
SPRING C. Filsfils
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track J. Leddy
Expires: May 3, 2018 Comcast
 D. Voyer
 D. Bernier
 Bell Canada
 D. Steinberg
 Steinberg Consulting
 R. Raszuk
 Bloomberg LP
 S. Matsushima
 SoftBank
 D. Lebrun
 Universite catholique de Louvain
 B. Decraene
 Orange
 B. Peirens
 Proximus
 S. Salsano
 Universita di Roma "Tor Vergata"
 G. Naik
 Drexel University
 H. Elmalky
 Ericsson
 P. Jonnalagadda
 M. Sharif
 Barefoot Networks
 A. Ayyangar
 Arista
 S. Mynam
 Dell Force10 Networks
 W. Henderickx
 Nokia
 A. Bashandy
 K. Raza
 D. Dukes
 F. Clad
 P. Camarillo, Ed.
 Cisco Systems, Inc.
 October 30, 2017

 SRv6 Network Programming
draft-filsfils-spring-srv6-network-programming-02

https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-network-programming-02

Filsfils, et al. Expires May 3, 2018 [Page 1]

Internet-Draft SRv6 Network Programming October 2017

Abstract

 This document describes the SRv6 network programming concept and its
 most basic functions.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Filsfils, et al. Expires May 3, 2018 [Page 2]

Internet-Draft SRv6 Network Programming October 2017

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. SRv6 Segment . 6
4. Functions associated with a Local SID 8
4.1. End: Endpoint . 9
4.2. End.X: Endpoint with Layer-3 cross-connect 9
4.3. End.T: Endpoint with specific IPv6 table lookup 10

 4.4. End.DX2: Endpoint with decapsulation and Layer-2 cross-
 connect . 11
 4.5. End.DX2V: Endpoint with decapsulation and VLAN L2 table
 lookup . 11
 4.6. End.DT2U: Endpoint with decapsulation and unicast MAC L2
 table lookup . 12
 4.7. End.DT2M: Endpoint with decapsulation and L2 table
 flooding . 13
 4.8. End.DX6: Endpoint with decapsulation and IPv6 cross-
 connect . 14
 4.9. End.DX4: Endpoint with decapsulation and IPv4 cross-
 connect . 14
 4.10. End.DT6: Endpoint with decapsulation and specific IPv6
 table lookup . 15
 4.11. End.DT4: Endpoint with decapsulation and specific IPv4
 table lookup . 16
 4.12. End.DT46: Endpoint with decapsulation and specific IP
 table lookup . 16

4.13. End.B6: Endpoint bound to an SRv6 policy 17
 4.14. End.B6.Encaps: Endpoint bound to an SRv6 encapsulation
 policy . 18

4.15. End.BM: Endpoint bound to an SR-MPLS policy 18
4.16. End.S: Endpoint in search of a target in table T 19
4.17. SR-aware application 19
4.18. Non SR-aware application 20
4.19. Flavours . 20
4.19.1. PSP: Penultimate Segment Pop of the SRH 20
4.19.2. USP: Ultimate Segment Pop of the SRH 20

5. Transit behaviors . 21
5.1. T: Transit behavior 21
5.2. T.Insert: Transit with insertion of an SRv6 Policy . . . 21

 5.3. T.Encaps: Transit with encapsulation in an SRv6 Policy . 22
5.4. T.Encaps.L2: Transit with encapsulation of L2 frames . . 22

6. Operation . 23
6.1. Reserved FUNC opcodes 23
6.2. Counters . 23
6.3. Flow-based hash computation 24

7. Basic security for intra-domain deployment 24
7.1. SEC 1 . 25

Filsfils, et al. Expires May 3, 2018 [Page 3]

Internet-Draft SRv6 Network Programming October 2017

7.2. SEC 2 . 25
7.3. SEC 3 . 25
7.4. SEC 4 . 26

8. Control Plane . 26
8.1. IGP . 26
8.2. BGP-LS . 27
8.3. BGP IP/VPN . 27
8.4. Summary . 27

9. Illustration . 28
9.1. Simplified SID allocation 28
9.2. Reference diagram . 29
9.3. Basic security . 29
9.4. SR-IPVPN . 30
9.5. SR-Ethernet-VPWS . 31
9.6. SR-EVPN-FXC . 32
9.7. SR-EVPN . 33
9.7.1. EVPN Bridging . 33
9.7.2. EVPN Multi-homing with ESI filtering 35
9.7.3. EVPN Layer-3 . 36
9.7.4. EVPN Integrated Routing Bridging (IRB) 36

9.8. SR TE for Underlay SLA 37
9.8.1. SR policy from the Ingress PE 37
9.8.2. SR policy at a midpoint 38

9.9. End-to-End policy with intermediate BSID 39
9.10. TI-LFA . 40
9.11. SR TE for Service chaining 41

10. Benefits . 42
10.1. Seamless deployment 42
10.2. Integration . 43
10.3. Security . 43

11. IANA Considerations . 43
12. Work in progress . 43
13. Acknowledgements . 43
14. Contributors . 44
15. References . 44
15.1. Normative References 44
15.2. Informative References 44

Appendix A. Additional Contributors 46
 Authors' Addresses . 46

1. Introduction

 Segment Routing leverages the source routing paradigm. An ingress
 node steers a packet through a ordered list of instructions, called
 segments. Each one of these instructions represents a function to be
 called at a specific location in the network. A function is locally
 defined on the node where it is executed and may range from simply
 moving forward in the segment list to any complex user-defined

Filsfils, et al. Expires May 3, 2018 [Page 4]

Internet-Draft SRv6 Network Programming October 2017

 behavior. The network programming consists in combining segment
 routing functions, both simple and complex, to achieve a networking
 objective that goes beyond mere packet routing.

 This document illustrates the SRv6 Network Programming concept and
 aims at standardizing the main segment routing functions to enable
 the creation of interoperable overlays with underlay optimization and
 service chaining.

 Familiarity with the Segment Routing Header
 [I-D.ietf-6man-segment-routing-header] is assumed.

2. Terminology

 SRH is the abbreviation for the Segment Routing Header. We assume
 that the SRH may be present multiple times inside each packet.

 NH is the abbreviation of the IPv6 next-header field.

 NH=SRH means that the next-header field is 43 with routing type 4.

 When there are multiple SRHs, they must follow each other: the next-
 header field of all SRH except the last one must be SRH.

 The effective next-header (ENH) is the next-header field of the IP
 header when no SRH is present, or is the next-header field of the
 last SRH.

 In this version of the document, we assume that there is no other
 extension header than the SRH. These will be lifted in future
 versions of the document.

 SID: A Segment Identifier which represents a specific segment in
 segment routing domain. The SID type used in this document is IPv6
 address (also referenced as SRv6 Segment or SRv6 SID).

 A SID list is represented as <S1, S2, S3> where S1 is the first SID
 to visit, S2 is the second SID to visit and S3 is the last SID to
 visit along the SR path.

 (SA,DA) (S3, S2, S1; SL) represents an IPv6 packet with:

 - IPv6 header with source and destination addresses respectively SA
 and DA and next-header is SRH

 - SRH with SID list <S1, S2, S3> with SegmentsLeft = SL

Filsfils, et al. Expires May 3, 2018 [Page 5]

Internet-Draft SRv6 Network Programming October 2017

 - Note the difference between the <> and () symbols: <S1, S2, S3>
 represents a SID list where S1 is the first SID and S3 is the last
 SID. (S3, S2, S1; SL) represents the same SID list but encoded in
 the SRH format where the rightmost SID in the SRH is the first SID
 and the leftmost SID in the SRH is the last SID. When referring to
 an SR policy in a high-level use-case, it is simpler to use the
 <S1, S2, S3> notation. When referring to an illustration of the
 detailed behavior, the (S3, S2, S1; SL) is more convenient.

 - The payload of the packet is omitted.

 SRH[SL] represents the SID pointed by the SL field in the first SRH.
 In our example, SRH[2] represents S1, SRH[1] represents S2 and SRH[0]
 represents S3.

 FIB is the abbreviation for the forwarding table. A FIB lookup is a
 lookup in the forwarding table. When a packet is intercepted on a
 wire, it is possible that SRH[SL] is different from the DA.

3. SRv6 Segment

 An SRv6 Segment is a 128-bit value. "SID" (abbreviation for Segment
 Identifier) is often used as a shorter reference for "SRv6 Segment".

 An SRv6-capable node N maintains a "My Local SID Table". This table
 contains all the local SRv6 segments explicitly instantiated at node
 N. N is the parent node for these SIDs.

 A local SID of N can be an IPv6 address associated to a local
 interface of N but it is not mandatory. Nor is the My Local SID
 table populated by default with all IPv6 addresses defined on node N.

 In most use-cases, a local SID will NOT be an address associated to a
 local interface of N.

 A local SID of N could be routed to N but it does not have to be.
 Most often, it is routed to N via a shorter-mask prefix.

 Let's provide a classic illustration.

 Node N is configured with a loopback0 interface address of C1::1/40
 originated in its IGP. Node N is configured with two SIDs: C1::100
 and C2::101.

 The entry C1::1 is not defined explicitly as an SRv6 SID and hence
 does not appear in the "My Local SID Table". The entries C1::100 and

Filsfils, et al. Expires May 3, 2018 [Page 6]

Internet-Draft SRv6 Network Programming October 2017

 C2::101 are defined explicitly as SRv6 SIDs and hence appear in the
 "My Local SID Table".

 The network learns about a path to C1::/40 via the IGP and hence a
 packet destined to C1::100 would be routed up to N. The network does
 not learn about a path to C2::/40 via the IGP and hence a packet
 destined to C2::101 would not be routed up to N.

 A packet could be steered to a non-routed SID C2::101 by using a SID
 list <...,C1::100,C2::101,...> where the non-routed SID is preceded
 by a routed SID to the same node. This is similar to the local vs
 global segments in SR-MPLS.

 Every SRv6 local SID instantiated has a specific instruction bound to
 it. This information is stored in the "My Local SID Table". The "My
 Local SID Table" has three main purposes:

 - Define which local SIDs are explicitly instantiated

 - Specify which instruction is bound to each of the instantiated SIDs

 - Store the parameters associated with such instruction (i.e. OIF,
 NextHop,...)

 We represent an SRv6 local SID as LOC:FUNCT where LOC is the L most
 significant bits and FUNCT is the 128-L least significant bits. L is
 called the locator length and is flexible. Each operator is free to
 use the locator length it chooses. Most often the LOC part of the
 SID is routable and leads to the node which owns that SID.

 Often, for simplicity of illustration, we will use a locator length
 of 64 bits. This is just an example. Implementations must not
 assume any a priori prefix length.

 The FUNCT part of the SID is an opaque identification of a local
 function bound to the SID. Hence the name SRv6 Local SID.

