
SPRING C. Filsfils
Internet-Draft P. Camarillo, Ed.
Intended status: Informational Cisco Systems, Inc.
Expires: February 15, 2020 Z. Li
 Huawei Technologies
 S. Matsushima
 SoftBank
 B. Decraene
 Orange
 D. Steinberg
 Lapishills Consulting Limited
 D. Lebrun
 Google
 R. Raszuk
 Bloomberg LP
 J. Leddy
 Individual Contributor
 August 14, 2019

Illustrations for SRv6 Network Programming
draft-filsfils-spring-srv6-net-pgm-illustration-01

Abstract

 This document illustrates how SRv6 Network Programming
 [I-D.ietf-spring-srv6-network-programming] can be used to create
 interoperable and protected overlays with underlay optimization and
 service programming.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Filsfils, et al. Expires February 15, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 15, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Illustration . 3
2.1. Simplified SID allocation 3
2.2. Reference diagram . 4
2.3. Basic security . 4
2.4. SR-L3VPN . 5
2.5. SR-Ethernet-VPWS . 6
2.6. SR-EVPN-FXC . 7
2.7. SR-EVPN . 7
2.7.1. EVPN Bridging . 7
2.7.2. EVPN Multi-homing with ESI filtering 9
2.7.3. EVPN Layer-3 . 10
2.7.4. EVPN Integrated Routing Bridging (IRB) 11

2.8. SR TE for Underlay SLA 11
2.8.1. SR policy from the Ingress PE 11
2.8.2. SR policy at a midpoint 12

2.9. End-to-End policy with intermediate BSID 13
2.10. TI-LFA . 15
2.11. SR TE for Service programming 15

3. Benefits . 17
3.1. Seamless deployment 17
3.2. Integration . 18
3.3. Security . 18

4. Acknowledgements . 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Filsfils, et al. Expires February 15, 2020 [Page 2]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

5. Contributors . 18
6. Informative References 21

 Authors' Addresses . 22

1. Introduction

 Segment Routing leverages the source routing paradigm. An ingress
 node steers a packet through a ordered list of instructions, called
 segments. Each one of these instructions represents a function to be
 called at a specific location in the network. A function is locally
 defined on the node where it is executed and may range from simply
 moving forward in the segment list to any complex user-defined
 behavior. The network programming consists in combining segment
 routing functions, both simple and complex, to achieve a networking
 objective that goes beyond mere packet routing.

 [I-D.ietf-spring-srv6-network-programming] defines the SRv6 Network
 Programming concept and the main segment routing behaviors.

 This document illustrates how these concepts can be used to enable
 the creation of interoperable overlays with underlay optimization and
 service programming.

 The terminology for this document is defined in
 [I-D.ietf-spring-srv6-network-programming].

2. Illustration

 We introduce a simplified SID allocation technique to ease the
 reading of the text. We document the reference diagram. We then
 illustrate the network programming concept through different use-
 cases. These use-cases have been thought to allow straightforward
 combination between each other.

2.1. Simplified SID allocation

 To simplify the illustration, we assume:

 A::/16 is dedicated to the internal address space

 B::/16 is dedicated to the internal SRv6 SID space

 We assume a location expressed in 32 bits and a function expressed
 in 16 bits

 Node k has a classic IPv6 loopback address A:k::/128 which is
 advertised in the IGP

Filsfils, et al. Expires February 15, 2020 [Page 3]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Node k has B:k::/32 for its local SID space. Its SIDs will be
 explicitly allocated from that block

 Node k advertises B:k::/32 in its IGP

 Function 0:0:1:: (function 1, for short) represents the End
 function with PSP support

 Function 0:0:C2:: (function C2, for short) represents the End.X
 function towards neighbor 2

 Each node k has:

 An explicit SID instantiation B:k:1::/128 bound to an End function
 with additional support for PSP

 An explicit SID instantiation B:k:Cj::/128 bound to an End.X
 function to neighbor J with additional support for PSP

2.2. Reference diagram

 Let us assume the following topology where all the links have IGP
 metric 10 except the link 3-4 which is 100.

 Nodes A, B and 1 to 8 are considered within the network domain while
 nodes CE-A, CE-B and CE-C are outside the domain.

 CE-B
 \
 3------4---5
 | \ /
 | 6
 | /
 A--1--- 2------7---8--B
 / \
 CE-A CE-C
 Tenant100 Tenant100 with
 IPv4 20/8

 Figure 1: Reference topology

2.3. Basic security

 Any edge node such as 1 would be configured with an ACL on any of its
 external interface (e.g. from CE-A) which drops any traffic with SA
 or DA in B::/16. See SEC-1.

Filsfils, et al. Expires February 15, 2020 [Page 4]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Any core node such as 6 could be configured with an ACL with the
 SEC-2 behavior "IF (DA == LocalSID) && (SA is not in A::/16 or
 B::/16) THEN drop".

 SEC-3 protection is a default property of SRv6. A SID must be
 explicitly instantiated. In our illustration, the only available
 SIDs are those explicitly instantiated.

