
Internet Engineering Task Force S. Floyd
INTERNET DRAFT ICSI
draft-floyd-newreno-00.txt T. Henderson
 Boeing
 May 2003

The NewReno Modification to TCP's Fast Recovery Algorithm

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

RFC 2581 [RFC2581] documents the following four intertwined TCP
 congestion control algorithms: Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery. RFC 2581 [RFC2581] explicitly allows
 certain modifications of these algorithms, including modifications
 that use the TCP Selective Acknowledgement (SACK) option [RFC2018],
 and modifications that respond to "partial acknowledgments" (ACKs
 which cover new data, but not all the data outstanding when loss was
 detected) in the absence of SACK. The NewReno mechanism described in
 this document describes a specific algorithm for responding to
 partial acknowledgments, referred to as NewReno. This response to
 partial acknowledgments was first proposed by Janey Hoe in [Hoe95].

RFC 2582 [RFC2582] specified the NewReno mechanisms as Experimental

Floyd & Henderson [Page 1]

https://datatracker.ietf.org/doc/html/draft-floyd-newreno-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582

draft-floyd-newreno May 2003

 in 1999. This document is a small revision of RFC 2582 intended to
 advance the NewReno mechanisms to Proposed Standard. RFC 2581 notes
 that the Fast Retransmit/Fast Recovery algorithm specified in that
 document does not recover very efficiently from multiple losses in a
 single flight of packets, and that RFC 2582 contains one set of
 modifications to address this problem.

 NOTE TO THE RFC EDITOR: PLEASE REMOVE THIS SECTION UPON PUBLICATION.
 Changes from RFC 2582:

 * Rephrasing and rearrangements of the text.

 * RFC 2582 described the Careful and Less Careful variants of
 NewReno, along with a default version that was neither Careful nor
 Less Careful, and recommended the Careful variant. This document
 only specifies the Careful version.

 * RFC 2582 used two separate variables, "send_high" and "recover",
 and this document has merged them into a single variable "recover".

 * Added sections on "Comparisons between Reno and NewReno TCP", and
 on "Changes relative to RFC 2582". The section on "Comparisons
 between Reno and NewReno TCP" includes a discussion of the one area
 where NewReno is known to perform worse than Reno or SACK, and that
 is in the response to reordering.

 * Moved all of the discussions of the Impatient and Slow-but-Steady
 variants to one place, and specified the Impatient variant (as in the
 default version in RFC 2582).

 * Added a section on Implementation issues for the data sender,
 mentioning maxburst_.

 * Added a paragraph about differences between RFC 2582 and [FF96].

 END OF NOTE TO RFC EDITOR

1. Introduction

 For the typical implementation of the TCP Fast Recovery algorithm
 described in [RFC2581] (first implemented in the 1990 BSD Reno
 release, and referred to as the Reno algorithm in [FF96]), the TCP
 data sender only retransmits a packet after a retransmit timeout has
 occurred, or after three duplicate acknowledgements have arrived
 triggering the Fast Retransmit algorithm. A single retransmit
 timeout might result in the retransmission of several data packets,
 but each invocation of the Fast Retransmit algorithm in RFC 2581
 leads to the retransmission of only a single data packet.

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Floyd & Henderson [Page 2]

draft-floyd-newreno May 2003

 Problems can arise, therefore, when multiple packets have been
 dropped from a single window of data and the Fast Retransmit and Fast
 Recovery algorithms are invoked. In this case, if the SACK option is
 available, the TCP sender has the information to make intelligent
 decisions about which packets to retransmit and which packets not to
 retransmit during Fast Recovery. This document applies only for TCP
 connections that are unable to use the TCP Selective Acknowledgement
 (SACK) option, either because the option is not locally supported or
 because the TCP peer did not indicate a willingness to use SACK.