 A function may require additional arguments that would be placed in
 the rightmost-bits of the 128-bit space. In such case, the SRv6
 Local SID will have the form LOC:FUNCT:ARGS.

 These arguments may vary on a per-packet basis and may contain
 information related to the flow, service, or any other information
 required by the function associated to the SRv6 Local SID.

 For to this reason, the "My Local SID Table" matches on a per
 longest-prefix-match basis.

Filsfils, et al. Expires May 3, 2018 [Page 7]

Internet-Draft SRv6 Network Programming October 2017

 A node may receive a packet with an SRv6 SID in the DA without an
 SRH. In such case the packet should still be processed by the
 Segment Routing engine.

4. Functions associated with a Local SID

 Each entry of the "My Local SID Table" indicates the function
 associated with the local SID.

 We define hereafter a set of well-known functions that can be
 associated with a SID.

 End Endpoint function
 The SRv6 instantiation of a prefix SID
 End.X Endpoint function with Layer-3 cross-connect
 The SRv6 instantiation of a Adj SID
 End.T Endpoint function with specific IPv6 table lookup
 End.DX2 Endpoint with decapsulation and Layer-2 cross-connect
 L2VPN use-case
 End.DX2V Endpoint with decapsulation and VLAN L2 table lookup
 EVPN Flexible cross-connect use-cases
 End.DT2U Endpoint with decapsulation and unicast MAC L2 table lookup
 EVPN Bridging unicast use-cases
 End.DT2M Endpoint with decapsulation and L2 table flooding
 EVPN Bridging BUM use-cases with ESI filtering
 End.DX6 Endpoint with decapsulation and IPv6 cross-connect
 IPv6 L3VPN use (equivalent of a per-CE VPN label)
 End.DX4 Endpoint with decapsulation and IPv4 cross-connect
 IPv4 L3VPN use (equivalent of a per-CE VPN label)
 End.DT6 Endpoint with decapsulation and IPv6 table lookup
 IPv6 L3VPN use (equivalent of a per-VRF VPN label)
 End.DT4 Endpoint with decapsulation and IPv4 table lookup
 IPv4 L3VPN use (equivalent of a per-VRF VPN label)
 End.DT46 Endpoint with decapsulation and IP table lookup
 IP L3VPN use (equivalent of a per-VRF VPN label)
 End.B6 Endpoint bound to an SRv6 policy
 SRv6 instantiation of a Binding SID
 End.B6.Encaps Endpoint bound to an SRv6 encapsulation Policy
 SRv6 instantiation of a Binding SID
 End.BM Endpoint bound to an SR-MPLS Policy
 SRv6/SR-MPLS instantiation of a Binding SID
 End.S Endpoint in search of a target in table T

 The list is not exhaustive. In practice, any function can be
 attached to a local SID: e.g. a node N can bind a SID to a local VM
 or container which can apply any complex function on the packet.

Filsfils, et al. Expires May 3, 2018 [Page 8]

Internet-Draft SRv6 Network Programming October 2017

 We call N the node who has an explicitly defined local SID S and we
 detail the function that N binds to S.

 At the end of this section we also present some flavours of these
 well-known functions.

4.1. End: Endpoint

 The Endpoint function ("End" for short) is the most basic function.

 When N receives a packet whose IPv6 DA is S and S is a local End SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. decrement SL
 3. update the IPv6 DA with SRH[SL]
 4. FIB lookup on updated DA ;; Ref1
 5. forward accordingly to the matched entry ;; Ref2
 6. ELSE
 7. drop the packet ;; Ref3

 Ref1: The End function performs the FIB lookup in the forwarding
 table associated to the ingress interface

 Ref2: If the FIB lookup matches a multicast state, then the related
 RPF check must be considered successful

 Ref3: a local SID could be bound to a function which authorizes the
 decapsulation of an outer header (e.g. IPinIP) or the punting of the
 packet to TCP, UDP or any other protocol. This however needs to be
 explicitly defined in the function bound to the local SID. By
 default, a local SID bound to the well-known function "End" only
 allows the punting to OAM protocols and neither allows the
 decapsulation of an outer header nor the cleanup of an SRH. As a
 consequence, an End SID cannot be the last SID of an SRH and cannot
 be the DA of a packet without SRH.

 This is the SRv6 instantiation of a Prefix SID
 [I-D.ietf-spring-segment-routing].

4.2. End.X: Endpoint with Layer-3 cross-connect

 The "Endpoint with cross-connect to an array of layer-3 adjacencies"
 function (End.X for short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.X SID, N
 does:

Filsfils, et al. Expires May 3, 2018 [Page 9]

Internet-Draft SRv6 Network Programming October 2017

 1. IF NH=SRH and SL > 0
 2. decrement SL
 3. update the IPv6 DA with SRH[SL]
 4. forward to layer-3 adjacency bound to the SID S ;; Ref1
 5. ELSE
 6. drop the packet ;; Ref2

 Ref1: If an array of adjacencies is bound to the End.X SID, then one
 entry of the array is selected based on a hash of the packet's
 header.

 Ref2: An End.X function only allows punting to OAM and does not allow
 decaps. An End.X SID cannot be the last SID of an SRH and cannot be
 the DA of a packet without SRH.

 The End.X function is required to express any traffic-engineering
 policy.

 This is the SRv6 instantiation of an Adjacency SID
 [I-D.ietf-spring-segment-routing].

 If a node N has 30 outgoing interfaces to 30 neighbors, usually the
 operator would explicitly instantiate 30 End.X SIDs at N: one per
 layer-3 adjacency to a neighbor. Potentially, more End.X could be
 explicitly defined (groups of layer-3 adjacencies to the same
 neighbor or to different neighbors).

 Note that with SR-MPLS, an AdjSID is typically preceded by a
 PrefixSID. This is unlikely in SRv6 as most likely an End.X SID is
 globally routed to N.

 Note that if N has an outgoing interface bundle I to a neighbor Q
 made of 10 member links, N may allocate up to 11 End.X local SIDs for
 that bundle: one for the bundle itself and then up to one for each
 member link. This is the equivalent of the L2-Link Adj SID in SR-
 MPLS [I-D.ietf-isis-l2bundles].

4.3. End.T: Endpoint with specific IPv6 table lookup

 The "Endpoint with specific IPv6 table lookup" function (End.T for
 short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.T SID, N
 does:

Filsfils, et al. Expires May 3, 2018 [Page 10]

Internet-Draft SRv6 Network Programming October 2017

 1. IF NH=SRH and SL > 0 ;; Ref1
 2. decrement SL
 3. update the IPv6 DA with SRH[SL]
 4. lookup the next segment in IPv6 table T associated with the SID
 5. forward via the matched table entry
 6. ELSE
 7. drop the packet

 Ref1: The End.T SID must not be the last SID

 The End.T is used for multi-table operation in the core.

4.4. End.DX2: Endpoint with decapsulation and Layer-2 cross-connect

 The "Endpoint with decapsulation and Layer-2 cross-connect to OIF"
 function (End.DX2 for short) is a variant of the endpoint function.

 When N receives a packet destined to S and S is a local End.DX2 SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 59 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. forward the resulting frame via OIF associated to the SID
 6. ELSE
 7. drop the packet

 Ref1: An End.DX2 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: We conveniently reuse the next-header value 59 allocated to
 IPv6 No Next Header [RFC2460]. When the SID is of function End.DX2
 and the Next-Header=59, we know that an Ethernet frame is in the
 payload without any further header.

 An End.DX2 function could be customized to expect a specific VLAN
 format and rewrite the egress VLAN header before forwarding on the
 outgoing interface.

 One of the applications of the End.DX2 function is the L2VPN use-
 case.

4.5. End.DX2V: Endpoint with decapsulation and VLAN L2 table lookup

 The "Endpoint with decapsulation and specific VLAN L2 table lookup"
 function (End.DX2V for short) is a variant of the endpoint function.

https://datatracker.ietf.org/doc/html/rfc2460

Filsfils, et al. Expires May 3, 2018 [Page 11]

Internet-Draft SRv6 Network Programming October 2017

 When N receives a packet destined to S and S is a local End.DX2V SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 59 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. lookup the exposed inner VLANs in L2 table T
 6. forward via the matched table entry
 7. ELSE
 8. drop the packet

 Ref1: An End.DX2V SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: We conveniently reuse the next-header value 59 allocated to
 IPv6 No Next Header [RFC2460]. When the SID is of function End.DX2V
 and the Next-Header=59, we know that an Ethernet frame is in the
 payload without any further header.

 An End.DX2V function could be customized to expect a specific VLAN
 format and rewrite the egress VLAN header before forwarding on the
 outgoing interface.

 The End.DX2V is used for EVPN Flexible cross-connect use-cases.

4.6. End.DT2U: Endpoint with decapsulation and unicast MAC L2 table
 lookup

 The "Endpoint with decapsulation and specific unicast MAC L2 table
 lookup" function (End.DT2U for short) is a variant of the endpoint
 function.

 When N receives a packet destined to S and S is a local End.DT2U SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 59 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. learn he exposed inner MAC SA in L2 table T ;; Ref3
 6. lookup the exposed inner MAC DA in L2 table T
 7. forward via the matched T entry else to all L2OIF in T
 8. ELSE
 9. drop the packet

 Ref1: An End.DT2U SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

https://datatracker.ietf.org/doc/html/rfc2460

Filsfils, et al. Expires May 3, 2018 [Page 12]

Internet-Draft SRv6 Network Programming October 2017

 Ref2: We conveniently reuse the next-header value 59 allocated to
 IPv6 No Next Header [RFC2460]. When the SID is of function End.DT2U
 and the Next-Header=59, we know that an Ethernet frame is in the
 payload without any further header.

 Ref3: In EVPN, the learning of the exposed inner MAC SA is done via
 control plane.

 The End.DT2U is used for EVPN Bridging unicast use cases.

4.7. End.DT2M: Endpoint with decapsulation and L2 table flooding

 The "Endpoint with decapsulation and specific L2 table flooding"
 function (End.DT2M for short) is a variant of the endpoint function.

 This function may take an argument: "Arg.FE2". It is an argument
 specific to EVPN ESI filtering. It is used to exclude a specific OIF
 from L2 table T flooding. The Arg.FE2 SID is merged with an End.DT2M
 function by bit ORing operation to form an End.DT2M(FE2)single SID.

 When N receives a packet destined to S and S is a local End.DT2M SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 59 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. learn the exposed inner MAC SA in L2 table T ;; Ref3
 6. forward on all L2OIF excluding the one specified in Arg.FE2
 7. ELSE
 8. drop the packet

 Ref1: An End.DT2M SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: We conveniently reuse the next-header value 59 allocated to
 IPv6 No Next Header [RFC2460]. When the SID is of function End.DT2M
 and the Next-Header=59, we know that an Ethernet frame is in the
 payload without any further header.

