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Abstract

   We detail the implementation of a network scheduler that switches the
   priority of one or several queues.  This scheduler aims at carrying
   and isolating time constrained and elastic traffic flows from best-
   effort traffic.  We claim that the usual implementations with rate
   schedulers (such as WRR, DRR,...) do not allow to efficiently
   quantify the reserved capacity of the different classes.  By using
   this credit based scheduler mechanism called Priority Switching
   Scheduler, we provide a more predictable available capacity.
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1.  Introduction

1.1.  Context and Motivation

   To share the capacity offered by a link, many fair schedulers have
   been developed, such as Weighted Fair Queueing, Deficit Round Robin.
   However, with these solutions, the capacity available to a class is
   strongly impacted by the other classes.  With this new scheduler
   denoted Priority Switching Scheduler (PSS), we wish to reduce this
   impact on some classes and provide them with a more predictable
   output rate, reporting the impact on other classes.  Additionally,
   compared to well-known schemes, this solutions is simpler to
   implement as it does not require a virtual clock, and more flexible
   thanks to the many possibilities offered by the setting of different
   priorities.

1.2.  Priority Switching Scheduler in a nutshell

   The principle of PSS is the use of credit counters to change the
   priority of one or several queues.  For each switching queue q, its
   priority, denoted p[q], switches between two values, depending on its
   associated credit counter.  Then classic Priority Scheduler is used
   for the dequeuing process.

https://trustee.ietf.org/license-info


Baker, et al.           Expires September 6, 2018               [Page 2]



Internet-Draft        Priority Switching Scheduler            March 2018

   The main idea is that changing the priorities adds fairness to the
   Priority Scheduler.  Depending on its credit counter parameters, the
   amount of capacity available to a queue is bounded between a minimum
   and a maximum value.  Consequently, good parameterization is very
   important to prevent starvation of lower priority queues.

   The new service we seek to obtain for the queue with the switching
   priority is more predictable: the minimum between a desired capacity
   and the residual capacity left by higher priorities.  The impact of
   the input variations of higher classes is passed down to lower
   priority classes.

   Finally, this new solutions offers much flexibility as we can have
   both i) queues with a reserved capacity (when two priorities are
   set), ii) and queues scheduled with a simple Priority Scheduler (when
   only one priority is set).

2.  Priority Switching Scheduler

2.1.  Specification

   The PSS defines for each queue q a low priority, p_low[q], and a high
   priority, p_high[q].  For each queue q with p_high[q] > p_low[q], to
   manage the priority switching a credit counter is defined with:

   o  a minimum level: 0;

   o  a maximum level: LM[q];

   o  a resume level: LR[q]

   o  a reserved capacity: BW[q]

   o  an idle slope: Iidle[q]=C*BW[q];

   o  a sending slope: Isend[q]=C-Iidle[q];

   The priority change depends on the credit counter as follows:

   o  initially, the credit counter starts at 0;

   o  the change of priority p[q] of queue q occurs in two cases:

      *  if p[q]=p_high[q] and the credit reaches LM[q];

      *  if p[q]=p_low[q] and credit reaches LR[q];
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   o  when a packet of queue q is transmitted, the credit increases with
      a rate Isend[q], else the credit decreases with a rate Iidle[q];

   o  when the credit reaches LM[q], it remains at this level until the
      end of the transmission of the current packet;

   o  when the credit reaches 0, it remains at this level until the
      start of the transmission of a queue q packet.

   Figure 1 and Figure 2 show two examples of credit and priority
   behaviors of a queue q.