 In the absence of SACK, there is little information available to the
 TCP sender in making retransmission decisions during Fast Recovery.
 From the three duplicate acknowledgements, the sender infers a packet
 loss, and retransmits the indicated packet. After this, the data
 sender could receive additional duplicate acknowledgements, as the
 data receiver acknowledges additional data packets that were already
 in flight when the sender entered Fast Retransmit.

 In the case of multiple packets dropped from a single window of data,
 the first new information available to the sender comes when the
 sender receives an acknowledgement for the retransmitted packet (that
 is, the packet retransmitted when Fast Retransmit was first entered).
 If there had been a single packet drop and no reordering, then the
 acknowledgement for this packet will acknowledge all of the packets
 transmitted before Fast Retransmit was entered. However, when there
 were multiple packet drops, then the acknowledgement for the
 retransmitted packet will acknowledge some but not all of the packets
 transmitted before the Fast Retransmit. We call this acknowledgement
 a partial acknowledgment.

 Along with several other suggestions, [Hoe95] suggested that during
 Fast Recovery the TCP data sender respond to a partial acknowledgment
 by inferring that the next in-sequence packet has been lost, and
 retransmitting that packet. This document describes a modification
 to the Fast Recovery algorithm in RFC 2581 that incorporates a
 response to partial acknowledgements received during Fast Recovery.
 We call this modified Fast Recovery algorithm NewReno, because it is
 a slight but significant variation of the basic Reno algorithm in RFC

2581. This document does not discuss the other suggestions in
 [Hoe95] and [Hoe96], such as a change to the ssthresh parameter
 during Slow-Start, or the proposal to send a new packet for every two
 duplicate acknowledgements during Fast Recovery. The version of
 NewReno in this document also draws on other discussions of NewReno
 in the literature [LM97].

 We do not claim that the NewReno version of Fast Recovery described
 here is an optimal modification of Fast Recovery for responding to
 partial acknowledgements, for TCP connections that are unable to use

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Floyd & Henderson [Page 3]

draft-floyd-newreno May 2003

 SACK. Based on our experiences with the NewReno modification in the
 NS simulator [NS] and with numerous implementations of NewReno, we
 believe that this modification improves the performance of the Fast
 Retransmit and Fast Recovery algorithms in a wide variety of
 scenarios.

2. Terminology and Definitions

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 and indicate requirement levels for compliant TCP implementations
 implementing the NewReno Fast Retransmit and Fast Recovery algorithms
 described in this document.

 This document assumes that the reader is familiar with the terms
 SENDER MAXIMUM SEGMENT SIZE (SMSS), CONGESTION WINDOW (cwnd), and
 FLIGHT SIZE (FlightSize) defined in [RFC2581]. FLIGHT SIZE is
 defined as in [RFC2581] as follows:

 FLIGHT SIZE:
 The amount of data that has been sent but not yet acknowledged.

3. The Fast Retransmit and Fast Recovery algorithms in NewReno

 The standard implementation of the Fast Retransmit and Fast Recovery
 algorithms is given in [RFC2581]. The NewReno modification of these
 algorithms is given below. The NewReno modification concerns the
 Fast Recovery procedure that begins when three duplicate ACKs are
 received and ends when either a retransmission timeout occurs or an
 ACK arrives that acknowledges all of the data up to and including the
 data that was outstanding when the Fast Recovery procedure began.

 The NewReno algorithm specified in this document differs from the
 implementation in [RFC2581] in the introduction of the variable
 "recover" in step 1, in the response to a partial or new
 acknowledgement in step 5, and in modifications to step 1 and the
 addition of step 6 for avoiding multiple Fast Retransmits caused by
 the retransmission of packets already received by the receiver.

 The algorithm specified in this document uses a variable "recover",
 whose initial value is the initial send sequence number.

 1) When the third duplicate ACK is received and the sender is not
 already in the Fast Recovery procedure, check to see if the
 Cumulative Acknowledgement field covers more than "recover".
 If so, then set ssthresh to no more than the value given in
 equation 1 below. (This is equation 3 from [RFC2581]).