2.4. SR-L3VPN

 Let us illustrate the SR-L3VPN use-case applied to IPv4.

 Nodes 1 and 8 are configured with a tenant 100, each respectively
 connected to CE-A and CE-C.

 Node 8 is configured with a locally instantiated End.DT4 SID
 B:8:D100:: bound to tenant IPv4 table 100.

 Via BGP signaling or an SDN-based controller, Node 1's tenant-100
 IPv4 table is programmed with an IPv4 SR-VPN route 20/8 via SRv6
 policy <B:8:D100::>.

 When 1 receives a packet P from CE-A destined to 20.20.20.20, 1 looks
 up 20.20.20.20 in its tenant-100 IPv4 table and finds an SR-VPN entry
 20/8 via SRv6 policy <B:8:D100::>. As a consequence, 1 pushes an
 outer IPv6 header with SA=A:1::, DA=B:8:D100:: and NH=4. 1 then
 forwards the resulting packet on the shortest path to B:8::/32.

 When 8 receives the packet, 8 matches the DA in its "My SID Table",
 finds the bound function End.DT4(100) and confirms NH=4. As a
 result, 8 decaps the outer header, looks up the inner IPv4 DA in
 tenant-100 IPv4 table, and forward the (inner) IPv4 packet towards
 CE-C.

 The reader can easily infer all the other SR-IPVPN instantiations:

Filsfils, et al. Expires February 15, 2020 [Page 5]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 +---------------------------------+----------------------------------+
 | Route at ingress PE(1) | SR-VPN Egress SID of egress PE(8)|
 +---------------------------------+----------------------------------+
 | IPv4 tenant route with egress | End.DT4 function bound to |
 | tenant table lookup | IPv4-tenant-100 table |
 +---------------------------------+----------------------------------+
 | IPv4 tenant route without egress| End.DX4 function bound to |
 | tenant table lookup | CE-C (IPv4) |
 +---------------------------------+----------------------------------+
 | IPv6 tenant route with egress | End.DT6 function bound to |
 | tenant table lookup | IPv6-tenant-100 table |
 +---------------------------------+----------------------------------+
 | IPv6 tenant route without egress| End.DX6 function bound to |
 | tenant table lookup | CE-C (IPv6) |
 +---------------------------------+----------------------------------+

2.5. SR-Ethernet-VPWS

 Let us illustrate the SR-Ethernet-VPWS use-case.

 Node 8 is configured a locally instantiated End.DX2 SID B:8:DC2C::
 bound to local attachment circuit {ethernet CE-C}.

 Via BGP signalling or an SDN controller, node 1 is programmed with an
 Ethernet VPWS service for its local attachment circuit {ethernet CE-
 A} with remote endpoint B:8:DC2C::.

 When 1 receives a frame F from CE-A, node 1 pushes an outer IPv6
 header with SA=A:1::, DA=B:8:DC2C:: and NH=59. Note that no
 additional header is pushed. 1 then forwards the resulting packet on
 the shortest path to B:8::/32.

 When 8 receives the packet, 8 matches the DA in its "My SID Table"
 and finds the bound function End.DX2. After confirming that next-
 header=59, 8 decaps the outer IPv6 header and forwards the inner
 Ethernet frame towards CE-C.

 The reader can easily infer the Ethernet VPWS use-case:

 +------------------------+-----------------------------------+
 | Route at ingress PE(1) | SR-VPN Egress SID of egress PE(8) |
 +------------------------+-----------------------------------+
 | Ethernet VPWS | End.DX2 function bound to |
 | | CE-C (Ethernet) |
 +------------------------+-----------------------------------+

Filsfils, et al. Expires February 15, 2020 [Page 6]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

2.6. SR-EVPN-FXC

 Let us illustrate the SR-EVPN-FXC use-case (Flexible cross-connect
 service).

 Node 8 is configured with a locally instantiated End.DX2V SID
 B:8:DC2C:: bound to the L2 table T1. Node 8 is also configured with
 local attachment circuits {ethernet CE1-C VLAN:100} and {ethernet
 CE2-C VLAN:200} in table T1.

 Via an SDN controller or derived from a BGP-based sginalling, the
 node 1 is programmed with an EVPN-FXC service for its local
 attachment circuit {ethernet CE-A} with remote endpoint B:8:DC2C::.
 For this purpose, the EVPN Type-1 route is used.

 When node 1 receives a frame F from CE-A, it pushes an outer IPv6
 header with SA=A:1::, DA=B:8:DC2C:: and NH=59. Note that no
 additional header is pushed. Node 1 then forwards the resulting
 packet on the shortest path to B:8::/32.

 When node 8 receives the packet, it matches the IP DA in its "My SID
 Table" and finds the bound function End.DX2V. After confirming that
 next-header=59, node 8 decaps the outer IPv6 header, performs a VLAN
 loopkup in table T1 and forwards the inner Ethernet frame to matching
 interface e.g. for VLAN 100, packet is forwarded to CE1-C and for
 VLAN 200, frame is forwarded to CE2-C.

