
Internet Engineering Task Force Baker
Internet-Draft
Intended status: Informational Finzi
Expires: September 6, 2018 Frances
 Lochin
 Mifdaoui
 ISAE-SUPAERO
 March 5, 2018

Priority Switching Scheduler
draft-finzi-priority-switching-scheduler-01

Abstract

 We detail the implementation of a network scheduler that switches the
 priority of one or several queues. This scheduler aims at carrying
 and isolating time constrained and elastic traffic flows from best-
 effort traffic. We claim that the usual implementations with rate
 schedulers (such as WRR, DRR,...) do not allow to efficiently
 quantify the reserved capacity of the different classes. By using
 this credit based scheduler mechanism called Priority Switching
 Scheduler, we provide a more predictable available capacity.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Baker, et al. Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Priority Switching Scheduler March 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Context and Motivation 2
1.2. Priority Switching Scheduler in a nutshell 2

2. Priority Switching Scheduler 3
2.1. Specification . 3
2.2. Implementation . 5

3. Usecase: benefit of using PSS in a Diffserv core network . . 6
3.1. Motivation . 6
3.2. New service offered 8

4. Security Considerations 8
5. Normative References . 8

 Authors' Addresses . 9

1. Introduction

1.1. Context and Motivation

 To share the capacity offered by a link, many fair schedulers have
 been developed, such as Weighted Fair Queueing, Deficit Round Robin.
 However, with these solutions, the capacity available to a class is
 strongly impacted by the other classes. With this new scheduler
 denoted Priority Switching Scheduler (PSS), we wish to reduce this
 impact on some classes and provide them with a more predictable
 output rate, reporting the impact on other classes. Additionally,
 compared to well-known schemes, this solutions is simpler to
 implement as it does not require a virtual clock, and more flexible
 thanks to the many possibilities offered by the setting of different
 priorities.

1.2. Priority Switching Scheduler in a nutshell

 The principle of PSS is the use of credit counters to change the
 priority of one or several queues. For each switching queue q, its
 priority, denoted p[q], switches between two values, depending on its
 associated credit counter. Then classic Priority Scheduler is used
 for the dequeuing process.

https://trustee.ietf.org/license-info

Baker, et al. Expires September 6, 2018 [Page 2]

Internet-Draft Priority Switching Scheduler March 2018

 The main idea is that changing the priorities adds fairness to the
 Priority Scheduler. Depending on its credit counter parameters, the
 amount of capacity available to a queue is bounded between a minimum
 and a maximum value. Consequently, good parameterization is very
 important to prevent starvation of lower priority queues.

 The new service we seek to obtain for the queue with the switching
 priority is more predictable: the minimum between a desired capacity
 and the residual capacity left by higher priorities. The impact of
 the input variations of higher classes is passed down to lower
 priority classes.

 Finally, this new solutions offers much flexibility as we can have
 both i) queues with a reserved capacity (when two priorities are
 set), ii) and queues scheduled with a simple Priority Scheduler (when
 only one priority is set).

2. Priority Switching Scheduler

2.1. Specification

 The PSS defines for each queue q a low priority, p_low[q], and a high
 priority, p_high[q]. For each queue q with p_high[q] > p_low[q], to
 manage the priority switching a credit counter is defined with:

 o a minimum level: 0;

 o a maximum level: LM[q];

 o a resume level: LR[q]

 o a reserved capacity: BW[q]

 o an idle slope: Iidle[q]=C*BW[q];

 o a sending slope: Isend[q]=C-Iidle[q];

 The priority change depends on the credit counter as follows:

 o initially, the credit counter starts at 0;

 o the change of priority p[q] of queue q occurs in two cases:

 * if p[q]=p_high[q] and the credit reaches LM[q];

 * if p[q]=p_low[q] and credit reaches LR[q];

Baker, et al. Expires September 6, 2018 [Page 3]

Internet-Draft Priority Switching Scheduler March 2018

 o when a packet of queue q is transmitted, the credit increases with
 a rate Isend[q], else the credit decreases with a rate Iidle[q];

 o when the credit reaches LM[q], it remains at this level until the
 end of the transmission of the current packet;

 o when the credit reaches 0, it remains at this level until the
 start of the transmission of a queue q packet.

 Figure 1 and Figure 2 show two examples of credit and priority
 behaviors of a queue q.