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Floyd & Henderson [Page 4]

draft-floyd-newreno May 2003

 ssthresh = max (FlightSize / 2, 2*SMSS) (1)

 In addition, record the highest sequence number transmitted in
 the variable "recover", and go to Step 2.

 If the Cumulative Acknowledgement field didn't cover more than
 "recover", then
 do not enter the Fast Retransmit and Fast Recovery procedure.
 In particular, do not change ssthresh, do not go to Step 2 to
 retransmit the "lost" segment, and do not execute Step 3 upon
 subsequent duplicate ACKs.

 2) Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS.
 This artificially "inflates" the congestion window by the number
 of segments (three) that have left the network and which the
 receiver has buffered.

 3) For each additional duplicate ACK received, increment cwnd by
 SMSS. This artificially inflates the congestion window in order
 to reflect the additional segment that has left the network.

 4) Transmit a segment, if allowed by the new value of cwnd and the
 receiver's advertised window.

 5) When an ACK arrives that acknowledges new data, this ACK could be
 the acknowledgment elicited by the retransmission from step 2, or
 elicited by a later retransmission.

 If this ACK acknowledges all of the data up to and including
 "recover", then the ACK acknowledges all the intermediate
 segments sent between the original transmission of the lost
 segment and the receipt of the third duplicate ACK. Set cwnd to
 either (1) min (ssthresh, FlightSize + SMSS); or (2) ssthresh,
 where ssthresh is the value set in step 1; this is termed
 "deflating" the window. (We note that "FlightSize" in step 1
 referred to the amount of data outstanding in step 1, when Fast
 Recovery was entered, while "FlightSize" in step 5 refers to the
 amount of data outstanding in step 5, when Fast Recovery is
 exited.) If the second option is selected, the implementation
 should take measures to avoid a possible burst of data, in case
 the amount of data outstanding in the network was much less than
 the new congestion window allows. A simple mechanism is to limit
 the number of data packets that can be sent in response to a
 single acknowledgement. (This is known as "maxburst_" in the NS
 simulator). Exit the Fast Recovery procedure.

 If this ACK does *not* acknowledge all of the data up to and
 including "recover", then this is a partial ACK. In this case,

https://datatracker.ietf.org/doc/html/draft-floyd-newreno

Floyd & Henderson [Page 5]

draft-floyd-newreno May 2003

 retransmit the first unacknowledged segment. Deflate the
 congestion window by the amount of new data acknowledged, then
 add back one SMSS (if the partial ACK acknowledges at least one
 SMSS of new data) and send a new segment if permitted by the new
 value of cwnd. This "partial window deflation" attempts to
 ensure that, when Fast Recovery eventually ends, approximately
 ssthresh amount of data will be outstanding in the network. Do
 not exit the Fast Recovery procedure (i.e., if any duplicate ACKs
 subsequently arrive, execute Steps 3 and 4 above).

 For the first partial ACK that arrives during Fast Recovery, also
 reset the retransmit timer.

 6) After a retransmit timeout, record the highest sequence number
 transmitted in the variable "recover" and exit the Fast
 Recovery procedure if applicable.

 Step 1 specifies a check that the Cumulative Acknowledgement field
 covers more than "recover". Because the acknowledgement field
 contains the sequence number that the sender next expects to receive,
 the acknowledgement "ack_number" covers more than "recover" when:

 ack_number - one > recover.

 Note that in Step 5, the congestion window is deflated after a
 partial acknowledgement is received. The congestion window was
 likely to have been inflated considerably when the partial
 acknowledgement was received. In addition, depending on the original
 pattern of packet losses, the partial acknowledgement might
 acknowledge nearly a window of data. In this case, if the congestion
 window was not deflated, the data sender might be able to send nearly
 a window of data back-to-back.

 This document does not specify the sender's response to duplicate
 ACKs when the Fast Retransmit/Fast Recovery algorithm is not invoked.
 This is addressed in other documents, such as those describing the
 Limited Transmit procedure [RFC3042]. This document also does not
 address issues of adjusting the duplicate acknowledgement threshold,
 but assumes the threshold of three duplicate acknowledgements
 currently specified in RFC 2581.