 The reader can easily infer the Ethernet FXC use-case:

+---------------------------------+------------------------------------+
| Route at ingress PE (1) | SR-VPN Egress SID of egress PE (8) |
+---------------------------------+------------------------------------+
| EVPN-FXC | End.DX2V function bound to |
| | CE1-C / CE2-C (Ethernet) |
+---------------------------------+------------------------------------+

2.7. SR-EVPN

 The following section details some of the particular use-cases of SR-
 EVPN. In particular bridging (unicast and multicast), multi-homing
 ESI filtering, L3 EVPN and EVPN-IRB.

2.7.1. EVPN Bridging

 Let us illustrate the SR-EVPN unicast and multicast bridging.

 Nodes 1, 3 and 8 are configured with a EVPN bridging service (E-LAN
 service).

Filsfils, et al. Expires February 15, 2020 [Page 7]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Node 1 is configured with a locally instantiated End.DT2U SID
 B:1:D2AA:: bound to a local L2 table T1 where EVPN is enabled. This
 SID will be used to attract unicast traffic. Additionally, Node 1 is
 configured with a locally instantiated End.DT2M SID B:1:D2AF:: bound
 to the same local L2 table T1. This SID will be used to attract
 multicast traffic. Node 1 is also configured with local attachment
 circuit {ethernet CE-A VLAN:100} associated to table T1.

 A similar instantiation is done at Node 4 and Node 8 resulting in:

 - Node 1 - My SID table:

 - End.DT2U SID: B:1:D2AA:: table T1

 - End.DT2M SID: B:1:D2AF:: table T1

 - Node 3 - My SID table:

 - End.DT2U SID: B:3:D2BA:: table T3

 - End.DT2M SID: B:3:D2BF:: table T3

 - Node 8 - My SID table:

 - End.DT2U SID: B:8:D2CA:: table T8

 - End.DT2M SID: B:8:D2CF:: table T8

 Nodes 1, 4 and 8 are going to exchange the End.DT2M SIDs via BGP-
 based EVPN Type-3 route. Upon reception of the EVPN Type-3 routes,
 each node build its own replication list per L2 table that will be
 used for ingress BUM traffic replication. The replication lists are
 the following:

 - Node 1 - replication list: {B:3:D2BF:: and B:8:D2CF::}

 - Node 3 - replication list: {B:1:D2AF:: and B:8:D2CF::}

 - Node 8 - replication list: {B:1:D2AF:: and B:3:D2CF::}

 When node 1 receives a BUM frame F from CE-A, it replicates that
 frame to every node in the replication list. For node 3, it pushes
 an outer IPv6 header with SA=A:1::, DA=B:3:D2BF:: and NH=59. For
 node 8, it performs the same operation but DA=B:8:D2CF::. Note that
 no additional headers are pushed. Node 1 then forwards the resulting
 packets on the shortest path for each destination.

Filsfils, et al. Expires February 15, 2020 [Page 8]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 When node 3 receives the packet, it matches the DA in its "My SID
 Table" and finds the bound function End.DT2M with its related layer2
 table T3. After confirming that next-header=59, node 3 decaps the
 outer IPv6 header and forwards the inner Ethernet frame to all
 layer-2 output interface found in table T3. Similar processing is
 also performed by node 8 upon packet reception. This example is the
 same for any BUM stream coming from CE-B or CE-C.

 Node 1,3 and 8 are also performing software MAC learning to exchange
 MAC reachability information (unicast traffic) via BGP among
 themselves.

 Each MAC being learnt is exchanged using BGP-based EVPN Type-2 route.

 When node 1 receives an unicast frame F from CE-A, it learns its MAC-
 SA=CEA in software. Node 1 transmits that MAC and its associated SID
 B:1:D2AA:: using BGP-based EVPN route-type 2 to all remote nodes.

 When node 3 receives an unicast frame F from CE-B destinated to MAC-
 DA=CEA, it performs a L2 lookup on T3 to find the associated SID. It
 pushes an outer IPv6 header with SA=A:3::, DA=B:1:D2AA:: and NH=59.
 Node 3 then forwards the resulting packet on the shortest path to
 B:1::/32. Similar processing is also performed by node 8.

2.7.2. EVPN Multi-homing with ESI filtering

 In L2 network, support for traffic loop avoidance is mandatory. In
 EVPN all-active multi-homing scenario enforces that requirement using
 ESI filtering. Let us illustrate how it works:

 Nodes 3 and 4 are peering partners of a redundancy group where the
 access CE-B, is connected in an all-active multi-homing way with
 these two nodes. Hence, the topology is the following:

 CE-B
 / \
 3------4---5
 | \ /
 | 6
 | /
 A--1--- 2------7---8--B
 / \
 CE-A CE-C
 Tenant100 Tenant100 with
 IPv4 20/8

 EVPN ESI filtering - Reference topology

Filsfils, et al. Expires February 15, 2020 [Page 9]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Nodes 3 and 4 are configured with an EVPN bridging service (E-LAN
 service).