 Ref3: In EVPN, the learning of the exposed inner MAC SA is done via
 control plane

 The End.DT2M is used for EVPN Bridging BUM use case with ESI
 filtering capability.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460

Filsfils, et al. Expires May 3, 2018 [Page 13]

Internet-Draft SRv6 Network Programming October 2017

4.8. End.DX6: Endpoint with decapsulation and IPv6 cross-connect

 The "Endpoint with decapsulation and cross-connect to an array of
 IPv6 adjacencies" function (End.DX6 for short) is a variant of the
 End and End.X functions.

 When N receives a packet destined to S and S is a local End.DX6 SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 41 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. forward to layer-3 adjacency bound to the SID S ;; Ref3
 6. ELSE
 7. drop the packet

 Ref1: The End.DX6 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: 41 refers to IPv6 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers

 Ref3: Selected based on a hash of the packet's header (at least SA,
 DA, Flow Label)

 One of the applications of the End.DX6 function is the L3VPN use-case
 where a FIB lookup in a specific tenant table at the egress PE is not
 required. This would be equivalent to the per-CE VPN label in
 MPLS[RFC4364].

4.9. End.DX4: Endpoint with decapsulation and IPv4 cross-connect

 The "Endpoint with decapsulation and cross-connect to an array of
 IPv4 adjacencies" function (End.DX4 for short) is a variant of the
 End and End.X functions.

 When N receives a packet destined to S and S is a local End.DX4 SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 4 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. forward to layer-3 adjacency bound to the SID S ;; Ref3
 6. ELSE
 7. drop the packet

Filsfils, et al. Expires May 3, 2018 [Page 14]

Internet-Draft SRv6 Network Programming October 2017

 Ref1: The End.DX4 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: 4 refers to IPv4 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers

 Ref3: Selected based on a hash of the packet's header (at least SA,
 DA, Flow Label)

 One of the applications of the End.DX4 function is the L3VPN use-case
 where a FIB lookup in a specific tenant table at the egress PE is not
 required. This would be equivalent to the per-CE VPN label in
 MPLS[RFC4364].

4.10. End.DT6: Endpoint with decapsulation and specific IPv6 table
 lookup

 The "Endpoint with decapsulation and specific IPv6 table lookup"
 function (End.DT6 for short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.DT6 SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 41 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. lookup the exposed inner IPv6 DA in IPv6 table T
 6. forward via the matched table entry
 7. ELSE
 8. drop the packet

 Ref1: the End.DT6 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: 41 refers to IPv6 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers

 One of the applications of the End.DT6 function is the L3VPN use-case
 where a FIB lookup in a specific tenant table at the egress PE is
 required. This would be equivalent to the per-VRF VPN label in
 MPLS[RFC4364].

 Note that an End.DT6 may be defined for the main IPv6 table in which
 case and End.DT6 supports the equivalent of an IPv6inIPv6 decaps
 (without VPN/tenant implication).

Filsfils, et al. Expires May 3, 2018 [Page 15]

Internet-Draft SRv6 Network Programming October 2017

4.11. End.DT4: Endpoint with decapsulation and specific IPv4 table
 lookup

 The "Endpoint with decapsulation and specific IPv4 table lookup"
 function (End.DT4 for short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.DT4 SID,
 N does:

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 4 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. lookup the exposed inner IPv4 DA in IPv4 table T
 6. forward via the matched table entry
 7. ELSE
 8. drop the packet

 Ref1: the End.DT4 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: 4 refers to IPv4 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers

 One of the applications of the End.DT4 is the L3VPN use-case where a
 FIB lookup in a specific tenant table at the egress PE is required.
 This would be equivalent to the per-VRF VPN label in MPLS[RFC4364].

 Note that an End.DT4 may be defined for the main IPv4 table in which
 case and End.DT4 supports the equivalent of an IPv4inIPv6 decaps
 (without VPN/tenant implication).

4.12. End.DT46: Endpoint with decapsulation and specific IP table
 lookup

 The "Endpoint with decapsulation and specific IP table lookup"
 function (End.DT46 for short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.DT46 SID,
 N does:

Filsfils, et al. Expires May 3, 2018 [Page 16]

Internet-Draft SRv6 Network Programming October 2017

 1. IF NH=SRH and SL > 0
 2. drop the packet ;; Ref1
 3. ELSE IF ENH = 4 ;; Ref2
 4. pop the (outer) IPv6 header and its extension headers
 5. lookup the exposed inner IPv4 DA in IPv4 table T
 6. forward via the matched table entry
 7. ELSE IF ENH = 41 ;; Ref2
 8. pop the (outer) IPv6 header and its extension headers
 9. lookup the exposed inner IPv6 DA in IPv6 table T
 10. forward via the matched table entry
 11. ELSE
 12. drop the packet

 Ref1: the End.DT46 SID must always be the last SID, or it can be the
 Destination Address of an IPv6 packet with no SRH header.

 Ref2: 4 and 41 refer to IPv4 and IPv6 encapsulation respectively as
 defined by IANA allocation for Internet Protocol Numbers

 One of the applications of the End.DT46 is the L3VPN use-case where a
 FIB lookup in a specific tenant table at the egress PE is required.
 This would be equivalent to the per-VRF VPN label in MPLS[RFC4364].

 Note that an End.DT46 may be defined for the main IP table in which
 case and End.DT46 supports the equivalent of an IPinIPv6 decaps
 (without VPN/tenant implication).

4.13. End.B6: Endpoint bound to an SRv6 policy

 The "Endpoint bound to an SRv6 Policy" is a variant of the End
 function.

 When N receives a packet destined to S and S is a local End.B6 SID, N
 does:

 1. IF NH=SRH and SL > 0 ;; Ref1
 2. do not decrement SL nor update the IPv6 DA with SRH[SL]
 3. insert a new SRH ;; Ref2
 4. set the IPv6 DA to the first segment of the SRv6 Policy
 5. forward according to the first segment of the SRv6 Policy
 6. ELSE
 7. drop the packet

 Ref1: An End.B6 SID, by definition, is never the last SID.

 Ref2: In case that an SRH already exists, the new SRH is inserted in
 between the IPv6 header and the received SRH

Filsfils, et al. Expires May 3, 2018 [Page 17]

Internet-Draft SRv6 Network Programming October 2017

 Note: Instead of the term "insert", "push" may also be used.

 The End.B6 function is required to express scalable traffic-
 engineering policies across multiple domains. This is the SRv6
 instantiation of a Binding SID [I-D.ietf-spring-segment-routing].

4.14. End.B6.Encaps: Endpoint bound to an SRv6 encapsulation policy

 This is a variation of the End.B6 behavior where the SRv6 Policy also
 includes an IPv6 Source Address A.

 When N receives a packet destined to S and S is a local End.B6.Encaps
 SID, N does:

 1. IF NH=SRH and SL > 0
 2. decrement SL and update the IPv6 DA with SRH[SL]
 3. push an outer IPv6 header with its own SRH
 4. set the outer IPv6 SA to A
 5. set the outer IPv6 DA to the first segment of the SRv6 Policy
 6. forward according to the first segment of the SRv6 Policy
 7. ELSE
 8. drop the packet

 Instead of simply inserting an SRH with the policy (End.B6), this
 behavior also adds an outer IPv6 header. The source address defined
 for the outer header does not have to be a local SID of the node.

4.15. End.BM: Endpoint bound to an SR-MPLS policy

 The "Endpoint bound to an SR-MPLS Policy" is a variant of the End.B6
 function.

 When N receives a packet destined to S and S is a local End.BM SID, N
 does:

 1. IF NH=SRH and SL > 0 ;; Ref1
 2. decrement SL and update the IPv6 DA with SRH[SL]
 3. push an MPLS label stack <L1, L2, L3> on the received packet
 4. forward according to L1
 5. ELSE
 6. drop the packet

 Ref1: an End.BM SID, by definition, is never the last SID.

 The End.BM function is required to express scalable traffic-
 engineering policies across multiple domains where some domains
 support the MPLS instantiation of Segment Routing.

Filsfils, et al. Expires May 3, 2018 [Page 18]

Internet-Draft SRv6 Network Programming October 2017

 This is an SRv6 instantiation of a SR-MPLS Binding SID
 [I-D.ietf-spring-segment-routing].

4.16. End.S: Endpoint in search of a target in table T

 The "Endpoint in search of a target in Table T" function (End.S for
 short) is a variant of the End function.

 When N receives a packet destined to S and S is a local End.S SID, N
 does:

 1. IF NH=SRH and SL = 0 ;; Ref1
 2. drop the packet
 3. ELSE IF match(last SID) in specified table T
 4. forward accordingly
 5. ELSE
 6. apply the End behavior

 Ref1: By definition, an End.S SID cannot be the last SID, as the last
 SID is the targeted object.

 The End.S function is required in information-centric networking
 (ICN) use-cases where the last SID in the SRv6 SID list represents a
 targeted object. If the identification of the object would require
 more than 128 bits, then obvious customization of the End.S function
 may either use multiple SIDs or a TLV of the SR header to encode the
 searched object ID.

4.17. SR-aware application

 Generally, any SR-aware application can be bound to an SRv6 SID.
 This application could represent anything from a small piece of code
 focused on topological/tenant function to a much larger process
 focusing on higher-level applications (e.g. video compression,
 transcoding etc.).

 The ways in which an SR-aware application can binds itself on a local
 SID depends on the operating system. Let us consider an SR-aware
 application running on a Linux operating system. A possible approach
 is to associate an SRv6 SID to a target (virtual) interface, so that
 packets with IP DA corresponding to the SID will be sent to the
 target interface. In this approach, the SR-aware application can
 simply listen to all packets received on the interface.

 A different approach for the SR-aware app is to listen to packets
 received with a specific SRv6 SID as IPv6 DA on a given transport
 port (i.e. corresponding to a TCP or UDP socket). In this case, the
 app can read the SRH information with a getsockopt Linux system call

Filsfils, et al. Expires May 3, 2018 [Page 19]

Internet-Draft SRv6 Network Programming October 2017

 and can set the SRH information to be added to the outgoing packets
 with a setsocksopt system call.

4.18. Non SR-aware application

 [I-D.clad-spring-segment-routing-service-chaining] defines a set of
 additional functions in order to enable non SR-aware applications to
 be associated with a SRv6 Local SID.

4.19. Flavours

 We present the PSP and USP variants of the functions End, End.X and
 End.T. For each of these functions these variants can be enabled or
 disabled either individually or together.

4.19.1. PSP: Penultimate Segment Pop of the SRH

 After the instruction 'update the IPv6 DA with SRH[SL]' is executed,
 the following instructions must be added:

 1. IF updated SL = 0 & PSP is TRUE
 2. pop the top SRH ;; Ref1

 Ref1: The received SRH had SL=1. When the last SID is written in the
 DA, the End, End.X and End.T functions with the PSP flavour pop the
 first (top-most) SRH. Subsequent stacked SRH's may be present but
 are not processed as part of the function.