 As a final note, we would observe that in the absence of the SACK
 option, the data sender is working from limited information. When
 the issue of recovery from multiple dropped packets from a single
 window of data is of particular importance, the best alternative
 would be to use the SACK option.

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2581

Floyd & Henderson [Page 6]

draft-floyd-newreno May 2003

4. Resetting the retransmit timer in response to partial
acknowledgements.

 One possible variant to the response to partial acknowledgements
 specified in Section 3 concerns when to reset the retransmit timer
 after a partial acknowledgement. The algorithm in Section 3, Step 5,
 resets the retransmit timer only after the first partial ACK. In
 this case, if a large number of packets were dropped from a window of
 data, the TCP data sender's retransmit timer will ultimately expire,
 and the TCP data sender will invoke Slow-Start. (This is illustrated
 on page 12 of [F98].) We call this the Impatient variant of NewReno.

 In contrast, the NewReno simulations in [FF96] illustrate the
 algorithm described above with the modification that the retransmit
 timer is reset after each partial acknowledgement. We call this the
 Slow-but-Steady variant of NewReno. In this case, for a window with
 a large number of packet drops, the TCP data sender retransmits at
 most one packet per roundtrip time. (This behavior is illustrated in
 the New-Reno TCP simulation of Figure 5 in [FF96], and on page 11 of
 [F98]. The tests "../../ns test-suite-newreno.tcl newreno1_B0" and
 "../../ns test-suite-newreno.tcl newreno1_B" in the NS simulator also
 illustrate the Slow-but-Steady and the Impatient variants of NewReno,
 respectively.)

 When N packets have been dropped from a window of data for a large
 value of N, the Slow-but-Steady variant can remain in Fast Recovery
 for N round-trip times, retransmitting one more dropped packet each
 round-trip time; for these scenarios, the Impatient variant gives a
 faster recovery and better performance. One can also construct
 scenarios where the Slow-but-Steady variant would give better
 performance, where only a small number of packets are dropped, the
 RTO is sufficiently small that the retransmit timer expires, and
 performance would have been better without a retransmit timeout.
 Thus, neither of these variants are optimal; our recommendation is
 for the Impatient variant, as specified in Section 3 of this
 document.

 One possibility for a more optimal algorithm would be one that
 recovered from multiple packet drops as quickly as does slow-start,
 while resetting the retransmit timers after each partial
 acknowledgement, as described in the section below. We note,
 however, that there is a limitation to the potential performance in
 this case in the absence of the SACK option.

5. Retransmissions after a partial acknowledgement.

 One possible variant to the response to partial acknowledgements
 specified in Section 3 would be to retransmit more than one packet

https://datatracker.ietf.org/doc/html/draft-floyd-newreno

Floyd & Henderson [Page 7]

draft-floyd-newreno May 2003

 after each partial acknowledgement, and to reset the retransmit timer
 after each retransmission. The algorithm specified in Section 3
 retransmits a single packet after each partial acknowledgement. This
 is the most conservative alternative, in that it is the least likely
 to result in an unnecessarily-retransmitted packet. A variant that
 would recover faster from a window with many packet drops would be to
 effectively Slow-Start, retransmitting two packets after each partial
 acknowledgement. Such an approach would take less than N roundtrip
 times to recover from N losses [Hoe96]. However, in the absence of
 SACK, recovering as quickly as slow-start introduces the likelihood
 of unnecessarily retransmitting packets, and this could significantly
 complicate the recovery mechanisms.