 Node 3 is configured with a locally instantiated End.DT2M SID
 B:3:D2BF:: bound to a local L2 table T1 where EVPN is enabled. This
 SID is also configured with the optional argument Arg.FE2 that
 specifies the attachment circuit. Particularly, node 3 assigns
 identifier 0xC1 to {ethernet CE-B}.

 Node 4 is configured with a locally instantiated End.DT2M SID
 B:4:D2BF:: bound to a local L2 table T1 where EVPN is enabled. This
 SID is also configured with the optional argument Arg.FE2 that
 specifies the attachment circuit. Particularly, node 3 assigns
 identifier 0xC2 to {ethernet CE-B}.

 Both End.DT2M SIDs are exchanged between nodes via BGP-based EVPN
 Type-3 routes. Upon reception of EVPN Type-3 routes, each node build
 its own replication list per L2 table T1.

 On the other hand, the End.DT2M SID arguments (Arg.F2) are exchanged
 between nodes via SRv6 VPN SID attached to the BGP-based EVPN Type-1
 route. The BGP ESI-filtering extended community label is set to
 implicit-null [I-D.dawra-idr-srv6-vpn].

 Upon reception of EVPN Type-1 route and Type-3 route, node 3 merges
 merges the End.DT2M SID (B:4:D2BF:) with the Arg.FE2(0:0:0:C2::) from
 node 4 (its peering partner). This is done by a simple OR bitwise
 operation. As a result, the replication list on node 3 for the PEs
 3,4 and 8 is: {B:1:D2AF::; B:4:D2BF:C2::; B:8:D2CF::}.

 In a similar manner, the replication list on node 4 for the PEs 1,3
 and 8 is: {B:1:D2AF::; B:3:D2BF:C1::; B:8:D2CF::}. Note that in this
 case the SID for PE3 contains the OR bitwise operation of SIDs
 B:3:D2BF:: and 0:0:0:C1::.

 When node 3 receives a BUM frame F from CE-B, it replicates that
 frame to remote PEs. For node 4, it pushes an outer IPv6 header with
 SA=A:1::, DA=B:4:D2AF:C2:: and NH=59. Note that no additional header
 is pushed. Node 3 then forwards the resulting packet on the shortest
 path to node 4, and once the packet arrives to node 4, the End.DT2M
 function is executed forwarding to all L2 OIFs except the ones
 corresponding to identifier 0xC2.

2.7.3. EVPN Layer-3

 EVPN layer-3 works exactly in the same way than L3VPN. Please refer
 to section Section 2.4

Filsfils, et al. Expires February 15, 2020 [Page 10]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

2.7.4. EVPN Integrated Routing Bridging (IRB)

 EVPN IRB brings Layer-2 and Layer-3 together. It uses BGP-based EVPN
 Type-2 route to achieve Layer-2 intra-subnet and Layer-3 inter-subnet
 forwarding. The EVPN Type-2 route-2 maintains the MAC/IP
 association.

 Node 8 is configured with a locally instantiated End.DT2U SID
 B:8:D2C:: used for unicast L2 traffic. Node 8 is also configured
 with locally instantiated End.DT4 SID B:8:D100:: bound to IPv4 tenant
 table 100.

 Node 1 is going to be configured with the EVPN IRB service.

 Node 8 signals to other remote PEs (1, 3) each ARP/ND request learned
 via BGP-based EVPN Type-2 route. For example, when node 8 receives
 an ARP/ND packet P from a host (20.20.20.20) on CE-C destined to
 10.10.10.10, it learns its MAC-SA=CEC in software. It also learns
 the ARP/ND entry (IP SA=20.20.20.20) in its cache. Node 8 transmits
 that MAC/IP and its associated L3 SID (B:8:D100::) and L2 SID
 (B:8:D2C::).

 When node 1 receives a packet P from CE-A destined to 20.20.20.20
 from a host (10.10.10.10), node 1 looks up its tenant-100 IPv4 table
 and finds an SR-VPN entry for that prefix. As a consequence, node 1
 pushes an outer IPv6 header with SA=A:1::, DA=B:8:D100:: and NH=4.
 Node 1 then forwards the resulting packet on the shortest path to
 B:8::/32. EVPN inter-subnet forwarding is then achieved.

 When node 1 receives a packet P from CE-A destined to 20.20.20.20
 from a host (10.10.10.11), P looks up its L2 table T1 MAC-DA lookup
 to find the associated SID. It pushes an outer IPv6 header with
 SA=A:1::, DA=B:8:D2C:: and NH=59. Note that no additional header is
 pushed. Node 8 then forwards the resulting packet on the shortest
 path to B:8::/32. EVPN intra-subnet forwarding is then achieved.

2.8. SR TE for Underlay SLA

2.8.1. SR policy from the Ingress PE

 Let's assume that node 1's tenant-100 IPv4 route "20/8 via
 B:8:D100::" is programmed with a color/community that requires low-
 latency underlay optimization
 [I-D.ietf-spring-segment-routing-policy].

 In such case, node 1 either computes the low-latency path to the
 egress node itself or delegates the computation to a PCE.

