *" is that the method MUST NOT be
 performed if the representation selected by the origin server (or by
 a cache, possibly using the Vary mechanism, see [Part 6]) exists, and
 SHOULD be performed if the representation does not exist. This
 feature is intended to be useful in preventing races between PUT
 operations.

 Examples:

 If-None-Match: "xyzzy"
 If-None-Match: W/"xyzzy"
 If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"
 If-None-Match: *

 The result of a request having both an If-None-Match header field and
 either an If-Match or an If-Unmodified-Since header fields is
 undefined by this specification.

5.5. If-Unmodified-Since

 The If-Unmodified-Since request-header field is used with a method to
 make it conditional. If the requested resource has not been modified
 since the time specified in this field, the server SHOULD perform the
 requested operation as if the If-Unmodified-Since header were not
 present.

 If the requested variant has been modified since the specified time,
 the server MUST NOT perform the requested operation, and MUST return
 a 412 (Precondition Failed).

 If-Unmodified-Since = "If-Unmodified-Since" ":" HTTP-date

 An example of the field is:

 If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 If the request normally (i.e., without the If-Unmodified-Since
 header) would result in anything other than a 2xx or 412 status, the

Fielding, et al. Expires May 14, 2008 [Page 12]

Internet-Draft HTTP/1.1, part 4 November 2007

 If-Unmodified-Since header SHOULD be ignored.

 If the specified date is invalid, the header is ignored.

 The result of a request having both an If-Unmodified-Since header
 field and either an If-None-Match or an If-Modified-Since header
 fields is undefined by this specification.

5.6. Last-Modified

 The Last-Modified entity-header field indicates the date and time at
 which the origin server believes the variant was last modified.

 Last-Modified = "Last-Modified" ":" HTTP-date

 An example of its use is

 Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

 The exact meaning of this header field depends on the implementation
 of the origin server and the nature of the original resource. For
 files, it may be just the file system last-modified time. For
 entities with dynamically included parts, it may be the most recent
 of the set of last-modify times for its component parts. For
 database gateways, it may be the last-update time stamp of the
 record. For virtual objects, it may be the last time the internal
 state changed.

 An origin server MUST NOT send a Last-Modified date which is later
 than the server's time of message origination. In such cases, where
 the resource's last modification would indicate some time in the
 future, the server MUST replace that date with the message
 origination date.

 An origin server SHOULD obtain the Last-Modified value of the entity
 as close as possible to the time that it generates the Date value of
 its response. This allows a recipient to make an accurate assessment
 of the entity's modification time, especially if the entity changes
 near the time that the response is generated.

 HTTP/1.1 servers SHOULD send Last-Modified whenever feasible.

6. IANA Considerations

 TBD.

Fielding, et al. Expires May 14, 2008 [Page 13]

Internet-Draft HTTP/1.1, part 4 November 2007

7. Security Considerations

 No additional security considerations have been identified beyond
 those applicable to HTTP in general [Part 1].

8. Acknowledgments

 Based on an XML translation of RFC 2616 by Julian Reschke.

9. References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Index

 E
 ETag header 8

 G
 Grammar
 entity-tag 3
 ETag 8
 If-Match 8
 If-Modified-Since 10
 If-None-Match 11
 If-Unmodified-Since 12
 Last-Modified 13
 opaque-tag 3
 weak 3

 H
 Headers
 ETag 8
 If-Match 8
 If-Modified-Since 9
 If-None-Match 11
 If-Unmodified-Since 12
 Last-Modified 13

 I
 If-Match header 8
 If-Modified-Since header 9
 If-None-Match header 11

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Fielding, et al. Expires May 14, 2008 [Page 14]

Internet-Draft HTTP/1.1, part 4 November 2007

 If-Unmodified-Since header 12

 L
 Last-Modified header 13

Authors' Addresses

 Roy T. Fielding (editor)
 Day Software
 23 Corporate Plaza DR, Suite 280
 Newport Beach, CA 92660
 USA

 Phone: +1-949-706-5300
 Fax: +1-949-706-5305
 Email: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 James Gettys
 Hewlett-Packard Company
 HP Labs, Cambridge Research Laboratory
 One Cambridge Center
 Cambridge, MA 02138
 USA

 Email: Jim.Gettys@hp.com

 Jeffrey C. Mogul
 Hewlett-Packard Company
 HP Labs, Large Scale Systems Group
 1501 Page Mill Road, MS 1177
 Palo Alto, CA 94304
 USA

 Email: JeffMogul@acm.org

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: henrikn@microsoft.com

http://roy.gbiv.com/

Fielding, et al. Expires May 14, 2008 [Page 15]

Internet-Draft HTTP/1.1, part 4 November 2007

 Larry Masinter
 Adobe Systems, Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 Email: LMM@acm.org
 URI: http://larry.masinter.net/

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052

 Email: paulle@microsoft.com

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139
 USA

 Fax: +1 (617) 258 8682
 Email: timbl@w3.org

http://larry.masinter.net/

Fielding, et al. Expires May 14, 2008 [Page 16]

Internet-Draft HTTP/1.1, part 4 November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Fielding, et al. Expires May 14, 2008 [Page 17]

