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Status of this Document

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of [RFC 2026].  Internet-Drafts are
    working documents of the Internet Engineering Task Force (IETF), its
    areas, and its working groups.  Note that other groups may also
    distribute working documents as Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time. It is inappropriate to use Internet-Drafts as reference
    material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

                                Abstract

     This document contains the profile for Congestion Control
     Identifier 2, TCP-like Congestion Control, in the Datagram
     Congestion Control Protocol (DCCP) [DCCP]. DCCP implements a
     congestion-controlled, unreliable flow of datagrams suitable
     for use by applications such as streaming media. The TCP-like
     Congestion Control CCID is used by senders who are able to
     adapt to the abrupt changes in the congestion window typical
     of the AIMD (Additive Increase Multiplicative Decrease)
     congestion control in TCP.  TCP-like Congestion Control is
     particularly useful for senders who would like to take
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     advantage of the available bandwidth in an environment with
     rapidly changing conditions.
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1.  Introduction

    This document contains the profile for Congestion Control Identifier
    2, TCP-like Congestion Control, in the Datagram Congestion Control
    Protocol (DCCP).

    DCCP uses Congestion Control Identifiers, or CCIDs, to specify the
    congestion control mechanism in use on a half-connection. (A half-
    connection might consist of data packets sent from DCCP A to DCCP B,
    plus acknowledgements sent from DCCP B to DCCP A. DCCP A is the HC-
    Sender, and DCCP B the HC-Receiver, for this half-connection. In
    this document, we abbreviate HC-Sender and HC-Receiver as "sender"
    and "receiver", respectively.)

    The TCP-like Congestion Control CCID sends data using a close
    variant of TCP's congestion control mechanisms. It is suitable for
    senders who can adapt to the abrupt changes in the congestion window
    typical of AIMD (Additive Increase Multiplicative Decrease)
    congestion control in TCP, and particularly useful for senders who
    would like to take advantage of the available bandwidth in an
    environment with rapidly changing conditions.

    The congestion control mechanisms described here closely follow
    mechanisms standardized by the IETF for use in TCP. We do not define
    these mechanisms anew; instead, we rely on existing TCP
    documentation. This is both to avoid respecifying TCP, and to allow
    our specification to track TCP as it evolves. Conformant CCID 2
    implementations may actually track TCP's evolution directly, as
    updates are standardized in the IETF, rather than waiting for
    revisions of this document. CCID 2 does define an additional
    mechanism not currently standardized for use in TCP, namely
    congestion control on acknowledgements as achieved by the Ack Ratio.
    Also, DCCP is a datagram protocol, so several parameters whose units
    are bytes in TCP, such as the congestion window cwnd, have units of
    packets in DCCP.

    For simplicity, we refer to DCCP-Data packets sent by the sender,
    and DCCP-Ack packets sent by the receiver. Both of these categories
    are meant to include piggybacked DCCP-DataAck packets.

1.1.  Usage Scenario

    TCP-like Congestion Control is intended to provide congestion
    control for the flow of data packets from the server to the client
    for applications that do not require fully reliable data
    transmission, or that desire to implement reliability on top of
    DCCP.  TCP-like Congestion Control is appropriate for flows that
    would like to receive as much bandwidth as possible over the long
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    term, consistent with the use of end-to-end congestion control, and
    that are willing to undergo the halving of the congestion window in
    response to a congestion event.

1.2.  Example Half-Connection

    This example, taken from the main DCCP draft, is of a half-
    connection using TCP-like Congestion Control specified by CCID 2.
    Again, the "sender" is the HC-Sender, and the "receiver" is the HC-
    Receiver.

    (1) The sender sends DCCP-Data packets, where the number of packets
        sent is governed by a congestion window cwnd, as in TCP.  Each
        DCCP-Data packet uses a sequence number.  The sender also sends
        an Ack Ratio feature option specifying the number of data
        packets to be covered by an Ack packet from the receiver.