 ^ credit[q]
 | | |
 |p_high[q]| p_low[q] | p_high[q]
 LM +---------|-------------------|------------
 | _ '| |` | '
 |Isend| ' | | ` | '
 | [q] ' | | ` _ | '
 | ' | | ` |Iidle| '
 | ' | | ` [q]| '
 | ' | | ` | '
 LR + ' | | ` | '
 0 +.........|....|..............|..........>
 | | time
 @@@@@@@@@@@@@@@@oooooooooooooo@@@@@@@@@@

 @ queue q traffic o other traffic

 Figure 1: First example of queue q credit and priority behaviors

Baker, et al. Expires September 6, 2018 [Page 4]

Internet-Draft Priority Switching Scheduler March 2018

 ^ credit[q]
 | |
 | p_high[q] | p_low[q]
 LM + -----------------------|------------------- '
 | '| |` '
 | '|` ' | | ` '
 | [q] ' | ` | | ` '
 | '` ' | | | | `
 | '| ` ' | | | | |
 | ' | | | | | | |
 LR +--'--|-----|----|---|---|--|------|--------
 0 +-'---|-----|----|---|---|--|------|-------->
 | | | | | | time
 @@@@@@oooooo@@@@@oooo@@@@@@@@oooooo@@@@@@@

 @ queue q traffic o other traffic

 Figure 2: Second example of queue q credit and priority behaviors

 Finally, for the dequeuing process, a Priority Scheduler selects the
 appropriate frame using the current p[q] values.

2.2. Implementation

 The new dequeuing algorithm is presented in the PSS Algorithm. The
 credit of each queue q, denoted credit[q], and the dequeuing timer
 denoted timerDQ[q] are initialized to zero. The initial priority is
 set to the high value p_high[q]. First, for each queue with
 p_high[q] > p_low[q], the difference between the current time and the
 time stored in timerDQ[q], is computed (lines 2 and 3). The duration
 dtime[q] represents the time elapsed since the last credit update,
 during which no shaped packet was sent, we call this the idle time.
 Then, if dtime[q]>0, the credit is updated by removing the credit
 gained during the idle time that just occurred (lines 4 and 5).
 Next, timerDQ[q] is set to the current time to keep track of the time
 the credit is last updated (line 6). If the credit reaches LR[q],
 the priority changes to its high value (lines 7 and 8). Then, with
 the updated priorities, the priority scheduler performs as usual:
 each queue is checked for dequeuing (lines 12 and 13). When a queue
 q is selected with p_high[q] > p_low[q], the credit expected to be
 consumed is added to credit[q] variable (line 16). The time taken
 for the packet to be dequeued is added to the variable timerDQ[q]
 (lines 13 and 14) so the transmission time of the packet will not be
 taken into account in the idle time dtime[q] (line 2). If the credit
 reaches LM[q], the priority changes to its low value (lines 18 and
 19). Finally, the packet is dequeued (line 22).

Baker, et al. Expires September 6, 2018 [Page 5]

Internet-Draft Priority Switching Scheduler March 2018

 Inputs: credits, timerDQs, C, LMs,LRs,BWs,p_highs, p_lows
 1 currentTime=getCurrentTime()
 2 for each queue q with p_high[q] > p_low[q] do:
 3 dtime[q]=currentTime-timerDQ[q]
 4 if dtime[q]>0 then:
 5 credit[q]=max(credit[q]-dtime[q].C.BW[q],0)
 6 dtime[q]=currentTime
 7 if credit[q]<LR[q] and p[q]=p_low[q] then:
 8 p[q]=p_high[q]
 9 end if
 10 end if
 11 end for
 12 for each priority level pl, highest first do:
 13 if length(queue(pl))>0 then:
 14 q=queue(pl)
 15 if p_high[q] > p_high[q] then:
 16 credit[q]=min(LM[q], credit[q]+size(head(q)).(1-BW[q]))
 17 timerDQ[q]=currentTime+size(head(q))/C
 18 if credit >=LM[q] and p[q]=p_high[q] then:
 19 p[q]=p_low[q]
 20 end if
 21 end if
 22 dequeue(head(q))
 23 end if
 24 end for

 Figure 3: PSS algorithm

 PSS algorithm also implements the following functions:

 o getCurrentTime() uses a timer to return the current time;

 o queue(pl) returns the queue associated to priority pl;

 o head(q) returns the first packet of queue q;

 o size(f) returns the size of packet f;

 o dequeue(f) activates the dequeing event of packet f.

3. Usecase: benefit of using PSS in a Diffserv core network

3.1. Motivation

 The DiffServ architecture defined in [RFC4594] and [RFC2475] proposes
 a scalable mean to deliver IP quality of service (QoS) based on
 handling traffic aggregates. This architecture follows the

https://datatracker.ietf.org/doc/html/rfc4594
https://datatracker.ietf.org/doc/html/rfc2475

Baker, et al. Expires September 6, 2018 [Page 6]

Internet-Draft Priority Switching Scheduler March 2018

 philosophy that complexity should be delegated to the network edges
 while simple functionalities should be located in the core network.
 Thus, core devices only perform differentiated aggregate treatments
 based on the marking set by edge devices.

 Keeping aside policing mechanisms that might enable edge devices in
 this architecture, a DiffServ stateless core network is often used to
 differentiate time-constrained UDP traffic (e.g. VoIP or VoD) and
 TCP bulk data transfer from all the remaining best-effort (BE)
 traffic called default traffic (DE). The Expedited Forwarding (EF)
 class is used to carry UDP traffic coming from time-constrained
 applications (VoIP, Command/Control, ...); the Assured Forwarding
 (AF) class deals with elastic traffic as defined in [RFC4594] (data
 transfer, updating process, ...) while all other remaining traffic is
 classified inside the default (DE) best-effort class.

