
Internet Engineering Task Force
INTERNET-DRAFT Sally Floyd
draft-floyd-dcp-ccid2-03.txt Eddie Kohler
 ICIR
 24 May 2002
 Expires: November 2002

Profile for DCCP Congestion Control ID 2:
TCP-like Congestion Control

Status of this Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC 2026]. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document contains the profile for Congestion Control
 Identifier 2, TCP-like Congestion Control, in the Datagram
 Congestion Control Protocol (DCCP) [DCCP]. DCCP implements a
 congestion-controlled, unreliable flow of datagrams suitable
 for use by applications such as streaming media. The TCP-like
 Congestion Control CCID is used by senders who are able to
 adapt to the abrupt changes in the congestion window typical
 of the AIMD (Additive Increase Multiplicative Decrease)
 congestion control in TCP. TCP-like Congestion Control is
 particularly useful for senders who would like to take

Floyd/Kohler [Page 1]

https://datatracker.ietf.org/doc/html/draft-floyd-dcp-ccid2-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Expires: November 2002 May 2002

 advantage of the available bandwidth in an environment with
 rapidly changing conditions.

Floyd/Kohler [Page 2]

INTERNET-DRAFT Expires: November 2002 May 2002

 Table of Contents

1. Introduction. 4
1.1. Usage Scenario 4
1.2. Example Half-Connection. 5
2. Connection Establishment. 6
3. Congestion Control on Data Packets. 6
4. Acknowledgements. 7
4.1. Congestion Control on Acknowledgements 7
4.1.1. Derivation of Ack Ratio Decrease. 8
4.2. Quiescence . 9
4.3. Acknowledgements of Acknowledgements 9
5. Explicit Congestion Notification. 10
6. Relevant Options and Features 10
7. Application Requirements. 10
8. Thanks. 10
9. References. 10
10. Authors' Addresses 11

Floyd/Kohler [Page 3]

INTERNET-DRAFT Expires: November 2002 May 2002

1. Introduction

 This document contains the profile for Congestion Control Identifier
 2, TCP-like Congestion Control, in the Datagram Congestion Control
 Protocol (DCCP).

 DCCP uses Congestion Control Identifiers, or CCIDs, to specify the
 congestion control mechanism in use on a half-connection. (A half-
 connection might consist of data packets sent from DCCP A to DCCP B,
 plus acknowledgements sent from DCCP B to DCCP A. DCCP A is the HC-
 Sender, and DCCP B the HC-Receiver, for this half-connection. In
 this document, we abbreviate HC-Sender and HC-Receiver as "sender"
 and "receiver", respectively.)

 The TCP-like Congestion Control CCID sends data using a close
 variant of TCP's congestion control mechanisms. It is suitable for
 senders who can adapt to the abrupt changes in the congestion window
 typical of AIMD (Additive Increase Multiplicative Decrease)
 congestion control in TCP, and particularly useful for senders who
 would like to take advantage of the available bandwidth in an
 environment with rapidly changing conditions.

 The congestion control mechanisms described here closely follow
 mechanisms standardized by the IETF for use in TCP. We do not define
 these mechanisms anew; instead, we rely on existing TCP
 documentation. This is both to avoid respecifying TCP, and to allow
 our specification to track TCP as it evolves. Conformant CCID 2
 implementations may actually track TCP's evolution directly, as
 updates are standardized in the IETF, rather than waiting for
 revisions of this document. CCID 2 does define an additional
 mechanism not currently standardized for use in TCP, namely
 congestion control on acknowledgements as achieved by the Ack Ratio.
 Also, DCCP is a datagram protocol, so several parameters whose units
 are bytes in TCP, such as the congestion window cwnd, have units of
 packets in DCCP.

 For simplicity, we refer to DCCP-Data packets sent by the sender,
 and DCCP-Ack packets sent by the receiver. Both of these categories
 are meant to include piggybacked DCCP-DataAck packets.

1.1. Usage Scenario

 TCP-like Congestion Control is intended to provide congestion
 control for the flow of data packets from the server to the client
 for applications that do not require fully reliable data
 transmission, or that desire to implement reliability on top of
 DCCP. TCP-like Congestion Control is appropriate for flows that
 would like to receive as much bandwidth as possible over the long

Floyd/Kohler Section 1.1. [Page 4]

INTERNET-DRAFT Expires: November 2002 May 2002

 term, consistent with the use of end-to-end congestion control, and
 that are willing to undergo the halving of the congestion window in
 response to a congestion event.

1.2. Example Half-Connection

 This example, taken from the main DCCP draft, is of a half-
 connection using TCP-like Congestion Control specified by CCID 2.
 Again, the "sender" is the HC-Sender, and the "receiver" is the HC-
 Receiver.