 We note that the response to partial acknowledgements specified in
Section 3 of this document and in RFC 2582 differs from the response

 in [FF96], even though both approaches only retransmit one packet in
 response to a partial acknowledgement. Step 5 of Section 3 specifies
 that the TCP sender responds to a partial ACK by deflating the
 congestion window by the amount of new data acknowledged, then adding
 back one SMSS if the partial ACK acknowledges at least one SMSS of
 new data, and sending a new segment if permitted by the new value of
 cwnd. Thus, only one previously-sent packet is retransmitted in
 response to each partial acknowledgement, but additional new packets
 might be transmitted as well, depending on the amount of new data
 acknowledged by the partial acknowledgement. In contrast, the
 variant of NewReno illustrated in [FF96] simply set the congestion
 window to ssthresh when a partial acknowledgement was received. The
 approach in [FF96] is more conservative, and does not attempt to
 accurately track the actual number of outstanding packets after a
 partial acknowledgement is received. While either of these
 approaches gives acceptable performance, the variant specified in

Section 3 recovers more smoothly when multiple packets are dropped
 from a window of data. (The [FF96] behavior can be seen in the NS
 simulator by setting the variable "partial_window_deflation_" for
 "Agent/TCP/Newreno" to 0, and the behavior specified in Section 3 is
 achieved by setting "partial_window_deflation_" to 1.)

6. Avoiding Multiple Fast Retransmits

 This section describes the motivation for the sender's state variable
 "recover".

 In the absence of the SACK option, a duplicate acknowledgement
 carries no information to identify the data packet or packets at the
 TCP data receiver that triggered that duplicate acknowledgement. The
 TCP data sender is unable to distinguish between a duplicate
 acknowledgement that results from a lost or delayed data packet, and
 a duplicate acknowledgement that results from the sender's

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582

Floyd & Henderson [Page 8]

draft-floyd-newreno May 2003

 retransmission of a data packet that had already been received at the
 TCP data receiver. Because of this, multiple segment losses from a
 single window of data can sometimes result in unnecessary multiple
 Fast Retransmits (and multiple reductions of the congestion window)
 [F94].

 With the Fast Retransmit and Fast Recovery algorithms in Reno TCP,
 the performance problems caused by multiple Fast Retransmits are
 relatively minor compared to the potential problems with Tahoe TCP,
 which does not implement Fast Recovery. Nevertheless, unnecessary
 Fast Retransmits can occur with Reno TCP unless some explicit
 mechanism is added to avoid this, such as the use of the "recover"
 variable. (This modification is called "bugfix" in [F98], and is
 illustrated on pages 7 and 9. Unnecessary Fast Retransmits for Reno
 without "bugfix" is illustrated on page 6 of [F98].)

Section 3 of RFC 2582 defined a default variant of NewReno TCP that
 did not use the variable "recover", and did not check if duplicate
 ACKs cover the variable "recover" before invoking Fast Retransmit.
 With this default variant from RFC 2582, the problem of multiple Fast
 Retransmits from a single window of data can occur after a Retransmit
 Timeout (as in page 8 of [F98]) or in scenarios with reordering (as
 in the validation test "./test-all-newreno newreno5_noBF" in
 directory "tcl/test" of the NS simulator. This gives performance
 similar to that on page 8 of [F03].) RFC 2582 also defined Careful
 and Less Careful variants of the NewReno algorithm, and recommended
 the Careful variant.

 The algorithm specified in Section 3 of this document corresponds to
 the Careful variant of NewReno TCP from RFC 2582, and eliminates the
 problem of multiple Fast Retransmits. This algorithm uses the
 variable "recover", whose initial value is the initial send sequence
 number. After each retransmit timeout, the highest sequence number
 transmitted so far is recorded in the variable "recover".

 If, after a retransmit timeout, the TCP data sender retransmits three
 consecutive packets that have already been received by the data
 receiver, then the TCP data sender will receive three duplicate
 acknowledgements that do not cover more than "recover". In this
 case, the duplicate acknowledgements are not an indication of a new
 instance of congestion. They are simply an indication that the
 sender has unnecessarily retransmitted at least three packets.