       ^ credit[q]
       |         |                   |
       |p_high[q]|       p_low[q]    | p_high[q]
   LM  +---------|-------------------|------------
       |      _ '|    |`             |        '
       |Isend| ' |    |  `           |       '
       | [q]  '  |    |    `  _      |      '
       |     '   |    |      ` |Iidle|     '
       |    '    |    |        `  [q]|    '
       |   '     |    |          `   |   '
   LR  +  '      |    |            ` |  '
    0  +.........|....|..............|..........>
                      |              |          time
       @@@@@@@@@@@@@@@@oooooooooooooo@@@@@@@@@@

                   @ queue q traffic  o other traffic

     Figure 1: First example of queue q credit and priority behaviors
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       ^ credit[q]
       |                        |
       |         p_high[q]      |     p_low[q]
   LM  + -----------------------|-------------------      '
       |                       '|  |`           '
       |               '|`   '  |  |  `       '
       | [q]          ' |  `    |  |    `   '
       |     '`      '  |   |   |  |      `
       |    '|  `   '   |   |   |  |      |
       |   ' |     |    |   |   |  |      |
   LR  +--'--|-----|----|---|---|--|------|--------
    0  +-'---|-----|----|---|---|--|------|-------->
             |     |    |   |      |      |        time
       @@@@@@oooooo@@@@@oooo@@@@@@@@oooooo@@@@@@@

                   @ queue q traffic  o other traffic

     Figure 2: Second example of queue q credit and priority behaviors

   Finally, for the dequeuing process, a Priority Scheduler selects the
   appropriate frame using the current p[q] values.

2.2.  Implementation

   The new dequeuing algorithm is presented in the PSS Algorithm.  The
   credit of each queue q, denoted credit[q], and the dequeuing timer
   denoted timerDQ[q] are initialized to zero.  The initial priority is
   set to the high value p_high[q].  First, for each queue with
   p_high[q] > p_low[q], the difference between the current time and the
   time stored in timerDQ[q], is computed (lines 2 and 3).  The duration
   dtime[q] represents the time elapsed since the last credit update,
   during which no shaped packet was sent, we call this the idle time.
   Then, if dtime[q]>0, the credit is updated by removing the credit
   gained during the idle time that just occurred (lines 4 and 5).
   Next, timerDQ[q] is set to the current time to keep track of the time
   the credit is last updated (line 6).  If the credit reaches LR[q],
   the priority changes to its high value (lines 7 and 8).  Then, with
   the updated priorities, the priority scheduler performs as usual:
   each queue is checked for dequeuing (lines 12 and 13).  When a queue
   q is selected with p_high[q] > p_low[q], the credit expected to be
   consumed is added to credit[q] variable (line 16).  The time taken
   for the packet to be dequeued is added to the variable timerDQ[q]
   (lines 13 and 14) so the transmission time of the packet will not be
   taken into account in the idle time dtime[q] (line 2).  If the credit
   reaches LM[q], the priority changes to its low value (lines 18 and
   19).  Finally, the packet is dequeued (line 22).
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   Inputs: credits, timerDQs, C, LMs,LRs,BWs,p_highs, p_lows
    1   currentTime=getCurrentTime()
    2   for each queue q with p_high[q] > p_low[q] do:
    3      dtime[q]=currentTime-timerDQ[q]
    4      if dtime[q]>0 then:
    5         credit[q]=max(credit[q]-dtime[q].C.BW[q],0)
    6         dtime[q]=currentTime
    7         if credit[q]<LR[q] and p[q]=p_low[q] then:
    8            p[q]=p_high[q]
    9         end if
   10      end if
   11   end for
   12   for each priority level pl, highest first do:
   13      if length(queue(pl))>0 then:
   14         q=queue(pl)
   15         if p_high[q] > p_high[q] then:
   16            credit[q]=min(LM[q], credit[q]+size(head(q)).(1-BW[q]))
   17            timerDQ[q]=currentTime+size(head(q))/C
   18            if credit >=LM[q] and p[q]=p_high[q] then:
   19               p[q]=p_low[q]
   20            end if
   21         end if
   22         dequeue(head(q))
   23      end if
   24   end for

                          Figure 3: PSS algorithm

   PSS algorithm also implements the following functions:

   o  getCurrentTime() uses a timer to return the current time;

   o  queue(pl) returns the queue associated to priority pl;

   o  head(q) returns the first packet of queue q;

   o  size(f) returns the size of packet f;

   o  dequeue(f) activates the dequeing event of packet f.