 (1) The sender sends DCCP-Data packets, where the number of packets
 sent is governed by a congestion window cwnd, as in TCP. Each
 DCCP-Data packet uses a sequence number. The sender also sends
 an Ack Ratio feature option specifying the number of data
 packets to be covered by an Ack packet from the receiver.

 (2) The receiver sends a DCCP-Ack packet acknowledging the data
 packets for every Ack Ratio data packets transmitted by the
 sender. Each DCCP-Ack packet uses a sequence number and
 contains an Ack Vector. Because DCCP does not use reliable
 transfer, the DCCP-ACK packet does not have a Cumulative
 Acknowledgement field.

 (3) The sender continues sending DCCP-Data packets as controlled by
 the congestion window. Upon receiving DCCP-Ack packets, the
 sender examines the Ack Vector to learn about marked or dropped
 data packets, and adjusts its congestion window accordingly.
 Because this is unreliable transfer, the sender does not
 retransmit dropped packets.

 (4) Because DCCP-Ack packets use sequence numbers, the sender has
 direct information about the fraction of loss or marked DCCP-Ack
 packets. The sender responds to lost or marked DCCP-Ack packets
 by modifying the Ack Ratio sent to the receiver.

 (5) The sender acknowledges the receiver's acknowledgements at least
 once per congestion window. If both half-connections are
 active, the sender's acknowledgement of the receiver's
 acknowledgements is included in the sender's acknowledgement of
 the receiver's data packets. If the reverse-path half-
 connection is quiescent, the sender sends a DCCP-DataAck packet
 that includes an Acknowledgement Number in the header.

 (6) The sender estimates round-trip times and calculates a TimeOut
 (TO) value much as the RTO (Retransmit Timeout) is calculated in
 TCP. The TO is used to determine when a new DCCP-Data packet
 can be transmitted when the sender has been limited by the

Floyd/Kohler Section 1.2. [Page 5]

INTERNET-DRAFT Expires: November 2002 May 2002

 congestion window and no feedback has been received from the
 receiver.

 (7) Each DCCP-Data packet is sent as ECN-Capable with either the
 ECT(0) or the ECT(1) codepoint set, as described in [ECN NONCE
 DRAFT]. For DCCP-Data packets from the sender, the receiver
 returns the ECN Nonce in the DCCP-Ack packet. The DCCP-Ack
 packets from the receiver are sent as ECN-Capable with ECT(0).
 For DCCP-Ack packets from the receiver, the sender observes
 directly if the CE codepoint is set in the received DCCP-Ack
 packet.

2. Connection Establishment

 Use of the Ack Vector is MANDATORY on CCID 2 half-connections, so
 the sender MUST send a `Change(Use Ack Vector, 1)' option to the
 receiver as part of connection establishment. The sender SHOULD NOT
 send data until it has received the corresponding `Confirm(Use Ack
 Vector, 1)' from the receiver.

3. Congestion Control on Data Packets

 The data sender uses the congestion window cwnd to control the
 sending of packets, and uses the slow-start threshold ssthresh to
 control adjustments to cwnd. These integer parameters have units
 measured in packets. When halved, their values are rounded down,
 except that neither parameter is ever less than one. The cwnd and
 ssthresh variables are modified as in TCP. The initial window is
 determined using the specification for TCP. The equivalent of a TCP
 MSS is simply one packet.

 The sender uses the information in Ack Vectors to infer a lost
 packet. Ack Vectors explicitly declare which packets have not yet
 been received. One of these packets, P, is inferred to be lost
 (rather than delayed) when at least NUMDUPACK packets after packet P
 have been acknowledged by the receiver. The NUMDUPACK parameter
 equals 3, the number of duplicate acknowledgements TCP requires to
 infer a loss. A congestion event is defined as one or more packets
 lost or marked from a window of data. For each congestion event,
 cwnd is halved, then ssthresh is set to the new cwnd. Cwnd is never
 reduced below one packet.

 When cwnd < ssthresh, meaning that the sender is in slow-start, the
 congestion window is increased by one packet for every DCCP-Ack
 packet received acknowledging a new DCCP-Data packet from the
 sender. Note that cwnd is increased by one per DCCP-Ack received,
 not by one per packet acknowledged by the DCCP-Ack; this follows
 TCP's behavior. When cwnd >= ssthresh, the congestion window is

Floyd/Kohler Section 3. [Page 6]

INTERNET-DRAFT Expires: November 2002 May 2002

 increased by one packet for every window of data acknowledged
 without lost or marked packets.

