Network Working Group Ross Finlayson
Internet-Draft LIVE.COM
Radia Perlman
Sun Microsystems
Doron Rajwan
Bandwiz
Expire in six months 2001.02.19

Accelerating the Deployment of Multicast Using Automatic Tunneling

<draft-finlayson-mboned-autotunneling-00.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC 2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The 1list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts. txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [1].

Abstract

Many Internet users currently cannot participate in wide-area IP
multicast sessions, because their first-hop routers (or beyond) do not
support IP multicast routing. We describe an application level
(UDP-based) tunneling mechanism that allows non-multicast-connected
users - with no modification to their operating systems - to
automatically receive a large class of multicast sessions, pending the
deployment of multicast in their upstream routers.

1. Introduction


https://datatracker.ietf.org/doc/html/draft-finlayson-mboned-autotunneling-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Many Internet users remain unable to participate in wide-area multicast
sessions, because their first-hop router (e.g., a DSL router or a dialup
'portmaster') does not support IP multicast routing, and/or because
their ISP is unwilling or unable to provide multicast connectivity.

A secondary issue is that most users' operating systems currently do

not support IGMP version 3 [2] - the version of IGMP that is used, at
the 'leaves' of the network, to implement a special form of IP multicast
called "Source-Specific Multicast" (SSM) [3]. (SSM is expected to
become widely used for a large class of multicast sessions in which

all multicast data originates from a single source node.)

To accelerate the deployment and adoption of IP multicast, we wish to
provide a mechanism that allows such users to participate in multicast
sessions, even before their router(s) and/or operating systems become
upgraded to support native multicast.

Fortunately, such a mechanism already exists: UDP multicast tunneling.
In this mechanism, UDP multicast packets are tunneled within UDP unicast
packets. Such a tunnel is implemented by two tunneling agents

(the endpoints of the tunnel). One agent (the tunnel 'slave') resides
on a node in the multicast-connected portion of the Internet. The other
agent (the tunnel 'master') runs on the user's computer - either
embedded within the end-user application (such as an audio/video tool),
or else running as a separate application. Upon command from the
master, the slave receives all multicast packets that are addressed to
the desired multicast group and UDP port (and, in the case of SSM,
originating from the desired IP source address). These multicast
packets are encapsulated within UDP unicast packets and sent to the
master (i.e., the user's computer), which then decapsulates them and
delivers them (as multicast data) to the end application. (Also, for
non-SSM sessions, multicast data could be delivered over the tunnel in
the opposite direction as well.)

The benefit of this approach is that the user's tunneling agent can run

at the application level, without requiring any modification to the host
operating system. This means, however, that only UDP multicast

packets can be tunneled - not 'raw IP' multicast packets. Fortunately,

however, most (if not all) end user multicast applications use UDP.

For the purposes of this document, we also impose two additional
restrictions: First, the proposal described here is only for

SSM sessions. (Restricting multicast tunneling to SSM sessions makes it
easier to prevent data loops, as well as making it easier for a receiver
to detect when tunneling is no longer necessary.) Second, this proposal
is only for IPv4. (In IPv6, native multicast routing is ubiquitous, so
tunneling is not needed.)

Our proposal assumes the use of a UDP multicast tunneling protocol
such as UMTP [4]. This particular protocol has been used for several
years now to tunnel UDP multicast sessions (including SSM sessions)



over non-multicast-capable routers (and across firewalls). The protocol
includes both control packets (e.g., "JOIN_GROUP", "LEAVE_GROUP") and
data packets, all using a single UDP port. For each multicast session
that the tunnel master wishes to have tunneled, the master sends - to
the tunnel slave - a JOIN_GROUP command. This is done periodically, as
a 'keep-alive' (and thus the tunnel slave maintains 'soft state' for
each such session). The reader is referred to [4] for more information.

2. An Improvement: Automatic Tunneling, using Router Interception

The biggest problem with UDP multicast tunneling, as described above, is
that before the end user's computer can request that a multicast session
be tunneled, it needs to know which node to use as the remote (slave)
tunnel endpoint. Either the end user has to know and enter this
manually, or else some separate (unspecified) lookup or discovery
mechanism must be used to determine the tunnel endpoint. 1In any case,
there's no inherent guarantee that whatever tunnel endpoint gets used
will be in an optimal place in the networking topology.

This problem can be overcome by if *multicast routers* can also act as
tunnel endpoints. The user (master) end of the tunnel can send its
JOIN_GROUP requests not to an explicit tunnel endpoint, but instead
addressed to the SSM multicast source. The first multicast-capable
router in the path from the user's computer to the SSM source can
intercept this request, and - from then on - act as a UMTP tunnel slave
for this master.

Thus, this mechanism automatically locates a tunnel endpoint, and one
that is in an optimal location: the first multicast-capable router on
the path between the user's computer and the the SSM source node.
Furthermore, as additional routers below this become multicast-enabled,
they, too, will automatically take over the tunneling duty. Should
*all* routers on the path between the user's computer and the SSM
source become multicast enabled, the user's computer will start seeing
incoming native multicast packets from the SSM source node. When it
sees such packets, it can shut down the tunnel, knowing that native
multicast routing is now in place.

For this mechanism to work, SSM-multicast-capable (i.e., PIM-SSM)
routers should also be capable of acting as UMTP tunnel slaves, and

be able to intercept UMTP requests coming from below, as well as
receiving incoming data packets from above (i.e., from the SSM source)
and retransmitting them to the appropriate master(s) as tunneled UMTP
"DATA" commands. A single, well-known UDP port number (assigned by
IANA) would be used for UMTP; the routers would detect UDP packets
addressed to this port as UMTP commands that need to be handled
especially.