4.19.2. USP: Ultimate Segment Pop of the SRH

 We insert at the beginning of the pseudo-code the following
 instructions:

 1. IF SL = 0 & NH=SRH & USP=TRUE ;; Ref1
 2. pop the top SRH
 3. restart the function processing on the modified packet ;; Ref2

 Ref1: The next header is an SRH header

 Ref2: Typically SL of the exposed SRH is > 0 and hence the restarting
 of the complete function would lead to decrement SL, update the IPv6
 DA with SRH[SL], FIB lookup on updated DA and forward accordingly to
 the matched entry.

Filsfils, et al. Expires May 3, 2018 [Page 20]

Internet-Draft SRv6 Network Programming October 2017

5. Transit behaviors

 We define hereafter the set of basic transit behaviors.

 T Transit behavior
 T.Insert Transit behavior with insertion of an SRv6 Policy
 T.Encaps Transit behavior with encapsulation in an SRv6 policy
 T.Encaps.L2 T.Encaps behavior of the received L2 frame

 This list can be expanded in case any new functionality requires it.

5.1. T: Transit behavior

 As per [RFC2460], if a node N receives a packet (A, S2)(S3, S2, S1;
 SL=2) and S2 is neither a local address nor a local SID of N then N
 forwards the packet without inspecting the SRH.

 This means that N treats the following two packets with the same
 performance:

 - (A, S2)

 - (A, S2)(S3, S2, S1; SL=2)

 A transit node does not need to count by default the amount of
 transit traffic with an SRH extension header. This accounting might
 be enabled as an optional behavior leveraging SEC4 behavior described
 later in this document.Section 7.4

 A transit node MUST include the outer flow label in its ECMP
 hash[RFC6437].

5.2. T.Insert: Transit with insertion of an SRv6 Policy

 Node N receives two packets P1=(A, B2) and P2=(A,B2)(B3, B2, B1;
 SL=1). B2 is neither a local address nor SID of N.

 N steers the transit packets P1 and P2 into an SRv6 Policy with one
 SID list <S1, S2, S3>.

 The "T.Insert" transit insertion behavior is defined as follows:

 1. insert the SRH (B2, S3, S2, S1; SL=3) ;; Ref1, Ref1bis
 2. set the IPv6 DA = S1
 3. forward along the shortest path to S1

 Ref1: The received IPv6 DA is placed as last SID of the inserted SRH.

https://datatracker.ietf.org/doc/html/rfc2460

Filsfils, et al. Expires May 3, 2018 [Page 21]

Internet-Draft SRv6 Network Programming October 2017

 Ref1bis: The SRH is inserted before any other IPv6 Routing Extension
 Header.

 After the T.Insert behavior, P1 and P2 respectively look like:

 - (A, S1) (B2, S3, S2, S1; SL=3)

 - (A, S1) (B2, S3, S2, S1; SL=3) (B3, B2, B1; SL=1)

5.3. T.Encaps: Transit with encapsulation in an SRv6 Policy

 Node N receives two packets P1=(A, B2) and P2=(A,B2)(B3, B2, B1;
 SL=1). B2 is neither a local address nor SID of N.

 N steers the transit packets P1 and P2 into an SR Encapsulation
 Policy with a Source Address T and a Segment list <S1, S2, S3>.

 The T.Encaps transit encapsulation behavior is defined as follows:

1. push an IPv6 header with its own SRH (S3, S2, S1; SL=2)
2. set outer IPv6 SA = T and outer IPv6 DA = S1
3. set outer payload length, traffic class and flow label ;; Ref 1
4. update the next_header value ;; Ref 1
5. decrement inner Hop Limit or TTL ;; Ref 1
6. forward along the shortest path to S1

 After the T.Encaps behavior, P1 and P2 respectively look like:

 - (T, S1) (S3, S2, S1; SL=2) (A, B2)

 - (T, S1) (S3, S2, S1; SL=2) (A, B2) (B3, B2, B1; SL=1)

 The T.Encaps behavior is valid for any kind of Layer-3 traffic. This
 behavior is commonly used for L3VPN with IPv4 and IPv6 deployements.

 The SRH MAY be omitted when the SRv6 Policy only contains one segment
 and there is no need to use any flag, tag or TLV.

 Ref 1: As described in [RFC2473] (Generic Packet Tunneling in IPv6
 Specification)

5.4. T.Encaps.L2: Transit with encapsulation of L2 frames

 While T.Encaps encapsulates the received IP packet, T.Encaps.L2
 encapsulates the received L2 frame (i.e. the received ethernet header
 and its optional VLAN header is in the payload of the outer packet).

https://datatracker.ietf.org/doc/html/rfc2473

Filsfils, et al. Expires May 3, 2018 [Page 22]

Internet-Draft SRv6 Network Programming October 2017

 If the outer header is pushed without SRH then the DA must be a SID
 of type End.DX2, End.DX2V, End.DT2U or End.DT2M and the next-header
 must be 59 (IPv6 NoNextHeader). The received Ethernet frame follows
 the IPv6 header and its extension headers.

 Else, if the outer header is pushed with an SRH, then the last SID of
 the SRH must be of type End.DX2, End.DX2V, End.DT2U or End.DT2M and
 the next-header of the SRH must be 59 (IPv6 NoNextHeader). The
 received Ethernet frame follows the IPv6 header and its extension
 headers.

6. Operation

6.1. Reserved FUNC opcodes

 The following SRv6 LocalSID function opcodes are reserved:

 - Opcode 0: Invalid

 - Opcode 1-63: Reserved

 - Opcode 1: End with PSP

 - Opcode 2: End with USP

 - Opcode ~0 (all 1s): Wildcard

 The SRv6 LocalSID argument value "0" means "No argument".

6.2. Counters

 Any SRv6 capable node SHOULD implement the following set of combined
 counters (packets and bytes):

 - CNT1: Per entry of the "My Local SID Table", traffic that matched
 that SID and was processed correctly.

 - CNT2: Per SRv6 Policy, traffic steered into it and processed
 correctly.

 Furthermore, an SRv6 capable node maintains an aggregate counter CNT0
 tracking the IPv6 traffic that was received with a destination
 address matching a local interface address that is not a local SID
 and the next-header is SRH with SL>0. We remind that this traffic is
 dropped as an interface address is not a local SID by default. A SID
 must be explicitly instantiated.

Filsfils, et al. Expires May 3, 2018 [Page 23]

Internet-Draft SRv6 Network Programming October 2017

6.3. Flow-based hash computation

 When a flow-based selection within a set needs to be performed, the
 source address, the destination address and the flow-label MUST be
 included in the flow-based hash.

 This occurs when the destination address is updated and a FIB lookup
 is performed and multiple ECMP paths exist to the updated destination
 address.

 This occurs when End.X is bound to an array of adjacencies.

 This occurs when the packet is steered in an SR policy whose selected
 path has multiple SID lists
 [I-D.filsfils-spring-segment-routing-policy].

7. Basic security for intra-domain deployment

 We use the following terminology:

 An internal node is a node part of the domain of trust.

 A border router is an internal node at the edge of the domain of
 trust.

 An external interface is an interface of a border router towards
 another domain.

 An internal interface is an interface entirely within the domain
 of trust.

 The internal address space is the IP address block dedicated to
 internal interfaces.

 An internal SID is a SID instantiated on an internal node.

 The internal SID space is the IP address block dedicated to
 internal SIDs.

 External traffic is traffic received from an external interface to
 the domain of trust.

 Internal traffic is traffic the originates and ends within the
 domain of trust.

 The purpose of this section is to document how a domain of trust can
 operate SRv6-based services for internal traffic while preventing any
 external traffic from accessing the internal SRv6-based services.

Filsfils, et al. Expires May 3, 2018 [Page 24]

Internet-Draft SRv6 Network Programming October 2017

 It is expected that future documents will detail enhanced security
 mechanisms for SRv6 (e.g. how to allow external traffic to leverage
 internal SRv6 services).

7.1. SEC 1

 An SRv6 router MUST support an ACL on the external interface that
 drops any traffic with SA or DA in the internal SID space.

 A provider would generally do this for its internal address space to
 prevent access to internal addresses and in order to prevent
 spoofing. The technique is extended to the local SID space.

 The typical counters of an ACL are expected.

7.2. SEC 2

 An SRv6 router MUST support an ACL with the following behavior:

 1. IF (DA == LocalSID) && (SA != internal address or SID space)
 2. drop

 This prevents access to local SIDs from outside the operator's
 infrastructure. Note that this ACL may not be enabled in all cases.
 For example, specific SIDs can be used to provide resources to
 devices that are outside of the operator's infrastructure.

 When an SID is in the form of LOC:FUNCT:ARGS the DA match should be
 implemented as a prefix match covering the argument space of the
 specific SID i.s.o. a host route.

 The typical counters of an ACL are expected.

7.3. SEC 3

 As per the End definition, an SRv6 router MUST only implement the End
 behavior on a local IPv6 address if that address has been explicitly
 enabled as a segment.

 This address may or may not be associated with an interface. This
 address may or may not be routed. The only thing that matters is
 that the local SID must be explicitly instantiated and explicitly
 bound to a function (the default function is the End function).

Filsfils, et al. Expires May 3, 2018 [Page 25]

Internet-Draft SRv6 Network Programming October 2017

7.4. SEC 4

 An SRv6 router should support Unicast-RPF on source address on
 external interface.

 This is a generic provider technique applied to the internal address
 space. It is extended to the internal SID space.

 The typical counters to validate such filtering are expected.

8. Control Plane

 In an SDN environment, one expects the controller to explicitly
 provision the SIDs and/or discover them as part of a service
 discovery function. Applications residing on top of the controller
 could then discover the required SIDs and combine them to form a
 distributed network program.

 The concept of "SRv6 network programming" refers to the capability
 for an application to encode any complex program as a set of
 individual functions distributed through the network. Some functions
 relate to underlay SLA others to overlay/tenant, others to complex
 applications residing in VM and containers.

 The specification of the SRv6 control-plane is outside the scope of
 this document.

 We limit ourselves to a few important observations.

8.1. IGP

 The End and End.X SIDs express topological functions and hence are
 expected to be signaled in the IGP together with the flavours PSP and
 USP [I-D.bashandy-isis-srv6-extensions].

 The presence of SIDs in the IGP do not imply any routing semantics to
 the addresses represented by these SIDs. The routing reachability to
 an IPv6 address is solely governed by the classic, non-SID-related,
 IGP information. Routing is not governed neither influenced in any
 way by a SID advertisement in the IGP.

 These two SIDs provide important topological functions for the IGP to
 build FRR/TI-LFA solution and for TE processes relying on IGP LSDB to
 build SR policies.