 We note that if the TCP data sender receives three duplicate
 acknowledgements that do not cover more than "recover", the sender
 does not know whether these duplicate acknowledgements resulted from
 a new packet drop or not. For a TCP that implements the algorithm
 specified in Section 3 of this document, the sender does not infer a

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582#section-3
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582

Floyd & Henderson [Page 9]

draft-floyd-newreno May 2003

 packet drop from duplicate acknowledgements in these circumstances.
 As always, the retransmit timer is the backup mechanism for inferring
 packet loss in this case.

7. Implementation issues for the data receiver.

 [RFC2581] specifies that "Out-of-order data segments SHOULD be
 acknowledged immediately, in order to accelerate loss recovery."
 Neal Cardwell has noted that some data receivers do not send an
 immediate acknowledgement when they send a partial acknowledgment,
 but instead wait first for their delayed acknowledgement timer to
 expire [C98]. As [C98] notes, this severely limits the potential
 benefit from NewReno by delaying the receipt of the partial
 acknowledgement at the data sender. Our recommendation is that the
 data receiver send an immediate acknowledgement for an out-of-order
 segment, even when that out-of-order segment fills a hole in the
 buffer.

8. Implementation issues for the data sender.

 In Section 3, Step 5 above, it is noted that implementations should
 take measures to avoid a possible burst of data when leaving Fast
 Recovery, in case the amount of new data that the sender is eligible
 to send due to the new value of the congestion window is large. This
 can arise during NewReno when ACKs are lost or treated as pure window
 updates, thereby causing the sender to underestimate the number of
 new segments that can be sent during the recovery procedure. One
 simple mechanism to avoid a burst of data when leaving Fast Recovery
 is to limit the number of data packets that can be sent in response
 to a single acknowledgment. (This is known as "maxburst_" in the ns
 simulator.)

9. Simulations

 Simulations with NewReno are illustrated with the validation test
 "tcl/test/test-all-newreno" in the NS simulator. The command
 "../../ns test-suite-newreno.tcl reno" shows a simulation with Reno
 TCP, illustrating the data sender's lack of response to a partial
 acknowledgement. In contrast, the command "../../ns test-suite-
 newreno.tcl newreno_B" shows a simulation with the same scenario
 using the NewReno algorithms described in this paper.

10. Comparisons between Reno and NewReno TCP.

 As we stated in the introduction, we believe that the NewReno
 modification described in this document improves the performance of
 the Fast Retransmit and Fast Recovery algorithms of Reno TCP in a
 wide variety of scenarios. This has been discussed in some depth in

https://datatracker.ietf.org/doc/html/draft-floyd-newreno

Floyd & Henderson [Page 10]

draft-floyd-newreno May 2003

 [FF96], which illustrates Reno TCP's poor performance when multiple
 packets are dropped from a window of data and also illustrates
 NewReno TCP's good performance in that scenario.

 We do, however, know of one scenario where Reno TCP gives better
 performance than NewReno TCP, that we are describe here for the sake
 of completeness. Consider a scenario with no packet loss, but with
 sufficient reordering that the TCP sender receives three duplicate
 acknowledgements. This will trigger the Fast Retransmit and Fast
 Recovery algorithms. With Reno TCP or with Sack TCP, this will
 result in the unnecessary retransmission of a single packet, combined
 with a halving of the congestion window (shown on pages 4 and 6 of
 [F03]). With NewReno TCP, however, this reordering will also result
 in the unnecessary retransmission of an entire window of data (shown
 on page 5 of [F03]).

 While Reno TCP performs better than NewReno TCP in the presence of
 reordering, NewReno's superior performance in the presence of
 multiple packet drops generally outweighs its less optimal
 performance in the presence of reordering. (Sack TCP is the
 preferred solution, with good performance in both scenarios.) This
 document recommends the Fast Retransmit and Fast Recovery algorithms
 of NewReno TCP instead of those of Reno TCP for those TCP connections
 that do not support SACK. We would also note that NewReno's Fast
 Retransmit and Fast Recovery mechanisms are widely deployed in TCP
 implementations in the Internet today, as documented in [PF01]. For
 example, tests of TCP implementations in several thousand web servers
 in 2001 showed that for those TCP connections where the web browser
 was not SACK-capable, more web servers used the Fast Retransmit and
 Fast Recovery algorithms of NewReno than those of Reno or Tahoe TCP
 [PF01].