    (2) The receiver sends a DCCP-Ack packet acknowledging the data
        packets for every Ack Ratio data packets transmitted by the
        sender.  Each DCCP-Ack packet uses a sequence number and
        contains an Ack Vector.  Because DCCP does not use reliable
        transfer, the DCCP-ACK packet does not have a Cumulative
        Acknowledgement field.

    (3) The sender continues sending DCCP-Data packets as controlled by
        the congestion window.  Upon receiving DCCP-Ack packets, the
        sender examines the Ack Vector to learn about marked or dropped
        data packets, and adjusts its congestion window accordingly.
        Because this is unreliable transfer, the sender does not
        retransmit dropped packets.

    (4) Because DCCP-Ack packets use sequence numbers, the sender has
        direct information about the fraction of loss or marked DCCP-Ack
        packets.  The sender responds to lost or marked DCCP-Ack packets
        by modifying the Ack Ratio sent to the receiver.

    (5) The sender acknowledges the receiver's acknowledgements at least
        once per congestion window.  If both half-connections are
        active, the sender's acknowledgement of the receiver's
        acknowledgements is included in the sender's acknowledgement of
        the receiver's data packets.  If the reverse-path half-
        connection is quiescent, the sender sends a DCCP-DataAck packet
        that includes an Acknowledgement Number in the header.

    (6) The sender estimates round-trip times and calculates a TimeOut
        (TO) value much as the RTO (Retransmit Timeout) is calculated in
        TCP.  The TO is used to determine when a new DCCP-Data packet
        can be transmitted when the sender has been limited by the
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        congestion window and no feedback has been received from the
        receiver.

    (7) Each DCCP-Data packet is sent as ECN-Capable with either the
        ECT(0) or the ECT(1) codepoint set, as described in [ECN NONCE
        DRAFT].  For DCCP-Data packets from the sender, the receiver
        returns the ECN Nonce in the DCCP-Ack packet.  The DCCP-Ack
        packets from the receiver are sent as ECN-Capable with ECT(0).
        For DCCP-Ack packets from the receiver, the sender observes
        directly if the CE codepoint is set in the received DCCP-Ack
        packet.

2.  Connection Establishment

    Use of the Ack Vector is MANDATORY on CCID 2 half-connections, so
    the sender MUST send a `Change(Use Ack Vector, 1)' option to the
    receiver as part of connection establishment. The sender SHOULD NOT
    send data until it has received the corresponding `Confirm(Use Ack
    Vector, 1)' from the receiver.

3.  Congestion Control on Data Packets

    The data sender uses the congestion window cwnd to control the
    sending of packets, and uses the slow-start threshold ssthresh to
    control adjustments to cwnd.  These integer parameters have units
    measured in packets. When halved, their values are rounded down,
    except that neither parameter is ever less than one.  The cwnd and
    ssthresh variables are modified as in TCP.  The initial window is
    determined using the specification for TCP.  The equivalent of a TCP
    MSS is simply one packet.

    The sender uses the information in Ack Vectors to infer a lost
    packet.  Ack Vectors explicitly declare which packets have not yet
    been received.  One of these packets, P, is inferred to be lost
    (rather than delayed) when at least NUMDUPACK packets after packet P
    have been acknowledged by the receiver.  The NUMDUPACK parameter
    equals 3, the number of duplicate acknowledgements TCP requires to
    infer a loss.  A congestion event is defined as one or more packets
    lost or marked from a window of data.  For each congestion event,
    cwnd is halved, then ssthresh is set to the new cwnd.  Cwnd is never
    reduced below one packet.

    When cwnd < ssthresh, meaning that the sender is in slow-start, the
    congestion window is increased by one packet for every DCCP-Ack
    packet received acknowledging a new DCCP-Data packet from the
    sender.  Note that cwnd is increased by one per DCCP-Ack received,
    not by one per packet acknowledged by the DCCP-Ack; this follows
    TCP's behavior.  When cwnd >= ssthresh, the congestion window is
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    increased by one packet for every window of data acknowledged
    without lost or marked packets.