Filsfils, et al. Expires May 3, 2018 [Page 26]

Internet-Draft SRv6 Network Programming October 2017

8.2. BGP-LS

 BGP-LS is expected to be the key service discovery protocol. Every
 node is expected to advertise via BGP-LS its SRv6 capabilities (e.g.
 how many SIDs in can insert as part of an T.Insert behavior) and any
 locally instantiated SID[I-D.ietf-idr-bgp-ls-segment-routing-ext][I-D
 .ietf-idr-te-lsp-distribution].

8.3. BGP IP/VPN

 The End.DX46, End.DT46 and End.DX2 SIDs are expected to be signaled
 in BGP[I-D.dawra-idr-srv6-vpn].

8.4. Summary

 The following table summarizes which SID would be signaled in which
 signaling protocol.

 +------------------+-----+--------+------------+
 | | IGP | BGP-LS | BGP IP/VPN |
 +------------------+-----+--------+------------+
 | End (PSP, USP) | X | X | |
 | End.X (PSP, USP) | X | X | |
 | End.T (PSP, USP) | X | X | |
 | End.DX2 | | X | X |
 | End.DX2V | | X | X |
 | End.DT2U | | X | X |
 | End.DT2M | | X | X |
 | End.DX6 | X | X | X |
 | End.DX4 | | X | X |
 | End.DT6 | X | X | X |
 | End.DT4 | | X | X |
 | End.DT46 | | X | X |
 | End.B6 | | X | |
 | End.B6.Encaps | | X | |
 | End.B6.BM | | X | |
 | End.S | | X | |
 +------------------+-----+--------+------------+

 Table 1: SRv6 LocalSID signaling

 The following table summarizes which transit capability would be
 signaled in which signaling protocol.

Filsfils, et al. Expires May 3, 2018 [Page 27]

Internet-Draft SRv6 Network Programming October 2017

 +-------------+-----+--------+------------+
 | | IGP | BGP-LS | BGP IP/VPN |
 +-------------+-----+--------+------------+
 | T | | X | |
 | T.Insert | | X | |
 | T.Encaps | | X | |
 | T.Encaps.L2 | | X | |
 +-------------+-----+--------+------------+

 Table 2: SRv6 transit behaviors signaling

 The previous table describes generic capabilities. It does not
 describe specific instantiated SID.

 For example, a BGP-LS advertisement of the T capability of node N
 would indicate that node N supports the basic transit behavior. The
 T.Insert behavior would describe the capability of node N to
 instantiation a T.Insert behavior, specifically it would describe how
 many SIDs could be inserted by N without significant performance
 degradation. Same for T.Encaps (the number potentially lower as the
 overhead of the additional outer IP header is accounted).

 The reader should also remember that any specific instantiated SR
 policy (via T.Insert or T.Encaps) is always assigned a Binding SID.
 He should remember that BSIDs are advertised in BGP-LS as shown in
 Table 1. Hence, it is normal that Table 2 only focuses on the
 generic capabilities related to T.Insert and T.Encaps as Table 1
 advertises the specific instantiated BSID properties.

9. Illustration

 We introduce a simplified SID allocation technique to ease the
 reading of the text. We document the reference diagram. We then
 illustrate the network programming concept through different use-
 cases. These use-cases have been thought to allow straightforward
 combination between each other.

9.1. Simplified SID allocation

 To simplify the illustration, we assume:

 A::/4 is dedicated to the internal SRv6 SID space

 B::/4 is dedicated to the internal address space

 We assume a location expressed in 48 bits and a function expressed
 in 80 bits

Filsfils, et al. Expires May 3, 2018 [Page 28]

Internet-Draft SRv6 Network Programming October 2017

 Node k has a classic IPv6 loopback address Bk::/128 which is
 advertised in the IGP

 Node k has Ak::/48 for its local SID space. Its SIDs will be
 explicitly allocated from that block

 Node k advertises Ak::/48 in its IGP

 Function 0:0:0:0:1 (function 1, for short) represents the End
 function with PSP support

 Function 0:0:0:0:C2 (function C2, for short) represents the End.X
 function towards neighbor 2

 Each node K has:

 An explicit SID instantiation Ak::1/128 bound to an End function
 with additional support for PSP

 An explicit SID instantiation Ak::Cj/128 bound to an End.X
 function to neighbor J with additional support for PSP

9.2. Reference diagram

 Let us assume the following topology where all the links have IGP
 metric 10 except the link 23 which is 100.

 Nodes A, 1 to 8 and B are considered within the network domain while
 nodes CE-A and CE-B are outside the domain.

 4------5---9
 / | \ /
 3 | 6
 \ | /
 A--1--- 2------7---8--B
 / \
 CE-A CE-B
 Tenant100 Tenant100 with
 IPv4 20/8

 Figure 1: Reference topology

9.3. Basic security

 Any edge node such as 1 would be configured with an ACL on any of its
 external interface (e.g. from CE-A) which drops any traffic with SA
 or DA in A::/4. See SEC 1 (Section 7.1).

Filsfils, et al. Expires May 3, 2018 [Page 29]

Internet-Draft SRv6 Network Programming October 2017

 Any core node such as 6 could be configured with an ACL with the SEC2
 (Section 7.2) behavior "IF (DA == LocalSID) && (SA is not in A::/4 or
 B::/4) THEN drop".

 SEC 3 (Section 7.3) protection is a default property of SRv6. A SID
 must be explicitly instantiated. In our illustration, the only
 available SIDs are those explicitly instantiated.

 Any edge node such as 1 would be configured with Unicast-RPF on
 source address on external interface (e.g. from CE-A). See SEC 4
 (Section 7.4).

9.4. SR-IPVPN

 Let us illustrate the SR-IPVPN use-case applied to IPv4.

 Nodes 1 and 8 are configured with a tenant 100, each respectively
 connected to CE-A and CE-B.

 Node 8 is configured with a local SID A8::D100 of function End.DT4
 bound to tenant IPv4 table 100.

 Via BGP signaling or an SDN-based controller, Node 1's tenant-100
 IPv4 table is programmed with an IPv4 SR-VPN route 20/8 via SRv6
 policy <A8::D100>.

 When 1 receives a packet P from CE-A destined to 20.20.20.20, P looks
 up its tenant-100 IPv4 table and finds an SR-VPN entry 20/8 via SRv6
 policy <A8::D100>. As a consequence, 1 pushes an outer IPv6 header
 with SA=A1::0, DA=A8::D100 and NH=4. 1 then forwards the resulting
 packet on the shortest path to A8::/40.

 When 8 receives the packet, 8 matches the DA in its My LocalSID
 table, finds the bound function End.DT4(100) and confirms NH=4. As a
 result, 8 decaps the outer header, looks up the inner IPv4 DA in
 tenant-100 IPv4 table, and forward the (inner) IPv4 packet towards
 CE-B.

 The reader can easily infer all the other SR-IPVPN IP instantiations:

Filsfils, et al. Expires May 3, 2018 [Page 30]

Internet-Draft SRv6 Network Programming October 2017

 +---------------------------------+----------------------------------+
 | Route at ingress PE(1) | SR-VPN Egress SID of egress PE(8)|
 +---------------------------------+----------------------------------+
 | IPv4 tenant route with egress | End.DT4 function bound to |
 | tenant table lookup | IPv4-tenant-100 table |
 +---------------------------------+----------------------------------+
 | IPv4 tenant route without egress| End.DX4 function bound to |
 | tenant table lookup | CE-B (IPv4) |
 +---------------------------------+----------------------------------+
 | IPv6 tenant route with egress | End.DT6 function bound to |
 | tenant table lookup | IPv6-tenant-100 table |
 +---------------------------------+----------------------------------+
 | IPv6 tenant route without egress| End.DX6 function bound to |
 | tenant table lookup | CE-B (IPv6) |
 +---------------------------------+----------------------------------+

9.5. SR-Ethernet-VPWS

 Let us illustrate the SR-Ethernet-VPWS use-case.

 Node 1 is configured with an ethernet VPWS service:

 - Local attachment circuit: Ethernet interface from CE-A

 - Local End.DX2 bound to the local attachment circuit: A1::DC2A

 - Remote End.DX2 SID: A8::DC2B

 Node 8 is configured with an ethernet VPWS service:

 - Local attachment circuit: Ethernet interface from CE-B

 - Local End.DX2 bound to the local attachment circuit: A8::DC2B

 - Remote End.DX2 SID: A1::DC2A

 These configurations can either be programmed by an SDN controller or
 partially derived from a BGP-based signaling and discovery service.

 When 1 receives a packet P from CE-A, 1 pushes an outer IPv6 header
 with SA=A1::0, DA=A8::DC2B and NH=59. Note that no additional header
 is pushed. 1 then forwards the resulting packet on the shortest path
 to A8::/40.

 When 8 receives the packet, 8 matches the DA in its My LocalSID table
 and finds the bound function End.DX2. After confirming that the
 next-header=59, 8 decaps the outer IPv6 header and forwards the inner
 Ethernet frame towards CE-B.

Filsfils, et al. Expires May 3, 2018 [Page 31]

Internet-Draft SRv6 Network Programming October 2017

 The reader can easily infer the Ethernet VPWS use-case:

 +------------------------+-----------------------------------+
 | Route at ingress PE(1) | SR-VPN Egress SID of egress PE(8) |
 +------------------------+-----------------------------------+
 | Ethernet VPWS | End.DX2 function bound to |
 | | CE-B (Ethernet) |
 +------------------------+-----------------------------------+

9.6. SR-EVPN-FXC

 Let us illustrate the SR-EVPN-FXC use-case (Flexible cross-connect
 service).

 Node 1 is configured with an EVPN-FXC service:

 - Local attachment circuit: Ethernet interface from CE1-A over VLAN
 100

 - Local attachment circuit: Ethernet interface from CE2-A over VLAN
 200

 - Local End.DX2 bound to the local attachment circuit: A1::DC2A

 - Remote End.DX2 SID: A8::DC2B

 Node 8 is configured with an EVPN-FXC service:

 - Local attachment circuit: Ethernet interface from CE1-B over VLAN
 100

 - Local attachment circuit: Ethernet interface from CE2-B over VLAN
 200

 - Local End.DX2 bound to the local attachment circuit: A8::DC2B

 - Remote End.DX2 SID: A1::DC2A

 These configurations can either be programmed by an SDN controller or
 derived from a BGP-based EVPN-FXC service. EVPN route Type-1 is used
 for that purpose.

 When node 1 receives a packet P from CE-A, it pushes an outer IPv6
 header with SA=A1::0, DA=A8::DC2B and NH=59. Note that no additional
 header is pushed. Node 1 then forwards the resulting packet on the
 shortest path to A8::/40.