 The first and best service is provided to EF as the priority
 scheduler attributes the highest priority to this class. The second
 service is called assured service and is built on top of the AF class
 where elastic traffic such as TCP traffic, is intended to achieve a
 minimum level of throughput. Usually, the minimum assured throughput
 is given according to a negotiated profile with the client. The
 throughput increases as long as there are available resources and
 decreases when congestion occurs. As a matter of fact, a simple
 priority scheduler is insufficient to implement the AF service. Due
 to its opportunistic nature of fetching the full remaining capacity,
 TCP traffic increases until reaching the capacity of the bottleneck.
 In particular, this behaviour could lead to starve the DE class.

 To prevent this and ensure to both DE and AF a minimum service rate,
 the router architecture proposed in [RFC5865] uses a rate scheduler
 between AF and DE classes to share the residual capacity left by the
 EF class. Nevertheless, one drawback of using a rate scheduler is
 the high impact of EF traffic on AF and DE. Indeed, the residual
 capacity shared by AF and DE classes is directly impacted by the EF
 traffic variation. As a consequence, the AF and DE class services
 are difficult to predict in terms of available capacity and latency.

 To overcome these limitations and make AF service more predictable,
 we propose here to use the newly defined Priority Switching Scheduler
 (PSS). Figure 4 shows an example of the Data Plane Priority core
 network router presented in [RFC5865] modified with a PSS. The EF
 queues have the highest priorities to offer the best service to real-
 time traffic. The priority changes set the AF priorities either
 higher (3,4) or lower (6,7) than CS0 (5), leading to capacity
 sharing. Another example with only 3 queues is described in
 [Globecom17]. Thank to the increase predictability, for the same
 minimum guaranteed rate, the PSS reserves a lower percentage of the

https://datatracker.ietf.org/doc/html/rfc4594
https://datatracker.ietf.org/doc/html/rfc5865
https://datatracker.ietf.org/doc/html/rfc5865

Baker, et al. Expires September 6, 2018 [Page 7]

Internet-Draft Priority Switching Scheduler March 2018

 capacity than a rate scheduler. This leaves more remaining capacity
 that can be guaranteed to other users.

 priorities

 queues | `
 Admitted EF----->||-----+ 1 `
 | `
 Unadmitted EF----->||-----+ 2 `
 | `
 AF1----->||-----+ 3 or 6 PSS -----------
 | '
 AF2----->||-----+ 4 or 7 '
 | '
 CS0----->||-----+ 5 '
 |________'

 Figure 4: PSS applied to Data Plane Priority (we borrow the syntax
 from RCF5865)

3.2. New service offered

 The new service we seek to obtain is:

 o for EF, the full capacity of the output link;

 o for AF the minimum between a desired capacity and the residual
 capacity left by EF;

 o for DE (CS0), the residual capacity left by EF and AF.

 As a result, the AF class has a more predictable available capacity,
 while the unpredictability is reported on the DE class. With good
 parametrization, both classes also have a minimum rate ensured.
 Parameterization and simulations results concerning the use of a
 similar scheme for core network scehduling are available in
 [Globecom17]

4. Security Considerations

 TODO

5. Normative References

Baker, et al. Expires September 6, 2018 [Page 8]

Internet-Draft Priority Switching Scheduler March 2018

 [Globecom17]
 Finzi, A., Lochin, E., Mifdaoui, A., and F. Frances,
 "Improving RFC5865 Core Network Scheduling with a Burst
 Limiting Shaper", Globecom , 2017, <acceptedPaper>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

 [RFC5865] Baker, F., Polk, J., and M. Dolly, "A Differentiated
 Services Code Point (DSCP) for Capacity-Admitted Traffic",

RFC 5865, DOI 10.17487/RFC5865, May 2010,
 <https://www.rfc-editor.org/info/rfc5865>.

Authors' Addresses

 Fred Baker
 Santa Barbara, California 93117
 USA

 Email: FredBaker.IETF@gmail.com

 Anais Finzi
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Phone: 0033561338735
 Email: anais.finzi@isae-supaero.fr

https://datatracker.ietf.org/doc/html/rfc5865
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2475
https://www.rfc-editor.org/info/rfc2475
https://datatracker.ietf.org/doc/html/rfc4594
https://www.rfc-editor.org/info/rfc4594
https://datatracker.ietf.org/doc/html/rfc5865
https://www.rfc-editor.org/info/rfc5865

Baker, et al. Expires September 6, 2018 [Page 9]

Internet-Draft Priority Switching Scheduler March 2018

 Fabrice Frances
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: fabrice.frances@isae-supaero.fr

 Emmanuel Lochin
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: emmanuel.lochin@isae-supaero.fr

 Ahlem Mifdaoui
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: ahlem.mifdaoui@isae-supaero.fr

Baker, et al. Expires September 6, 2018 [Page 10]