    If all of the data packets from a window of data are lost, the
    sender needs timeouts to know when to send a new data packet.  The
    sender estimates the round-trip time at most once per window of
    data, and uses the TCP algorithms for maintaining the average round-
    trip time, mean deviation, and timeout value.  Because DCCP does not
    retransmit data, DCCP does not require TCP's recommended minimum
    timeout of one second.  After a timeout, the slow-start threshold is
    set to cwnd/2, then cwnd is set to one packet, and a new packet is
    transmitted (thus using up cwnd).  The exponential backoff of the
    timer is used exactly as in TCP.

4.  Acknowledgements

    This section describes how the receiver reports acknowledgement
    information back to the sender.  DCCP-Ack packets from the receiver
    MUST include Ack Vector options, as well as an Acknowledgement
    Number acknowledging the most recent packet received from the
    sender.  Acknowledgement data in the Ack Vector options SHOULD
    generally cover the receiver's entire Unacknowledged Window, as
    described in the DCCP draft.

    The sender specifies the Ack Ratio to be used by the receiver.  In
    the absence of congestion on the reverse path, the Ack Ratio is set
    to two if the congestion window is three or more packets, and is set
    to one otherwise.  The receiver sends a DCCP-Ack packet for every
    Ack Ratio packets sent by the sender.

4.1.  Congestion Control on Acknowledgements

    In CCID 2, the acknowledgement subflow is loosely congestion-
    controlled by the Ack Ratio specified by the sender.  The receiver
    sends (cwnd / Ack Ratio) acknowledgement packets for each window of
    data packets.  We note that CCID 2 differs from TCP, which presently
    has no congestion control for pure acknowledgement traffic.  For
    congestion control for the pure ack stream, DCCP does not try to be
    TCP-friendly, but just tries to avoid congestion collapse, and to be
    somewhat better than TCP, in terms of reducing the ack sending rate
    in the presence of a high packet loss or marking rate on the return
    path.

    There are three constraints on the Ack Ratio.  First, it is always
    an integer.  Second, it is never greater than half the congestion
    window (with fractions rounded up).  Third, it is at least two for a
    congestion window of four or more packets.
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    DCCP-Ack packets from the receiver contain sequence numbers, so the
    sender can infer when DCCP-Ack packets are lost.  The sender
    considers a DCCP-Ack packet lost if at least NUMDUPACK packets with
    higher sequence numbers have been received from the receiver.
    (Again, NUMDUPACK equals 3.)  If DCCP-Ack packets from the receiver
    are marked in the network, the sender sees these marks directly.

    DCCP responds to congestion events on the return path by modifying
    the Ack Ratio, loosely emulating TCP.  For each congestion window of
    data with lost or marked DCCP-Ack packets, the Ack Ratio is doubled,
    subject to the constraints noted above.  Similarly, if the Ack Ratio
    is R, then for each (cwnd/(R^2 - R)) congestion windows of data with
    no lost or marked DCCP-Ack packets, the Ack Ratio is decreased by 1,
    again subject to the constraints on the Ack Ratio. See the section
    below for the derivation.  For a constant congestion window, this
    gives an Ack sending rate that is roughly TCP-friendly.  We note
    that, because the sending rate for the acknowledgement packets
    changes as a function of both the Ack Ratio and the congestion
    window, the dynamics will be rather complex, and this Ack congestion
    control mechanism is intended only to be very roughly TCP-friendly.

    As a result of the constraints given earlier in this section, the
    receiver always sends at least one ack packet for a congestion
    window of one packet, and the receiver always sends at least two ack
    packets per window of data otherwise.  Thus, the receiver could be
    sending two ack packets per window of data even in the face of very
    heavy congestion on the reverse path.  We would note, however, that
    if congestion is sufficiently heavy that all of the ack packets are
    dropped, then the sender falls back on a timeout, and the
    exponential backoff of the timer, as in TCP.  Thus, if congestion is
    sufficiently heavy on the reverse path, then the sender reduces its
    sending rate on the forward path, which reduces the rate on the
    reverse path as well.