3.  Usecase: benefit of using PSS in a Diffserv core network

3.1.  Motivation

   The DiffServ architecture defined in [RFC4594] and [RFC2475] proposes
   a scalable mean to deliver IP quality of service (QoS) based on
   handling traffic aggregates.  This architecture follows the

https://datatracker.ietf.org/doc/html/rfc4594
https://datatracker.ietf.org/doc/html/rfc2475
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   philosophy that complexity should be delegated to the network edges
   while simple functionalities should be located in the core network.
   Thus, core devices only perform differentiated aggregate treatments
   based on the marking set by edge devices.

   Keeping aside policing mechanisms that might enable edge devices in
   this architecture, a DiffServ stateless core network is often used to
   differentiate time-constrained UDP traffic (e.g.  VoIP or VoD) and
   TCP bulk data transfer from all the remaining best-effort (BE)
   traffic called default traffic (DE).  The Expedited Forwarding (EF)
   class is used to carry UDP traffic coming from time-constrained
   applications (VoIP, Command/Control, ...); the Assured Forwarding
   (AF) class deals with elastic traffic as defined in [RFC4594] (data
   transfer, updating process, ...) while all other remaining traffic is
   classified inside the default (DE) best-effort class.

   The first and best service is provided to EF as the priority
   scheduler attributes the highest priority to this class.  The second
   service is called assured service and is built on top of the AF class
   where elastic traffic such as TCP traffic, is intended to achieve a
   minimum level of throughput.  Usually, the minimum assured throughput
   is given according to a negotiated profile with the client.  The
   throughput increases as long as there are available resources and
   decreases when congestion occurs.  As a matter of fact, a simple
   priority scheduler is insufficient to implement the AF service.  Due
   to its opportunistic nature of fetching the full remaining capacity,
   TCP traffic increases until reaching the capacity of the bottleneck.
   In particular, this behaviour could lead to starve the DE class.

   To prevent this and ensure to both DE and AF a minimum service rate,
   the router architecture proposed in [RFC5865] uses a rate scheduler
   between AF and DE classes to share the residual capacity left by the
   EF class.  Nevertheless, one drawback of using a rate scheduler is
   the high impact of EF traffic on AF and DE.  Indeed, the residual
   capacity shared by AF and DE classes is directly impacted by the EF
   traffic variation.  As a consequence, the AF and DE class services
   are difficult to predict in terms of available capacity and latency.

   To overcome these limitations and make AF service more predictable,
   we propose here to use the newly defined Priority Switching Scheduler
   (PSS).  Figure 4 shows an example of the Data Plane Priority core
   network router presented in [RFC5865] modified with a PSS.  The EF
   queues have the highest priorities to offer the best service to real-
   time traffic.  The priority changes set the AF priorities either
   higher (3,4) or lower (6,7) than CS0 (5), leading to capacity
   sharing.  Another example with only 3 queues is described in
   [Globecom17].  Thank to the increase predictability, for the same
   minimum guaranteed rate, the PSS reserves a lower percentage of the

https://datatracker.ietf.org/doc/html/rfc4594
https://datatracker.ietf.org/doc/html/rfc5865
https://datatracker.ietf.org/doc/html/rfc5865
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   capacity than a rate scheduler.  This leaves more remaining capacity
   that can be guaranteed to other users.

                               priorities
                                ________
                      queues   |        `
       Admitted EF----->||-----+   1      `
                               |            `
     Unadmitted EF----->||-----+   2          `
                               |                `
               AF1----->||-----+ 3 or 6    PSS    -----------
                               |                '
               AF2----->||-----+ 4 or 7       '
                               |            '
               CS0----->||-----+   5      '
                               |________'

    Figure 4: PSS applied to Data Plane Priority (we borrow the syntax
                               from RCF5865)

3.2.  New service offered

   The new service we seek to obtain is:

   o  for EF, the full capacity of the output link;

   o  for AF the minimum between a desired capacity and the residual
      capacity left by EF;

   o  for DE (CS0), the residual capacity left by EF and AF.

   As a result, the AF class has a more predictable available capacity,
   while the unpredictability is reported on the DE class.  With good
   parametrization, both classes also have a minimum rate ensured.
   Parameterization and simulations results concerning the use of a
   similar scheme for core network scehduling are available in
   [Globecom17]

4.  Security Considerations

   TODO

5.  Normative References
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