Filsfils, et al. Expires May 3, 2018 [Page 32]

Internet-Draft SRv6 Network Programming October 2017

 When node 8 receives the packet, it matches the IP DA in its My
 LocalSID table and finds the bound function End.DX2V. After
 confirming that the next-header=59, node 8 decaps the outer IPv6
 header, performs a VLAN loopkup in table T1 and forwards the inner
 Ethernet frame to matching interface e.g. for VLAN 100, packet is
 forwarded to CE1-B and for VLAN 200, packet is forwarded to CE2-B.

 The reader can easily infer the Ethernet FXC use-case:

+------------------------------------+------------------------------------+
| Route at ingress PE (1) | SR-VPN Egress SID of egress PE (8) |
+------------------------------------+------------------------------------+
| EVPN-FXC | End.DX2V function bound to |
| | CE1-B / CE2-B (Ethernet) |
+------------------------------------+------------------------------------+

9.7. SR-EVPN

 There are few use cases to illustrate under SR-EVPN: bridging
 (unicast and multicast), multi-homing ESI filtering, EVPN L3, EVPN-
 IRB.

9.7.1. EVPN Bridging

 Node 1 is configured with an EVPN bridging service (E-LAN service):

 - Local attachment circuit: Ethernet interface from CE-A

 - Local End.DT2U bound to a local layer2 table T1 where EVPN is
 enable: A1::D2AA. That SID is used to attract unicast traffic

 - Local End.DT2M bound to the same local layer2 table T1 where EVPN
 is enable: A1::D2AF:0. That SID is used to attract BUM traffic

 Node 4 is configured with an EVPN bridging service:

 - Local attachment circuit: Ethernet interface from CE-B

 - Local End.DT2U bound to a local layer2 table T1 where EVPN is
 enable: A4::D2BA. That SID is used to attract unicast traffic

 - Local End.DT2M bound to the same local layer2 Table T1 where EVPN
 is enable: A4::D2BF:0. That SID is used to attract BUM traffic

 Node 8 is configured with an EVPN bridging service:

 - Local attachment circuit: Ethernet interface from CE-C

Filsfils, et al. Expires May 3, 2018 [Page 33]

Internet-Draft SRv6 Network Programming October 2017

 - Local End.DT2U bound to a local layer2 table T1 where EVPN is
 enable: A8::D2CA. That SID is used to attract unicast traffic

 - Local End.DT2M bound to the same local layer2 Table T1 where EVPN
 is enable: A8::D2CF:0/112. That SID is used to attract BUM traffic

 The End.DT2M SID are exchanged between nodes via BGP-based EVPN
 route-3.

 Upon reception of EVPN Type-3 routes, each node build its own
 replication list per layer2 table T1.

 On node 1, the replication list looks like: A4::D2BF:0, A8::D2CF:0.
 On node 4, the replication list looks like: A1::D2AF:0, A8::D2CF:0.
 On node 8, the replication list looks like: A1:D2AF:0, A4:D2BF:0. In
 the case of ingress replication, Ingress PE transmitting the BUM
 traffic stream replicates the traffic using that list.

 When node 1 receives a BUM packet P from CE-A, it replicates that
 packet to remote nodes. For node 4, it pushes an outer IPv6 header
 with SA=A1::0, DA=A4::D2BF:0 and NH=59. For node 8, it performs the
 same operation but DA=A8::D2CF:0. Note that no additional header is
 pushed. Node 1 then forwards the resulting packet on the shortest
 path for each replication e.g. A4::D2BF:0/112 and A8::D2CF:0/112.

 When node 4 receives the packet, it matches the DA in its My LocalSID
 table and finds the bound function End.DT2M and its related layer2
 table T1. After confirming that the next-header=59, node 4 decaps
 the outer IPv6 header and forwards the inner Ethernet frame to all
 layer-2 output interface found to table T1. Similar processing is
 also performed by node 8 upon packet reception. This example is the
 same for any BUM stream coming from CE-B and CE-C.

 Node 1,4 and 8 are also performing software MAC learning to exchange
 MAC reachability information (unicast traffic) via BGP among
 themselves.

 Each MAC being learned in software are exchanged using BGP-based EVPN
 route type-2.

 When node 1 receives an unicast packet P from CE-A, it learns its
 MAC-SA=CEA in software. Node 1 transmits that MAC and its associated
 SID A1::D2AA using BGP-based EVPN route-type 2 to all remote nodes.

 When node 4 receives an unicast packet P from CE-B destinated to MAC-
 DA=CEA, it performs a L2 table T1 MAC-DA lookup to find the
 associated SID. It pushes an outer IPv6 header with SA=A4::0,
 DA=A1::D2AA and NH=59. Note that no additional header is pushed.

Filsfils, et al. Expires May 3, 2018 [Page 34]

Internet-Draft SRv6 Network Programming October 2017

 Node 4 then forwards the resulting packet on the shortest path to
 A1::/40. Similar processing is also performed by node 8.

9.7.2. EVPN Multi-homing with ESI filtering

 In L2 network, traffic loop avoidance is a MUST. In EVPN all-active
 multi-homing scenario, ESI filtering feature enforce that
 requirement.

 Node 1 and node 2 are peering partners of a redundancy group where
 the access CE-A is connected in an all-active multi-homing way with
 these two nodes.

 Node 1 is configured with an EVPN bridging service (E-LAN service):

 - Local attachment circuit: Ethernet interface from CE-A

 - Local Arg.FE2 bound to the attachment circuit: 0xC1

 - Local End.DT2M bound to the same local layer2 table T1 where EVPN
 is enable: A1::D2AF:0/112. That SID is used to attract BUM traffic

 Node 2 is configured with an EVPN bridging service:

 - Local attachment circuit: Ethernet interface from CE-A

 - Local Arg.FE2 bound to the attachment circuit: 0xC2

 - Local End.DT2M bound to the same local layer2 Table T1 where EVPN
 is enable: A2::D2BF:0. That SID is used to attract BUM traffic

 The End.DT2M SID are exchanged between nodes via BGP-based EVPN route
 type-3.

 Upon reception of EVPN Type-3 routes, each node build its own
 replication list per layer2 table T1.

 The Arg.FE2 SID are exchange between nodes via BGP ESI-filtering
 extended community attached to BGP-based EVPN route type-1.

 Upon reception of EVPN route type-1 and type-3, node 1 merges the
 End.DT2M SID and the Arg.FE2 SID from node 2; its peering partner.
 Its replication list looks like A2::D2BF:C1. Similar procedure is
 performed by node 2.

 When node 1 receives a BUM packet P from CE-A, it replicates that
 packet to remote nodes. For node 2, it pushes an outer IPv6 header
 with SA=A1::0, DA=A2::D2BF:C1 and NH=59. Note that no additional

Filsfils, et al. Expires May 3, 2018 [Page 35]

Internet-Draft SRv6 Network Programming October 2017

 header is pushed. Node 1 then forwards the resulting packet on the
 shortest path for each replication e.g. A2::D2BF:00/112. Again,
 similar processing is also performed by node 8 upon packet reception

9.7.3. EVPN Layer-3

 EVPN layer-3 works exactly in the same way of IPVPN. Please refer to
 SR-IPVPN section

9.7.4. EVPN Integrated Routing Bridging (IRB)

 EVPN IRB brings Layer-2 and Layer-3 together. It uses BGP-based EVPN
 route type-2 to achieve Layer-2 intra-subnet and Layer-3 inter-subnet
 forwarding. The EVPN route type-2 maintain the associated of a MAC/
 IP association.

 Node 1 is configured with an EVPN IRB service:

 - Local attachment circuit: Ethernet interface from CE-A

 - Local End.DT2U bound to a local layer2 table T1 where EVPN is
 enable: SID = A1::D2AA. That SID is used to attract unicast L2
 traffic

 - Local End.DT2 bound to tenant IPv4 table 100: SID = A1::D3AA. That
 SID is used to attract L3 traffic

 Node 8 is configured with an EVPN IRB service:

 - Local attachment circuit: Ethernet interface from CE-C

 - Local End.DT2U bound to a local layer2 table T1 where EVPN is
 enable: SID = A8::D2CB. That SID is used to attract unicast L2
 traffic

 - Local End.DT2 bound to tenant IPv4 table 100: SID = A8::D3CB. That
 SID is used to attract L3 traffic

 Each ARP/ND request learned by each node are exchanged using BGP-
 based EVPN route type-2.

 When node 1 receives an ARP/ND packet P from a host (10.10.10.10) on
 CE-A destined to 20.20.20.20, it learns its MAC-SA=CEA in software.
 It also learns the ARP/ND entry (IP SA=10.10.10.10) in its cache.
 Node 1 transmits that MAC/IP and its associated L2 SID A1::D2AA and
 L3 SID A1::D3AA using BGP-based EVPN route-type 2 to all remote
 nodes.

Filsfils, et al. Expires May 3, 2018 [Page 36]

Internet-Draft SRv6 Network Programming October 2017

 When node 8 receives a packet P from CE-C destined to 10.10.10.10
 from a host (20.20.20.20), P looks up its tenant-100 IPv4 table and
 finds an SR-VPN entry for that prefix. As a consequence, node 8
 pushes an outer IPv6 header with SA=A8::0, DA=A1::D3AA and NH=4.
 Node 8 then forwards the resulting packet on the shortest path to
 A1::/40. EVPN inter-subnet forwarding is then achieved.

 When node 8 receives a packet P from CE-C destined to 10.10.10.10
 from a host (10.10.10.11), P looks up its L2 table T1 MAC-DA lookup
 to find the associated SID. It pushes an outer IPv6 header with
 SA=A8::0, DA=A1::D2AA and NH=59. Note that no additional header is
 pushed. Node 8 then forwards the resulting packet on the shortest
 path to A1::/40. EVPN intra-subnet forwarding is then achieved.

9.8. SR TE for Underlay SLA

9.8.1. SR policy from the Ingress PE

 Let's assume that node 1's tenant-100 IPv4 route "20/8 via A8::D100"
 is programmed with a color/community that requires low-latency
 underlay optimization [I-D.filsfils-spring-segment-routing-policy].

 In such case, node 1 either computes the low-latency path to the
 egress node itself or delegates the computation to a PCE.

 In either case, the location of the egress PE can easily be found by
 looking for who originates the SID block comprising the SID A8::D100.
 This can be found in the IGP's LSDB for a single domain case, and in
 the BGP-LS LSDB for a multi-domain case.

 Let us assume that the TE metric encodes the per-link propagation
 latency. Let us assume that all the links have a TE metric of 10,
 except link 27 which has TE metric 100.

 The low-latency path from 1 to 8 is thus 1245678.

 This path is encoded in a SID list as: first a hop through A4::C5 and
 then a hop to 8.

 As a consequence the SR-VPN entry 20/8 installed in the Node1's
 Tenant-100 IPv4 table is: T.Encaps with SRv6 Policy <A4::C5,
 A8::D100>.