11. Changes relative to RFC 2582

 The purpose of this document is to advance the NewReno's Fast
 Retransmit and Fast Recovery algorithms in RFC 2582 to Proposed
 Standard.

 The main change in this document relative to RFC 2582 is to specify
 the Careful variant of NewReno's Fast Retransmit and Fast Recovery
 algorithms. The base algorithm described in RFC 2582 did not attempt
 to avoid unnecessary multiple Fast Retransmits that can occur after a
 timeout (described in more detail in the section above). However,

RFC 2582 also defined "Careful" and "Less Careful" variants that
 avoid these unnecessary Fast Retransmits, and recommended the Careful
 variant. This document specifies the previously-named "Careful"
 variant as the basic version of NewReno. As described below, this
 algorithm uses a variable "recover", whose initial value is the send

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582

Floyd & Henderson [Page 11]

draft-floyd-newreno May 2003

 sequence number.

 The algorithm specified in Section 3 checks whether the
 acknowledgement field of a partial acknowledgement covers *more* than
 "recover". Another possible variant would be to require simply that
 the acknowledgement field *cover* "recover" before initiating another
 Fast Retransmit. We called this the Less Careful variant in RFC

2582.

 There are two separate scenarios in which the TCP sender could
 receive three duplicate acknowledgements acknowledging "recover" but
 no more than "recover". One scenario would be that the data sender
 transmitted four packets with sequence numbers higher than "recover",
 that the first packet was dropped in the network, and the following
 three packets triggered three duplicate acknowledgements
 acknowledging "recover". The second scenario would be that the
 sender unnecessarily retransmitted three packets below "recover", and
 that these three packets triggered three duplicate acknowledgements
 acknowledging "recover". In the absence of SACK, the TCP sender in
 unable to distinguish between these two scenarios.

 For the Careful variant of Fast Retransmit, the data sender would
 have to wait for a retransmit timeout in the first scenario, but
 would not have an unnecessary Fast Retransmit in the second scenario.
 For the Less Careful variant to Fast Retransmit, the data sender
 would Fast Retransmit as desired in the first scenario, and would
 unnecessarily Fast Retransmit in the second scenario. This document
 only specifies the Careful variant in Section 3. Unnecessary Fast
 Retransmits with the Less Careful variant in scenarios with
 reordering are illustrated in page 8 of [F03].

12. Conclusions

 This document specifies the NewReno Fast Retransmit and Fast Recovery
 algorithms for TCP. This NewReno modification to TCP can be
 important even for TCP implementations that support the SACK option,
 because the SACK option can only be used for TCP connections when
 both TCP end-nodes support the SACK option. NewReno performs better
 than Reno (RFC 2581) in a number of scenarios discussed herein.

 A number of options to the basic algorithm presented in Section 3 are
 also described. These include the handling of the retransmission
 timer (Section 4), the response to partial acknowledgments (Section

5), and the value of the congestion window when leaving Fast Recovery
 (section 3, step 5). Our belief is that the differences between
 these variants of NewReno are small compared to the differences
 between Reno and NewReno. That is, the important thing is to
 implement NewReno instead of Reno, for a TCP connection without SACK;

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2581

Floyd & Henderson [Page 12]

draft-floyd-newreno May 2003

 it is less important exactly which of the variants of NewReno is
 implemented.

13. Acknowledgements

 Many thanks to Anil Agarwal, Mark Allman, Armando Caro, Vern Paxson,
 Kacheong Poon, Keyur Shah, and Bernie Volz for detailed feedback on
 this document or on its precursor RFC 2582.