Filsfils, et al. Expires February 15, 2020 [Page 11]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 In either case, the location of the egress PE can easily be found by
 looking for who originates the locator comprising the SID B:8:D100::.
 This can be found in the IGP's LSDB for a single domain case, and in
 the BGP-LS LSDB for a multi-domain case.

 Let us assume that the TE metric encodes the per-link propagation
 latency. Let us assume that all the links have a TE metric of 10,
 except link 27 which has TE metric 100.

 The low-latency path from 1 to 8 is thus 1234678.

 This path is encoded in a SID list as: first a hop through B:3:C4::
 and then a hop to 8.

 As a consequence the SR-VPN entry 20/8 installed in the Node1's
 Tenant-100 IPv4 table is: T.Encaps with SRv6 Policy <B:3:C4::,
 B:8:D100::>.

 When 1 receives a packet P from CE-A destined to 20.20.20.20, P looks
 up its tenant-100 IPv4 table and finds an SR-VPN entry 20/8. As a
 consequence, 1 pushes an outer header with SA=A:1::, DA=B:3:C4::,
 NH=SRH followed by SRH (B:8:D100::, B:3:C4::; SL=1; NH=4). 1 then
 forwards the resulting packet on the interface to 2.

 2 forwards to 3 along the path to B:3::/32.

 When 3 receives the packet, 3 matches the DA in its "My SID Table"
 and finds the bound function End.X to neighbor 4. 3 notes the PSP
 capability of the SID B:3:C4::. 3 sets the DA to the next SID
 B:8:D100::. As 3 is the penultimate segment hop, it performs PSP and
 pops the SRH. 3 forwards the resulting packet to 4.

 4, 6 and 7 forwards along the path to B:8::/32.

 When 8 receives the packet, 8 matches the DA in its "My SID Table"
 and finds the bound function End.DT(100). As a result, 8 decaps the
 outer header, looks up the inner IPv4 DA (20.20.20.20) in tenant-100
 IPv4 table, and forward the (inner) IPv4 packet towards CE-B.

2.8.2. SR policy at a midpoint

 Let us analyze a policy applied at a midpoint on a packet without
 SRH.

 Packet P1 is (A:1::, B:8:D100::).

Filsfils, et al. Expires February 15, 2020 [Page 12]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Let us consider P1 when it is received by node 2 and let us assume
 that that node 2 is configured to steer B:8::/32 in a T.Insert
 behavior associated with SR policy <B:3:C4::>.

 In such a case, node 2 would send the following modified packet P1 on
 the link to 3:

 (A:1::, B:3:C4::)(B:8:D100::, B:3:C4::; SL=1).

 The rest of the processing is similar to the previous section.

 Let us analyze a policy applied at a midpoint on a packet with an
 SRH.

 Packet P2 is (A:1::, B:7:1::)(B:8:D100::, B:7:1::; SL=1).

 Let us consider P2 when it is received by node 2 and let us assume
 that node 2 is configured to steer B:7::/32 in a T.Insert behavior
 associated with SR policy <B:3:C4::, B:5:1::>.

 In such a case, node 2 would send the following modified packet P2 on
 the link to 4:

 (A:1::, B:3:C4::)(B:7:1::, B:5:1::, B:3:C4::; SL=2)(B:8:D100::,
 B:7:1::; SL=1)

 Node 3 would send the following packet to 4: (A:1::,
 B:5:1::)(B:6:1::, B:5:1::, B:3:C4::; SL=1)(B:8:D100::, B:7:1::; SL=1)

 Node 4 would send the following packet to 5: (A:1::,
 B:5:1::)(B:6:1::, B:5:1::, B:3:C4::; SL=1)(B:8:D100::, B:7:1::; SL=1)

 Node 5 would send the following packet to 6: (A:1::,
 B:7:1::)(B:8:D100::, B:7:1::; SL=1)

 Node 6 would send the following packet to 7: (A:1::,
 B:7:1::)(B:8:D100::, B:7:1::; SL=1)

 Node 7 would send the following packet to 8: (A:1::, B:8:D100::)

2.9. End-to-End policy with intermediate BSID

 Let us now describe a case where the ingress VPN edge node steers the
 packet destined to 20.20.20.20 towards the egress edge node connected
 to the tenant100 site with 20/8, but via an intermediate SR Policy
 represented by a single routable Binding SID. Let us illustrate this
 case with an intermediate policy which both encodes underlay

Filsfils, et al. Expires February 15, 2020 [Page 13]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 optimization for low-latency and the service programming via two SR-
 aware container-based apps.

 Let us assume that the End.B6.Insert SID B:2:B1:: is configured at
 node 2 and is associated with midpoint SR policy <B:3:C4::, B:9:A1::,
 B:6:A2::>.

 B:3:C4:: realizes the low-latency path from the ingress PE to the
 egress PE. This is the underlay optimization part of the
 intermediate policy.

 B:9:A1:: and B:6:A2:: represent two SR-aware NFV applications
 residing in containers respectively connected to node 9 and 6.

 Let us assume the following ingress VPN policy for 20/8 in tenant 100
 IPv4 table of node 1: T.Encaps with SRv6 Policy <B:2:B1::,
 B:8:D100::>.