 When 1 receives a packet P from CE-A destined to 20.20.20.20, P looks
 up its tenant-100 IPv4 table and finds an SR-VPN entry 20/8. As a
 consequence, 1 pushes an outer header with SA=A1::0, DA=A4::C5,
 NH=SRH followed by SRH (A8::D100, A4::C5; SL=1; NH=4). 1 then
 forwards the resulting packet on the interface to 2.

Filsfils, et al. Expires May 3, 2018 [Page 37]

Internet-Draft SRv6 Network Programming October 2017

 2 forwards to 4 along the path to A4::/40.

 When 4 receives the packet, 4 matches the DA in its My LocalSID table
 and finds the bound function End.X to neighbor 5. 4 notes the PSP
 capability of the SID A4::C5. 4 sets the DA to the next SID A8::D100.
 As 4 is the penultimate segment hop, it performs PSP and pops the
 SRH. 4 forwards the resulting packet to 5.

 5, 6 and 7 forwards along the path to A8::/40.

 When 8 receives the packet, 8 matches the DA in its My LocalSID
 Table and finds the bound function End.DT(100). As a result, 8
 decaps the outer header, looks up the inner IPv4 DA in tenant-100
 IPv4 table, and forward the (inner) IPv4 packet towards CE-B.

9.8.2. SR policy at a midpoint

 Let us analyze a policy applied at a midpoint on a packet without
 SRH.

 Packet P1 is (A1::, A8::D100).

 Let us consider P1 when it is received by node 2 and let us assume
 that that node 2 is configured to steer A8::/40 in a transit behavior
 T.Insert associated with SR policy <A4::C5>.

 In such a case, node 2 would send the following modified packet P1 on
 the link to 4:

 (A1::, A4::C5)(A8::D100, A4::C5; SL=1).

 The rest of the processing is similar to the previous section.

 Let us analyze a policy applied at a midpoint on a packet with an
 SRH.

 Packet P2 is (A1::, A7::1)(A8::D100, A7::1; SL=1).

 Let us consider P2 when it is received by node 2 and let us assume
 that node 2 is configured to steer A7::/40 in a transit behavior
 T.Insert associated with SR policy <A4::C5, A9::1>.

 In such a case, node 2 would send the following modified packet P2 on
 the link to 4:

 (A1::, A4::C5)(A7::1, A9::1, A4::C5; SL=2)(A8::D100, A7::1; SL=1)

Filsfils, et al. Expires May 3, 2018 [Page 38]

Internet-Draft SRv6 Network Programming October 2017

 Node 4 would send the following packet to 5: (A1::, A9::1)(A7::1,
 A9::1, A4::C5; SL=1)(A8::D100, A7::; SL=1)

 Node 5 would send the following packet to 9: (A1::, A9::1)(A7::1,
 A9::1, A4::C5; SL=1)(A8::D100, A7::1; SL=1)

 Node 9 would send the following packet to 6: (A1::, A7::1)(A8::D100,
 A7::1; SL=1)

 Node 6 would send the following packet to 7: (A1::, A7::1)(A8::D100,
 A7::1; SL=1)

 Node 7 would send the following packet to 8: (A1::, A8::D100)

9.9. End-to-End policy with intermediate BSID

 Let us now describe a case where the ingress VPN edge node steers the
 packet destined to 20.20.20.20 towards the egress edge node connected
 to the tenant100 site with 20/8, but via an intermediate SR Policy
 represented by a single routable Binding SID. Let us illustrate this
 case with an intermediate policy which both encodes underlay
 optimization for low-latency and the service chaining via two SR-
 aware container-based apps.

 Let us assume that the End.B6 SID A2::B1 is configured at node 2 and
 is associated with midpoint T.Insert policy <A4::C5, A9::A1, A6::A2>.

 A4::C5 realizes the low-latency path from the ingress PE to the
 egress PE. This is the underlay optimization part of the
 intermediate policy.

 A9::A1 and A6::A2 represent two SR-aware NFV applications residing in
 containers respectively connected to node 9 and 6.

 Let us assume the following ingress VPN policy for 20/8 in tenant 100
 IPv4 table of node 1: T.Encaps with SRv6 Policy <A2::B1, A8::D100>.

 This ingress policy will steer the 20/8 tenant-100 traffic towards
 the correct egress PE and via the required intermediate policy that
 realizes the SLA and NFV requirements of this tenant customer.

 Node 1 sends the following packet to 2: (A1::, A2::B1) (A8::D100,
 A2::B1; SL=1)

 Node 2 sends the following packet to 4: (A1::, A4::C5) (A6::A2,
 A9::A1, A4::C5; SL=2)(A8::D100, A2::B1; SL=1)

Filsfils, et al. Expires May 3, 2018 [Page 39]

Internet-Draft SRv6 Network Programming October 2017

 Node 4 sends the following packet to 5: (A1::, A9::A1) (A6::A2,
 A9::A1, A4::C5; SL=1)(A8::D100, A2::B1; SL=1)

 Node 5 sends the following packet to 9: (A1::, A9::A1) (A6::A2,
 A9::A1, A4::C5; SL=1)(A8::D100, A2::B1; SL=1)

 Node 9 sends the following packet to 6: (A1::, A6::A2) (A8::D100,
 A2::B1; SL=1)

 Node 6 sends the following packet to 7: (A1::, A8::D100)

 Node 7 sends the following packet to 8: (A1::, A8::D100) which decaps
 and forwards to CE-B.

 The benefits of using an intermediate Binding SID are well-known and
 key to the Segment Routing architecture: the ingress edge node needs
 to push fewer SIDs, the ingress edge node does not need to change its
 SR policy upon change of the core topology or re-homing of the
 container-based apps on different servers. Conversely, the core and
 service organizations do not need to share details on how they
 realize underlay SLA's or where they home their NFV apps.

9.10. TI-LFA

 Let us assume two packets P1 and P2 received by node 2 exactly when
 the failure of link 27 is detected.

 P1: (A1::, A7::1)

 P2: (A1::, A7::1)(A8::D100, A7::1; SL=1)

 Node 2's pre-computed TI-LFA backup path for the destination A7:: is
 <A4::C5>. It is installed as a T.Insert transit behavior.

 Node 2 protects the two packets P1 and P2 according to the pre-
 computed TI-LFA backup path and send the following modified packets
 on the link to 4:

 P1: (A1::, A4::C5)(A7::1, A4::C5; SL=1)

 P2: (A1::, A4::C5)(A7::1, A4::C5; SL=1) (A8::D100, A7::1; SL=1)

 Node 4 then sends the following modified packets to 5:

 P1: (A1::, A7::1)

 P2: (A1::, A7::1)(A8::D100, A7::1; SL=1)

Filsfils, et al. Expires May 3, 2018 [Page 40]

Internet-Draft SRv6 Network Programming October 2017

 Then these packets follow the rest of their post-convergence path
 towards node 7 and then go to node 8 for the VPN decaps.

9.11. SR TE for Service chaining

 We have illustrated the service chaining through SR-aware apps in a
 previous section.

 We illustrate the use of End.AS function
 [I-D.clad-spring-segment-routing-service-chaining] to service chain
 an IP flow bound to the internet through two SR-unaware applications
 hosted in containers.

 Let us assume that servers 20 and 70 are respectively connected to
 nodes 2 and 7. They are respectively configured with SID spaces
 A020::/40 and A070::/40. Their connected routers advertise the
 related prefixes in the IGP. Two SR-unaware container-based
 applications App2 and App7 are respectively hosted on server 20 and
 70. Server 20 (70) is configured explicitly with an End.AS SID
 A020::2 for App2 (A070::7 for App7).

 Let us assume a broadband customer with a home gateway CE-A connected
 to edge router 1. Router 1 is configured with an SR policy which
 encapsulates all the traffic received from CE-A into a T.Encaps
 policy <A020::2, A070::7, A8::D0> where A8::D0 is an End.DT4 SID
 instantiated at node 8.

 P1 is a packet sent by the broadband customer to 1: (X, Y) where X
 and Y are two IPv4 addresses.

 1 sends the following packet to 2: (A1::0, A020::2)(A8::D0, A070::7,
 A020::2; SL=2; NH=4)(X, Y).

 2 forwards the packet to server 20.

 20 receives the packet (A1::0, A020::2)(A8::D0, A070::7, A020::2;
 SL=2; NH=4)(X, Y) and forwards the inner IPv4 packet (X,Y) to App2.
 App2 works on the packet and forwards it back to 20. 20 pushes the
 outer IPv6 header with SRH (A1::0, A070::7)(A8::D0, A070::7, A020::2;
 SL=1; NH=4) and sends the (whole) IPv6 packet with the encapsulated
 IPv4 packet back to 2.

 2 and 7 forward to server 70.

 70 receives the packet (A1::0, A070::7)(A8::D0, A070::7, A020::2;
 SL=1; NH=4)(X, Y) and forwards the inner IPv4 packet (X,Y) to App7.
 App7 works on the packet and forwards it back to 70. 70 pushes the
 outer IPv6 header with SRH (A1::0, A8::D0)(A8::D0, A070::7, A020::2;

Filsfils, et al. Expires May 3, 2018 [Page 41]

Internet-Draft SRv6 Network Programming October 2017

 SL=0; NH=4) and sends the (whole) IPv6 packet with the encapsulated
 IPv4 packet back to 7.

 7 forwards to 8.

 8 receives (A1::0, A8::D0)(A8::D0, A070::7, A020::2; SL=0; NH=4)(X,
 Y) and performs the End.DT4 function and sends the IP packet (X, Y)
 towards its internet destination.

10. Benefits

10.1. Seamless deployment

 The VPN use-case can be realized with SRv6 capability deployed solely
 at the ingress and egress PE's.

 All the nodes in between these PE's act as transit routers as per
 [RFC2460]. No software/hardware upgrade is required on all these
 nodes. They just need to support IPv6 per [RFC2460].

 The SRTE/underlay-SLA use-case can be realized with SRv6 capability
 deployed at few strategic nodes.

 It is well-known from the experience deploying SR-MPLS that
 underlay SLA optimization requires few SIDs placed at strategic
 locations. This was illustrated in our example with the low-
 latency optimization which required the operator to enable one
 single core node with SRv6 (node 4) where one single and End.X SID
 towards node 5 was instantiated. This single SID is sufficient to
 force the end-to-end traffic via the low-latency path.

 The TI-LFA benefits are collected incrementally as SRv6 capabilities
 are deployed.