Ideally, *all* PIM-SSM routers would also be able to act as UMTP
tunnel slaves. However, this mechanism would still work - albeit



with a less-than-optimal tunneling topology - even if only *some*
of them have this capability.

The worst-case scenario is that *no* routers in the path between the
user's computer and the SSM source have this capability. To handle
this case, the SSM source node may also contain implement a UMTP slave
implementation of its own. This allows the server to automatically
stream to its multicast-connected customers via native multicast, and
to its non-multicast-connected customers via tunneled multicast.

3. Behavior of multicast receivers

To join a SSM session (S,G) (on UDP port P), the receiving node would:
1/ do an IGMPv3 (S,G) join (if it can!), *and*
2/ (perhaps after a short delay) act as UMTP tunnel master,
by periodically sending - to the desired SSM source -
a UMTP command: JOIN_GROUP(S,G,P). This command is sent
as a UDP packet addressed to the desired SSM source S.

(By doing a IGMPv3 join as well as sending a UMTP JOIN_GROUP
command, we allow for the possibility that the receiver's upstream
routers are multicast-enabled, but do *not* support UMTP.)

Similarly, to leave a SSM session, the receiving node would do both
an IGMPv3 leave (if it can!), *and* send a UMTP LEAVE_GROUP command
(again, addressed to the SSM source S).

If the receiver ever receives a native (i.e., non-tunneled) multicast
packet from the SSM source S, it knows that tunneling is no longer
necessary (for this source, at least). It then removes the tunnel, by
sending a UMTP "TEAR_DOWN" command (addressed to S), and stops sending
periodic JOIN_GROUP commands. (Thus, even if the TEAR_DOWN command

gets lost in transit, the tunneling would later time out anyway. In the
meantime, there would be some duplicate packets - tunneled and native.)

As the receiver receives encapsulated multicast packets across the
tunnel (as UMTP DATA commands), it decapsulates them and delivers them
to their intended local recipients - e.g., by re-multicasting them
locally (to the appropriate UDP port). Note, however, that this means
that the IP source address that the the ultimate receiving
application(s) see will *not* be that of the original SSM source.
Instead, the source address will be that of the local machine, and so
the receiving applications need to made be aware of this.

Probably the best place to deal with this is in whatever 'wrapper'
software is used to launch the application. This wrapper software can
do the following:
1/ act as a UMTP tunnel master and send a JOIN_GROUP command for
the desired SSM source, and then
2/ launch the application, but telling it that the *local node*



is to be the SSM source.

Another possible approach is to integrate the UMTP tunneling master
implementation within the application itself (rather than running UMTP
a separate application).

4. Behavior of routers

Non multicast-capable routers will, of course, simply forward UMTP
packets (whether control or data) just like any other UDP packets.

Multicast-capable routers, however, should intercept all UDP packets
that are addressed to the special port number for UMTP, and act as

a UMTP slave server to process such packets. (See [4] for details.)
The router performs the role of a UMTP slave in semantically exactly
the same way as if UMTP were running on top of the router as a
user-level application.

In particular, an incoming JOIN_GROUP command would be handled by
(effectively) joining the specified SSM group (S,G). The UMTP
implementation would then receive any subsequent (native) multicast
packets for this group, and deliver these packets down the tunnel
(i.e., encapsulated in UMTP DATA commands) to each UMTP recipient.

Note that - apart from this - the underlying router would handle these
incoming native multicast packets in exactly the same way as usual
(including continuing to forward them downstream if there are any native
receivers). While the router's UMTP implementation receives and
processes all native multicast packets that have a (S,G) that it's
interested in tunneling, the router *intercepts* only UMTP commands
(which are identified by UDP port number). Thus, only the handling of
incoming UDP commands needs to be in the router's 'fast path'.

5. Behavior of multicast senders

As noted earlier, the sending node may also include its own UMTP slave
implementation - allowing it to send data to non-multicast-connected
recipients via tunneling. This is assuming, of course, that the sender
has sufficient bandwidth to support these tunnels. (If necessary, the
sender's UMTP implementation can limit the number of tunnels that get
created.)

Alternatively, a sender without any multicast connectivity could set up
just a single UMTP tunnel - to a second, multicast-connected node that
would then do the actual multicasting. (This tunnel would be set up
explicitly rather than automatically.) The drawback of this approach
is that the actual SSM source would then be the second node rather than
the first; prospective receivers would need to be made aware of this.



6. References

[1] Bradner, S.
"Key words for use in RFCs to Indicate Requirement Levels"
RFC 2119, March 1997.

[2] Cain, B., Deering, S., Fenner, B., Kouvelas, I., Thyagarajan, A.
"Internet Group Management Protocol, Version 3"
Work-in-Progress, Internet-Draft "draft-ietf-idmr-igmp-v3-06.txt,
January, 2001.

[3] Holbrook, H., Cain, B.
"Source-Specific Multicast for IP"

Work-in-Progress, Internet-Draft "draft-holbrook-ssm-arch-01.txt"
November, 2000.

[3] Finlayson, R.
"The UDP Multicast Tunneling Protocol"

Work-in-Progress, Internet-Draft "draft-finlayson-umtp-05.txt"
February, 2001.

.ps"


https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-igmp-v3-06.txt
https://datatracker.ietf.org/doc/html/draft-holbrook-ssm-arch-01.txt
https://datatracker.ietf.org/doc/html/draft-finlayson-umtp-05.txt