 If all of the data packets from a window of data are lost, the
 sender needs timeouts to know when to send a new data packet. The
 sender estimates the round-trip time at most once per window of
 data, and uses the TCP algorithms for maintaining the average round-
 trip time, mean deviation, and timeout value. Because DCCP does not
 retransmit data, DCCP does not require TCP's recommended minimum
 timeout of one second. After a timeout, the slow-start threshold is
 set to cwnd/2, then cwnd is set to one packet, and a new packet is
 transmitted (thus using up cwnd). The exponential backoff of the
 timer is used exactly as in TCP.

4. Acknowledgements

 This section describes how the receiver reports acknowledgement
 information back to the sender. DCCP-Ack packets from the receiver
 MUST include Ack Vector options, as well as an Acknowledgement
 Number acknowledging the most recent packet received from the
 sender. Acknowledgement data in the Ack Vector options SHOULD
 generally cover the receiver's entire Unacknowledged Window, as
 described in the DCCP draft.

 The sender specifies the Ack Ratio to be used by the receiver. In
 the absence of congestion on the reverse path, the Ack Ratio is set
 to two if the congestion window is three or more packets, and is set
 to one otherwise. The receiver sends a DCCP-Ack packet for every
 Ack Ratio packets sent by the sender.

4.1. Congestion Control on Acknowledgements

 In CCID 2, the acknowledgement subflow is loosely congestion-
 controlled by the Ack Ratio specified by the sender. The receiver
 sends (cwnd / Ack Ratio) acknowledgement packets for each window of
 data packets. We note that CCID 2 differs from TCP, which presently
 has no congestion control for pure acknowledgement traffic. For
 congestion control for the pure ack stream, DCCP does not try to be
 TCP-friendly, but just tries to avoid congestion collapse, and to be
 somewhat better than TCP, in terms of reducing the ack sending rate
 in the presence of a high packet loss or marking rate on the return
 path.

 There are three constraints on the Ack Ratio. First, it is always
 an integer. Second, it is never greater than half the congestion
 window (with fractions rounded up). Third, it is at least two for a
 congestion window of four or more packets.

Floyd/Kohler Section 4.1. [Page 7]

INTERNET-DRAFT Expires: November 2002 May 2002

 DCCP-Ack packets from the receiver contain sequence numbers, so the
 sender can infer when DCCP-Ack packets are lost. The sender
 considers a DCCP-Ack packet lost if at least NUMDUPACK packets with
 higher sequence numbers have been received from the receiver.
 (Again, NUMDUPACK equals 3.) If DCCP-Ack packets from the receiver
 are marked in the network, the sender sees these marks directly.

 DCCP responds to congestion events on the return path by modifying
 the Ack Ratio, loosely emulating TCP. For each congestion window of
 data with lost or marked DCCP-Ack packets, the Ack Ratio is doubled,
 subject to the constraints noted above. Similarly, if the Ack Ratio
 is R, then for each (cwnd/(R^2 - R)) congestion windows of data with
 no lost or marked DCCP-Ack packets, the Ack Ratio is decreased by 1,
 again subject to the constraints on the Ack Ratio. See the section
 below for the derivation. For a constant congestion window, this
 gives an Ack sending rate that is roughly TCP-friendly. We note
 that, because the sending rate for the acknowledgement packets
 changes as a function of both the Ack Ratio and the congestion
 window, the dynamics will be rather complex, and this Ack congestion
 control mechanism is intended only to be very roughly TCP-friendly.

 As a result of the constraints given earlier in this section, the
 receiver always sends at least one ack packet for a congestion
 window of one packet, and the receiver always sends at least two ack
 packets per window of data otherwise. Thus, the receiver could be
 sending two ack packets per window of data even in the face of very
 heavy congestion on the reverse path. We would note, however, that
 if congestion is sufficiently heavy that all of the ack packets are
 dropped, then the sender falls back on a timeout, and the
 exponential backoff of the timer, as in TCP. Thus, if congestion is
 sufficiently heavy on the reverse path, then the sender reduces its
 sending rate on the forward path, which reduces the rate on the
 reverse path as well.

4.1.1. Derivation of Ack Ratio Decrease

 The congestion avoidance phase of TCP increases cwnd by one MSS for
 every congestion-free window. Applying this congestion avoidance
 behavior to the ack traffic, this would correspond to increasing the
 number of DCCP-Ack packets per window by one, after every
 congestion-free window of DCCP-Ack packets. We cannot achieve this
 exactly using the Ack Ratio, since the Ack Ratio is an integer.
 Instead, we must decrease the Ack Ratio by one after K windows have
 been sent without a congestion event on the reverse path, where K is
 chosen so that the long-term number of DCCP-Ack packets per
 congestion window is roughly TCP-friendly, following AIMD congestion
 control.