 It is well-know that TI-LFA is an incremental node-by-node
 deployment. When a node N is enabled for TI-LFA, it computes TI-
 LFA backup paths for each primary path to each IGP destination.
 In more than 50% of the case, the post-convergence path is loop-
 free and does not depend on the presence of any remote SRv6 SID.
 In the vast majority of cases, a single segment is enough to
 encode the post-convergence path in a loop-free manner. If the
 required segment is available (that node has been upgraded) then
 the related back-up path is installed in FIB, else the pre-
 existing situation (no backup) continues. Hence, as the SRv6
 deployment progresses, the coverage incrementally increases.
 Eventually, when the core network is SRv6 capable, the TI-LFA
 coverage is complete.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460

Filsfils, et al. Expires May 3, 2018 [Page 42]

Internet-Draft SRv6 Network Programming October 2017

 The service chaining use-case can be realized with SRv6 capability
 deployed at few strategic nodes.

 The service-chaining deployment is again incremental and does not
 require any pre-deployment of SRv6 in the network. When an NFV
 app A1 needs to be enabled for inclusion in an SRv6 service chain,
 all what is required is to install that app in a container or VM
 on an SRv6-capable server (Linux 4.10 or FD.io 17.04 release).
 The app can either be SR-aware or not, leveraging the proxy
 functions described in this document.

 By leveraging the various END functions it can also be used to
 support any current PNF/VNF implementations and their forwarding
 methods (e.g. Layer 2).

 The ability to leverage SR TE policies and BSIDs also permits
 building scalable, hierarchical service-chains.

10.2. Integration

 The SRv6 network programming concept allows integrating all the
 application and service requirements: multi-domain underlay SLA
 optimization with scale, overlay VPN/Tenant, sub-50msec automated
 FRR, security and service chaining.

10.3. Security

 The combination of well-known techniques (SEC1, SEC2, SEC4) and
 carefully chosen architectural rules (SEC3) ensure a secure
 deployment of SRv6 inside a multi-domain network managed by a single
 organization.

 Inter-domain security will be described in a companion document.

11. IANA Considerations

 This document has no actions for IANA.

12. Work in progress

 We are working on a extension of this document to provide Yang
 modelling for all the functionality described in this document.

13. Acknowledgements

 TBD.

Filsfils, et al. Expires May 3, 2018 [Page 43]

Internet-Draft SRv6 Network Programming October 2017

14. Contributors

 Stefano Previdi, Dave Barach, Mark Townsley, Peter Psenak, Paul
 Wells, Robert Hanzl, Dan Ye, Patrice Brissette, Gaurav Dawra, Faisal
 Iqbal, Zafar Ali, Jaganbabu Rajamanickam, David Toscano, Asif Islam,
 Jianda Liu, Yunpeng Zhang, Jiaoming Li, Narendra A.K, Mike Mc Gourty,
 Bhupendra Yadav, Sherif Toulan, Satish Damodaran, John Bettink,
 Kishore Nandyala Veera Venk, Jisu Bhattacharya and Saleem Hafeez
 substantially contributed to the content of this document.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

15.2. Informative References

 [I-D.bashandy-isis-srv6-extensions]
 Ginsberg, L., Bashandy, A., Filsfils, C., and B. Decraene,
 "IS-IS Extensions to Support Routing over IPv6 Dataplane",

draft-bashandy-isis-srv6-extensions-01 (work in progress),
 September 2017.

 [I-D.clad-spring-segment-routing-service-chaining]
 Clad, F., Filsfils, C., Camarillo, P.,
 daniel.bernier@bell.ca, d., Decraene, B., Peirens, B.,
 Yadlapalli, C., Xu, X., Salsano, S., Abdelsalam, A., and
 G. Dawra, "Segment Routing for Service Chaining", draft-

clad-spring-segment-routing-service-chaining-00 (work in
 progress), October 2017.

 [I-D.dawra-idr-srv6-vpn]
 Dawra, G., Filsfils, C., Dukes, D., Brissette, P.,
 Camarillo, P., Leddy, J., daniel.voyer@bell.ca, d.,
 daniel.bernier@bell.ca, d., Steinberg, D., Raszuk, R.,
 Decraene, B., and S. Matsushima, "BGP Signaling of IPv6-
 Segment-Routing-based VPN Networks", draft-dawra-idr-

srv6-vpn-02 (work in progress), October 2017.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-bashandy-isis-srv6-extensions-01
https://datatracker.ietf.org/doc/html/draft-clad-spring-segment-routing-service-chaining-00
https://datatracker.ietf.org/doc/html/draft-clad-spring-segment-routing-service-chaining-00
https://datatracker.ietf.org/doc/html/draft-dawra-idr-srv6-vpn-02
https://datatracker.ietf.org/doc/html/draft-dawra-idr-srv6-vpn-02

Filsfils, et al. Expires May 3, 2018 [Page 44]

Internet-Draft SRv6 Network Programming October 2017

 [I-D.filsfils-spring-segment-routing-policy]
 Filsfils, C., Sivabalan, S., Raza, K., Liste, J., Clad,
 F., Lin, S., bogdanov@google.com, b., Horneffer, M.,
 Steinberg, D., Decraene, B., and S. Litkowski, "Segment
 Routing Policy for Traffic Engineering", draft-filsfils-

spring-segment-routing-policy-01 (work in progress), July
 2017.

 [I-D.ietf-6man-segment-routing-header]
 Previdi, S., Filsfils, C., Raza, K., Leddy, J., Field, B.,
 daniel.voyer@bell.ca, d., daniel.bernier@bell.ca, d.,
 Matsushima, S., Leung, I., Linkova, J., Aries, E., Kosugi,
 T., Vyncke, E., Lebrun, D., Steinberg, D., and R. Raszuk,
 "IPv6 Segment Routing Header (SRH)", draft-ietf-6man-

segment-routing-header-07 (work in progress), July 2017.

 [I-D.ietf-idr-bgp-ls-segment-routing-ext]
 Previdi, S., Psenak, P., Filsfils, C., Gredler, H., and M.
 Chen, "BGP Link-State extensions for Segment Routing",

draft-ietf-idr-bgp-ls-segment-routing-ext-03 (work in
 progress), July 2017.

 [I-D.ietf-idr-te-lsp-distribution]
 Previdi, S., Dong, J., Chen, M., Gredler, H., and j.
 jefftant@gmail.com, "Distribution of Traffic Engineering
 (TE) Policies and State using BGP-LS", draft-ietf-idr-te-

lsp-distribution-07 (work in progress), July 2017.

 [I-D.ietf-isis-l2bundles]
 Ginsberg, L., Bashandy, A., Filsfils, C., Nanduri, M., and
 E. Aries, "Advertising L2 Bundle Member Link Attributes in
 IS-IS", draft-ietf-isis-l2bundles-07 (work in progress),
 May 2017.

 [I-D.ietf-spring-segment-routing]
 Filsfils, C., Previdi, S., Decraene, B., Litkowski, S.,
 and R. Shakir, "Segment Routing Architecture", draft-ietf-

spring-segment-routing-12 (work in progress), June 2017.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

https://datatracker.ietf.org/doc/html/draft-filsfils-spring-segment-routing-policy-01
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-segment-routing-policy-01
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-07
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-07
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-segment-routing-ext-03
https://datatracker.ietf.org/doc/html/draft-ietf-idr-te-lsp-distribution-07
https://datatracker.ietf.org/doc/html/draft-ietf-idr-te-lsp-distribution-07
https://datatracker.ietf.org/doc/html/draft-ietf-isis-l2bundles-07
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-12
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-12
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc2473
https://www.rfc-editor.org/info/rfc2473

Filsfils, et al. Expires May 3, 2018 [Page 45]

Internet-Draft SRv6 Network Programming October 2017

 [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
 "IPv6 Flow Label Specification", RFC 6437,
 DOI 10.17487/RFC6437, November 2011,
 <https://www.rfc-editor.org/info/rfc6437>.

Appendix A. Additional Contributors

 Patrice Brissete
 Cisco Systems, Inc.
 Canada

 Email: pbrisset@cisco.com

Authors' Addresses

 Clarence Filsfils
 Cisco Systems, Inc.
 Belgium

 Email: cf@cisco.com

 John Leddy
 Comcast
 United States of America

 Email: john_leddy@cable.comcast.com

 Daniel Voyer
 Bell Canada
 Canada

 Email: daniel.voyer@bell.ca

 Daniel Bernier
 Bell Canada
 Canada

 Email: daniel.bernier@bell.ca

https://datatracker.ietf.org/doc/html/rfc4364
https://www.rfc-editor.org/info/rfc4364
https://datatracker.ietf.org/doc/html/rfc6437
https://www.rfc-editor.org/info/rfc6437

Filsfils, et al. Expires May 3, 2018 [Page 46]

Internet-Draft SRv6 Network Programming October 2017

 Dirk Steinberg
 Steinberg Consulting
 Germany

 Email: dws@dirksteinberg.de

 Robert Raszuk
 Bloomberg LP
 United States of America

 Email: robert@raszuk.net

 Satoru Matsushima
 SoftBank
 1-9-1,Higashi-Shimbashi,Minato-Ku
 Tokyo 105-7322
 Japan

 Email: satoru.matsushima@g.softbank.co.jp

 David Lebrun
 Universite catholique de Louvain
 Belgium

 Email: david.lebrun@uclouvain.be

 Bruno Decraene
 Orange
 France

 Email: bruno.decraene@orange.com

 Bart Peirens
 Proximus
 Belgium

 Email: bart.peirens@proximus.com

Filsfils, et al. Expires May 3, 2018 [Page 47]

Internet-Draft SRv6 Network Programming October 2017

 Stefano Salsano
 Universita di Roma "Tor Vergata"
 Italy

 Email: stefano.salsano@uniroma2.it

 Gaurav Naik
 Drexel University
 United States of America

 Email: gn@drexel.edu

 Hani Elmalky
 Ericsson
 United States of America

 Email: hani.elmalky@gmail.com

 Prem Jonnalagadda
 Barefoot Networks
 United States of America

 Email: prem@barefootnetworks.com

 Milad Sharif
 Barefoot Networks
 United States of America

 Email: msharif@barefootnetworks.com

 Arthi Ayyangar
 Arista
 United States of America

 Email: arthi@arista.com

 Satish Mynam
 Dell Force10 Networks
 United States of America

 Email: satish_mynam@dell.com

Filsfils, et al. Expires May 3, 2018 [Page 48]

Internet-Draft SRv6 Network Programming October 2017

 Wim Henderickx
 Nokia
 Belgium

 Email: wim.henderickx@nokia.com

 Ahmed Bashandy
 Cisco Systems, Inc.
 United States of America

 Email: bashandy@cisco.com

 Kamran Raza
 Cisco Systems, Inc.
 Canada

 Email: skraza@cisco.com

 Darren Dukes
 Cisco Systems, Inc.
 Canada

 Email: ddukes@cisco.com

 Francois Clad
 Cisco Systems, Inc.
 France

 Email: fclad@cisco.com

 Pablo Camarillo Garvia (editor)
 Cisco Systems, Inc.
 Spain

 Email: pcamaril@cisco.com

Filsfils, et al. Expires May 3, 2018 [Page 49]