4.1.1.  Derivation of Ack Ratio Decrease

    The congestion avoidance phase of TCP increases cwnd by one MSS for
    every congestion-free window.   Applying this congestion avoidance
    behavior to the ack traffic, this would correspond to increasing the
    number of DCCP-Ack packets per window by one, after every
    congestion-free window of DCCP-Ack packets. We cannot achieve this
    exactly using the Ack Ratio, since the Ack Ratio is an integer.
    Instead, we must decrease the Ack Ratio by one after K windows have
    been sent without a congestion event on the reverse path, where K is
    chosen so that the long-term number of DCCP-Ack packets per
    congestion window is roughly TCP-friendly, following AIMD congestion
    control.
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    In CCID 2, K = (cwnd/(R^2 - R)), where R is the current Ack Ratio.
    This result was calculated as follows:

                R = Ack Ratio = # data packets / ack packets, and
                W = Congestion Window = # data packets / window, so
              W/R = # ack packets / window.

        Requirement: Increase W/R by 1 per congestion-free window.
        But can only reduce R by increments of one.

        Therefore, find K so that, after K congestion-free windows,
        the adjusted W/R would equal W/(R-1).

        (W/R) + K = W/(R-1), so
                K = W/(R-1) - W/R = W/(R^2 - R).

4.2.  Quiescence

    This section refers to quiescence in the DCCP sense (see section 6.1
    of [DCCP]): How does a CCID 2 receiver determine that the
    corresponding sender is not sending any data?

    The receiver detects that the sender has gone quiescent after two of
    its Ack Vectors are acknowledged without receiving any additional
    data. That is, once the sender acknowledges two of the receiver's
    Ack Vectors without sending additional data, the receiver can
    determine that the sender is quiescent.

4.3.  Acknowledgements of Acknowledgements

    The sender, DCCP A, must occasionally acknowledge the receiver's
    acknowledgements, so that the receiver can free up Ack Vector state.
    The sender can also send acknowledgements to make changes to the Ack
    Ratio. We assume that DCCP A manages the Ack Ratio proactively,
    sending Change(Ack Ratio) options whenever required. To let the
    receiver free Ack Vector state, DCCP A must occasionally acknowledge
    that it has received one of DCCP B's acknowledgements. When both
    half-connections are active, this information is automatically
    contained in A's acknowledgements to B's data. If the B-to-A half-
    connection goes quiescent, however, DCCP A must do it proactively.

    In particular, the sender must acknowledge at least one of the
    receiver's acknowledgements per congestion window, probably by
    sending a DCCP-DataAck packet for the next datagram it sends. No
    acknowledgement options are necessary, just the relevant
    Acknowledgement Number in the DCCP-DataAck header. Of course, the
    sender's application might fall silent before DCCP A can send an
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    ack. This is no problem; A can wait arbitrarily long before sending
    the ack.

5.  Explicit Congestion Notification

    ECN may be used with CCID 2.  If ECN is used, then the ECN Nonce
    will automatically be used for the data packets, following the
    specification for the ECN Nonce in TCP in [SWE01]. For the data
    subflow, the sender sets either the ECT(0) or ECT(1) codepoint on
    DCCP-Data packets.  Information about marked packets is returned in
    the Ack Vector.  Because the information in the Ack Vector is
    reliably transferred, DCCP does not need the TCP flags of ECN-Echo
    and Congestion Window Reduced.

    For unmarked data packets, the receiver computes the ECN Nonce as in
    [SWE01], and returns the ECN Nonce in DCCP-Ack packets.  The sender
    uses the ECN Nonce to protect against the accidental or malicious
    concealment of marked packets.

    Because the ack subflow is congestion-controlled, ECN can also be
    used for DCCP-Ack packets.  In this case we do not use the ECN
    Nonce, because it would not be easy to provide protection against
    the concealment of marked ack packets by the sender.

6.  Relevant Options and Features

    DCCP's Ack Vector option and Ack Ratio and Use Ack Vector features
    are relevant for CCID 2.

7.  Application Requirements

    There are no specific application requirements for TCP-like
    Congestion Control.

8.  Thanks
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