 This ingress policy will steer the 20/8 tenant-100 traffic towards
 the correct egress PE and via the required intermediate policy that
 realizes the SLA and NFV requirements of this tenant customer.

 Node 1 sends the following packet to 2: (A:1::, B:2:B1::)
 (B:8:D100::, B:2:B1::; SL=1)

 Node 2 sends the following packet to 4: (A:1::, B:3:C4::) (B:6:A2::,
 B:9:A1::, B:3:C4::; SL=2)(B:8:D100::, B:2:B1::; SL=1)

 Node 4 sends the following packet to 5: (A:1::, B:9:A1::) (B:6:A2::,
 B:9:A1::, B:3:C4::; SL=1)(B:8:D100::, B:2:B1::; SL=1)

 Node 5 sends the following packet to 9: (A:1::, B:9:A1::) (B:6:A2::,
 B:9:A1::, B:3:C4::; SL=1)(B:8:D100::, B:2:B1::; SL=1)

 Node 9 sends the following packet to 6: (A:1::, B:6:A2::)
 (B:8:D100::, B:2:B1::; SL=1)

 Node 6 sends the following packet to 7: (A:1::, B:8:D100::)

 Node 7 sends the following packet to 8: (A:1::, B:8:D100::) which
 decaps and forwards to CE-B.

 The benefits of using an intermediate Binding SID are well-known and
 key to the Segment Routing architecture: the ingress edge node needs
 to push fewer SIDs, the ingress edge node does not need to change its
 SR policy upon change of the core topology or re-homing of the
 container-based apps on different servers. Conversely, the core and

Filsfils, et al. Expires February 15, 2020 [Page 14]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 service organizations do not need to share details on how they
 realize underlay SLA's or where they home their NFV apps.

2.10. TI-LFA

 Let us assume two packets P1 and P2 received by node 2 exactly when
 the failure of link 27 is detected.

 P1: (A:1::, B:7:1::)

 P2: (A:1::, B:7:1::)(B:8:D100::, B:7:1::; SL=1)

 Node 2's pre-computed TI-LFA backup path for the destination B:7::/32
 is <B:3:C4::>. It is installed as a T.Insert transit behavior.

 Node 2 protects the two packets P1 and P2 according to the pre-
 computed TI-LFA backup path and send the following modified packets
 on the link to 4:

 P1: (A:1::, B:3:C4::)(B:7:1::, B:3:C4::; SL=1)

 P2: (A:1::, B:3:C4::)(B:7:1::, B:3:C4::; SL=1) (B:8:D100::,
 B:7:1::; SL=1)

 Node 4 then sends the following modified packets to 5:

 P1: (A:1::, B:7:1::)

 P2: (A:1::, B:7:1::)(B:8:D100::, B:7:1::; SL=1)

 Then these packets follow the rest of their post-convergence path
 towards node 7 and then go to node 8 for the VPN decaps.

2.11. SR TE for Service programming

 We have illustrated the service programming through SR-aware apps in
 a previous section.

 We illustrate the use of End.AS function
 [I-D.xuclad-spring-sr-service-programming] to service chain an IP
 flow bound to the internet through two SR-unaware applications hosted
 in containers.

 Let us assume that servers 20 and 70 are respectively connected to
 nodes 2 and 7. They are respectively configured with SID spaces
 B:20::/32 and B:70::/32. Their connected routers advertise the
 related prefixes in the IGP. Two SR-unaware container-based
 applications App2 and App7 are respectively hosted on server 20 and

Filsfils, et al. Expires February 15, 2020 [Page 15]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 70. Server 20 (70) is configured explicitly with an End.AS SID
 A:20:2:: for App2 (A:70:7:: for App7).

 Let us assume a broadband customer with a home gateway CE-A connected
 to edge router 1. Router 1 is configured with an SR policy which
 encapsulates all the traffic received from CE-A into a T.Encaps
 policy <B:20:2::, B:70:7::, B:8:D0::> where B:8:D0:: is an End.DT4
 SID instantiated at node 8.

 P1 is a packet sent by the broadband customer to 1: (X, Y) where X
 and Y are two IPv4 addresses.

 1 sends the following packet to 2: (A1::, B:20:2::)(B:8:D0::,
 B:70:7::, B:20:2::; SL=2; NH=4)(X, Y).

 2 forwards the packet to server 20.

 20 receives the packet (A1::, B:20:2::)(B:8:D0::, B:70:7::, B:20:2::;
 SL=2; NH=4)(X, Y) and forwards the inner IPv4 packet (X,Y) to App2.
 App2 works on the packet and forwards it back to 20. 20 pushes the
 outer IPv6 header with SRH (A1::, B:70:7::)(B:8:D0::, B:70:7::,
 B:20:2::; SL=1; NH=4) and sends the (whole) IPv6 packet with the
 encapsulated IPv4 packet back to 2.

 2 and 7 forward to server 70.