Floyd & Henderson [Page 13]

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2582

draft-floyd-newreno May 2003

14. References

 Normative References

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, "TCP Selective
 Acknowledgement Options", RFC 2018, October 1996.

 [RFC2581] W. Stevens, M. Allman, and V. Paxson, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2582] S. Floyd and T. Henderson, The NewReno Modification to
 TCP's Fast Recovery Algorithm, RFC 2582, April 1999.

 [RFC3042] M. Allman, H. Balakrishnan, and S. Floyd, Enhancing TCP's
 Loss Recovery Using Limited Transmit, RFC 3042, January 2001.

 Informative References

 [C98] Neal Cardwell, "delayed ACKs for retransmitted packets: ouch!".
 November 1998. Email to the tcpimpl mailing list, Message-ID
 "Pine.LNX.4.02A.9811021421340.26785-100000@sake.cs.washington.edu",
 archived at "http://tcp-impl.lerc.nasa.gov/tcp-impl".

 [F98] Sally Floyd. Revisions to RFC 2001. Presentation to the
 TCPIMPL Working Group, August 1998. URLs
 "ftp://ftp.ee.lbl.gov/talks/sf-tcpimpl-aug98.ps" and
 "ftp://ftp.ee.lbl.gov/talks/sf-tcpimpl-aug98.pdf".

 [F03] Sally Floyd. Moving NewReno from Experimental to Proposed
 Standard? Presentation to the TSVWG Working Group, March 2003. URLs
 " "http://www.icir.org/floyd/talks/newreno-Mar03.ps" and
 "http://www.icir.org/floyd/talks/newreno-Mar03.pdf".

 [FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP. Computer Communication Review, July 1996.
 URL "ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z".

 [F94] S. Floyd, TCP and Successive Fast Retransmits. Technical
 report, October 1994. URL
 "ftp://ftp.ee.lbl.gov/papers/fastretrans.ps".

 [Hen98] Tom Henderson, Re: NewReno and the 2001 Revision. September
 1998. Email to the tcpimpl mailing list, Message ID
 "Pine.BSI.3.95.980923224136.26134A-100000@raptor.CS.Berkeley.EDU",
 archived at "http://tcp-impl.lerc.nasa.gov/tcp-impl".

 [Hoe95] J. Hoe, Startup Dynamics of TCP's Congestion Control and
 Avoidance Schemes. Master's Thesis, MIT, 1995. URL "http://ana-

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2001

Floyd & Henderson [Page 14]

draft-floyd-newreno May 2003

 www.lcs.mit.edu/anaweb/ps-papers/hoe-thesis.ps".

 [Hoe96] J. Hoe, Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP. In ACM SIGCOMM, August 1996. URL
 "http://www.acm.org/sigcomm/sigcomm96/program.html".

 [LM97] Dong Lin and Robert Morris, "Dynamics of Random Early
 Detection", SIGCOMM 97, September 1997. URL
 "http://www.acm.org/sigcomm/sigcomm97/program.html".

 [NS] The Network Simulator (NS). URL "http://www.isi.edu/nsnam/ns/".

 [PF01] J. Padhye and S. Floyd, Identifying the TCP Behavior of Web
 Servers. June 2001, SIGCOMM 2001.

15. Security Considerations

RFC 2581 discusses general security considerations concerning TCP
 congestion control. This document describes a specific algorithm
 that conforms with the congestion control requirements of RFC 2581,
 and so those considerations apply to this algorithm, too. There are
 no known additional security concerns for this specific algorithm.

AUTHORS' ADDRESSES

 Sally Floyd
 International Computer Science Institute

 Phone: +1 (510) 666-2989
 Email: floyd@acm.org
 URL: http://www.icir.org/floyd/

 Tom Henderson
 The Boeing Company

 Email: thomas.r.henderson@boeing.com

https://datatracker.ietf.org/doc/html/draft-floyd-newreno
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
http://www.icir.org/floyd/

Floyd & Henderson [Page 15]