Floyd/Kohler Section 4.1.1. [Page 8]

INTERNET-DRAFT Expires: November 2002 May 2002

 In CCID 2, K = (cwnd/(R^2 - R)), where R is the current Ack Ratio.
 This result was calculated as follows:

 R = Ack Ratio = # data packets / ack packets, and
 W = Congestion Window = # data packets / window, so
 W/R = # ack packets / window.

 Requirement: Increase W/R by 1 per congestion-free window.
 But can only reduce R by increments of one.

 Therefore, find K so that, after K congestion-free windows,
 the adjusted W/R would equal W/(R-1).

 (W/R) + K = W/(R-1), so
 K = W/(R-1) - W/R = W/(R^2 - R).

4.2. Quiescence

 This section refers to quiescence in the DCCP sense (see section 6.1
 of [DCCP]): How does a CCID 2 receiver determine that the
 corresponding sender is not sending any data?

 The receiver detects that the sender has gone quiescent after two of
 its Ack Vectors are acknowledged without receiving any additional
 data. That is, once the sender acknowledges two of the receiver's
 Ack Vectors without sending additional data, the receiver can
 determine that the sender is quiescent.

4.3. Acknowledgements of Acknowledgements

 The sender, DCCP A, must occasionally acknowledge the receiver's
 acknowledgements, so that the receiver can free up Ack Vector state.
 The sender can also send acknowledgements to make changes to the Ack
 Ratio. We assume that DCCP A manages the Ack Ratio proactively,
 sending Change(Ack Ratio) options whenever required. To let the
 receiver free Ack Vector state, DCCP A must occasionally acknowledge
 that it has received one of DCCP B's acknowledgements. When both
 half-connections are active, this information is automatically
 contained in A's acknowledgements to B's data. If the B-to-A half-
 connection goes quiescent, however, DCCP A must do it proactively.

 In particular, the sender must acknowledge at least one of the
 receiver's acknowledgements per congestion window, probably by
 sending a DCCP-DataAck packet for the next datagram it sends. No
 acknowledgement options are necessary, just the relevant
 Acknowledgement Number in the DCCP-DataAck header. Of course, the
 sender's application might fall silent before DCCP A can send an

Floyd/Kohler Section 4.3. [Page 9]

INTERNET-DRAFT Expires: November 2002 May 2002

 ack. This is no problem; A can wait arbitrarily long before sending
 the ack.

5. Explicit Congestion Notification

 ECN may be used with CCID 2. If ECN is used, then the ECN Nonce
 will automatically be used for the data packets, following the
 specification for the ECN Nonce in TCP in [SWE01]. For the data
 subflow, the sender sets either the ECT(0) or ECT(1) codepoint on
 DCCP-Data packets. Information about marked packets is returned in
 the Ack Vector. Because the information in the Ack Vector is
 reliably transferred, DCCP does not need the TCP flags of ECN-Echo
 and Congestion Window Reduced.

 For unmarked data packets, the receiver computes the ECN Nonce as in
 [SWE01], and returns the ECN Nonce in DCCP-Ack packets. The sender
 uses the ECN Nonce to protect against the accidental or malicious
 concealment of marked packets.

 Because the ack subflow is congestion-controlled, ECN can also be
 used for DCCP-Ack packets. In this case we do not use the ECN
 Nonce, because it would not be easy to provide protection against
 the concealment of marked ack packets by the sender.

6. Relevant Options and Features

 DCCP's Ack Vector option and Ack Ratio and Use Ack Vector features
 are relevant for CCID 2.

7. Application Requirements

 There are no specific application requirements for TCP-like
 Congestion Control.

8. Thanks

 We thank Mark Handley and Jitendra Padhye for their help in defining
 CCID 2.

9. References

 [DCCP] Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhye.
 Datagram Congestion Control Protocol (DCCP). Work in progress.

 [RFC 2026] S. Bradner. The Internet Standards Process -- Revision 3.
RFC 2026.

https://datatracker.ietf.org/doc/html/rfc2026

Floyd/Kohler Section 9. [Page 10]

INTERNET-DRAFT Expires: November 2002 May 2002

 [RFC 2861] M. Handley, J. Padhye, and S. Floyd. TCP Congestion
 Window Validation. RFC 2861.

 [SWE01] Neil Spring, David Wetherall, and David Ely. Robust ECN
 Signaling with Nonces. draft-ietf-tsvwg-tcp-nonce-02.txt, work
 in progress, October 2001.

10. Authors' Addresses

 Sally Floyd <floyd@icir.org>
 Eddie Kohler <kohler@icir.org>

 ICSI Center for Internet Research,
 1947 Center Street, Suite 600
 Berkeley, CA 94704.

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-02.txt

Floyd/Kohler Section 10. [Page 11]