 70 receives the packet (A1::, B:70:7::)(B:8:D0::, B:70:7::, B:20:2::;
 SL=1; NH=4)(X, Y) and forwards the inner IPv4 packet (X,Y) to App7.
 App7 works on the packet and forwards it back to 70. 70 pushes the
 outer IPv6 header with SRH (A1::, B:8:D0::)(B:8:D0::, B:70:7::,
 B:20:2::; SL=0; NH=4) and sends the (whole) IPv6 packet with the
 encapsulated IPv4 packet back to 7.

 7 forwards to 8.

 8 receives (A1::, B:8:D0::)(B:8:D0::, B:70:7::, B:20:2::; SL=0;
 NH=4)(X, Y) and performs the End.DT4 function and sends the IP packet
 (X, Y) towards its internet destination.

Filsfils, et al. Expires February 15, 2020 [Page 16]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

3. Benefits

3.1. Seamless deployment

 The VPN use-case can be realized with SRv6 capability deployed solely
 at the ingress and egress PE's.

 All the nodes in between these PE's act as transit routers as per
 [RFC8200]. No software/hardware upgrade is required on all these
 nodes. They just need to support IPv6 per [RFC8200].

 The SRTE/underlay-SLA use-case can be realized with SRv6 capability
 deployed at few strategic nodes.

 It is well-known from the experience deploying SR-MPLS that
 underlay SLA optimization requires few SIDs placed at strategic
 locations. This was illustrated in our example with the low-
 latency optimization which required the operator to enable one
 single core node with SRv6 (node 4) where one single and End.X SID
 towards node 5 was instantiated. This single SID is sufficient to
 force the end-to-end traffic via the low-latency path.

 The TI-LFA benefits are collected incrementally as SRv6 capabilities
 are deployed.

 It is well-know that TI-LFA is an incremental node-by-node
 deployment. When a node N is enabled for TI-LFA, it computes TI-
 LFA backup paths for each primary path to each IGP destination.
 In more than 50% of the case, the post-convergence path is loop-
 free and does not depend on the presence of any remote SRv6 SID.
 In the vast majority of cases, a single segment is enough to
 encode the post-convergence path in a loop-free manner. If the
 required segment is available (that node has been upgraded) then
 the related back-up path is installed in FIB, else the pre-
 existing situation (no backup) continues. Hence, as the SRv6
 deployment progresses, the coverage incrementally increases.
 Eventually, when the core network is SRv6 capable, the TI-LFA
 coverage is complete.

 The service programming use-case can be realized with SRv6 capability
 deployed at few strategic nodes.

 The service-programming deployment is again incremental and does
 not require any pre-deployment of SRv6 in the network. When an
 NFV app A1 needs to be enabled for inclusion in an SRv6 service
 chain, all what is required is to install that app in a container
 or VM on an SRv6-capable server (Linux 4.10 or FD.io 17.04

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200

Filsfils, et al. Expires February 15, 2020 [Page 17]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 release). The app can either be SR-aware or not, leveraging the
 proxy functions.

 By leveraging the various End functions it can also be used to
 support any current VNF/CNF implementations and their forwarding
 methods (e.g. Layer 2).

 The ability to leverage SR TE policies and BSIDs also permits
 building scalable, hierarchical service-chains.

3.2. Integration

 The SRv6 network programming concept allows integrating all the
 application and service requirements: multi-domain underlay SLA
 optimization with scale, overlay VPN/Tenant, sub-50msec automated
 FRR, security and service programming.

3.3. Security

 The combination of well-known techniques (SEC-1, SEC-2) and carefully
 chosen architectural rules (SEC-3) ensure a secure deployment of SRv6
 inside a multi-domain network managed by a single organization.

 Inter-domain security will be described in a companion document.

4. Acknowledgements

 The authors would like to acknowledge Stefano Previdi, Dave Barach,
 Mark Townsley, Peter Psenak, Thierry Couture, Kris Michielsen, Paul
 Wells, Robert Hanzl, Dan Ye, Gaurav Dawra, Faisal Iqbal, Jaganbabu
 Rajamanickam, David Toscano, Asif Islam, Jianda Liu, Yunpeng Zhang,
 Jiaoming Li, Narendra A.K, Mike Mc Gourty, Bhupendra Yadav, Sherif
 Toulan, Satish Damodaran, John Bettink, Kishore Nandyala Veera Venk,
 Jisu Bhattacharya and Saleem Hafeez.

5. Contributors

 Daniel Bernier
 Bell Canada
 Canada

 Email: daniel.bernier@bell.ca

 Daniel Voyer
 Bell Canada
 Canada

 Email: daniel.voyer@bell.ca

Filsfils, et al. Expires February 15, 2020 [Page 18]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Bart Peirens
 Proximus
 Belgium

 Email: bart.peirens@proximus.com

 Hani Elmalky
 Ericsson
 United States of America

 Email: hani.elmalky@gmail.com

 Prem Jonnalagadda
 Barefoot Networks
 United States of America

 Email: prem@barefootnetworks.com

 Milad Sharif
 Barefoot Networks
 United States of America

 Email: msharif@barefootnetworks.com

 Stefano Salsano
 Universita di Roma "Tor Vergata"
 Italy

 Email: stefano.salsano@uniroma2.it

 Ahmed AbdelSalam
 Gran Sasso Science Institute
 Italy

 Email: ahmed.abdelsalam@gssi.it

 Gaurav Naik
 Drexel University
 United States of America

 Email: gn@drexel.edu

 Arthi Ayyangar
 Arista
 United States of America

 Email: arthi@arista.com

Filsfils, et al. Expires February 15, 2020 [Page 19]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Satish Mynam
 Innovium Inc.
 United States of America

 Email: smynam@innovium.com

 Wim Henderickx
 Nokia
 Belgium

 Email: wim.henderickx@nokia.com

 Shaowen Ma
 Juniper
 Singapore

 Email: mashao@juniper.net

 Ahmed Bashandy
 Individual
 United States of America

 Email: abashandy.ietf@gmail.com

 Francois Clad
 Cisco Systems, Inc.
 France

 Email: fclad@cisco.com

 Kamran Raza
 Cisco Systems, Inc.
 Canada

 Email: skraza@cisco.com

 Darren Dukes
 Cisco Systems, Inc.
 Canada

 Email: ddukes@cisco.com

 Patrice Brissete
 Cisco Systems, Inc.
 Canada

 Email: pbrisset@cisco.com

Filsfils, et al. Expires February 15, 2020 [Page 20]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Zafar Ali
 Cisco Systems, Inc.
 United States of America

 Email: zali@cisco.com

6. Informative References

 [I-D.dawra-idr-srv6-vpn]
 Dawra, G., Filsfils, C., Dukes, D., Brissette, P.,
 Camarillo, P., Leddy, J., daniel.voyer@bell.ca, d.,
 daniel.bernier@bell.ca, d., Steinberg, D., Raszuk, R.,
 Decraene, B., Matsushima, S., and S. Zhuang, "BGP
 Signaling for SRv6 based Services.", draft-dawra-idr-

srv6-vpn-05 (work in progress), October 2018.

 [I-D.ietf-6man-segment-routing-header]
 Filsfils, C., Dukes, D., Previdi, S., Leddy, J.,
 Matsushima, S., and d. daniel.voyer@bell.ca, "IPv6 Segment
 Routing Header (SRH)", draft-ietf-6man-segment-routing-

header-22 (work in progress), August 2019.

 [I-D.ietf-spring-segment-routing-policy]
 Filsfils, C., Sivabalan, S., daniel.voyer@bell.ca, d.,
 bogdanov@google.com, b., and P. Mattes, "Segment Routing
 Policy Architecture", draft-ietf-spring-segment-routing-

policy-03 (work in progress), May 2019.

 [I-D.ietf-spring-srv6-network-programming]
 Filsfils, C., Camarillo, P., Leddy, J.,
 daniel.voyer@bell.ca, d., Matsushima, S., and Z. Li, "SRv6
 Network Programming", draft-ietf-spring-srv6-network-

programming-01 (work in progress), July 2019.

 [I-D.xuclad-spring-sr-service-programming]
 Clad, F., Xu, X., Filsfils, C., daniel.bernier@bell.ca,
 d., Li, C., Decraene, B., Ma, S., Yadlapalli, C.,
 Henderickx, W., and S. Salsano, "Service Programming with
 Segment Routing", draft-xuclad-spring-sr-service-

programming-02 (work in progress), April 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-dawra-idr-srv6-vpn-05
https://datatracker.ietf.org/doc/html/draft-dawra-idr-srv6-vpn-05
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-22
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-22
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-03
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-03
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming-01
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming-01
https://datatracker.ietf.org/doc/html/draft-xuclad-spring-sr-service-programming-02
https://datatracker.ietf.org/doc/html/draft-xuclad-spring-sr-service-programming-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Filsfils, et al. Expires February 15, 2020 [Page 21]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

Authors' Addresses

 Clarence Filsfils
 Cisco Systems, Inc.
 Belgium

 Email: cf@cisco.com

 Pablo Camarillo Garvia (editor)
 Cisco Systems, Inc.
 Spain

 Email: pcamaril@cisco.com

 Zhenbin Li
 Huawei Technologies
 China

 Email: lizhenbin@huawei.com

 Satoru Matsushima
 SoftBank
 1-9-1,Higashi-Shimbashi,Minato-Ku
 Tokyo 105-7322
 Japan

 Email: satoru.matsushima@g.softbank.co.jp

 Bruno Decraene
 Orange
 France

 Email: bruno.decraene@orange.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200

Filsfils, et al. Expires February 15, 2020 [Page 22]

Internet-Draft Illustrations for SRv6 Network Programming August 2019

 Dirk Steinberg
 Lapishills Consulting Limited
 Cyprus

 Email: dirk@lapishills.com

 David Lebrun
 Google
 Belgium

 Email: david.lebrun@uclouvain.be

 Robert Raszuk
 Bloomberg LP
 United States of America

 Email: robert@raszuk.net

 John Leddy
 Individual Contributor
 United States of America

 Email: john@leddy.net

Filsfils, et al. Expires February 15, 2020 [Page 23]

