
Internet Engineering Task Force S. Fluhrer
Internet-Draft D. McGrew
Intended status: Informational P. Kampanakis
Expires: February 5, 2017 Cisco Systems
 August 4, 2016

Postquantum Preshared Keys for IKEv2
draft-fluhrer-qr-ikev2-02

Abstract

 This document describes an extension of IKEv2 to allow it to be
 resistant to a Quantum Computer, by using preshared keys

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 5, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Fluhrer, et al. Expires February 5, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Postquantum Security for IKEv2 August 2016

Table of Contents

1. Introduction . 2
1.1. Changes . 3
1.2. Requirements Language 3

2. Assumptions . 3
3. Exchanges . 4
3.1. Computing SKEYSEED 6
3.2. Verifying preshared key 7
3.3. Child SAs . 7

4. Security Considerations 7
5. References . 8
5.1. Normative References 8
5.2. Informational References 9

Appendix A. Discussion and Rationale 9
 Authors' Addresses . 12

1. Introduction

 It is an open question whether or not it is feasible to build a
 quantum computer, but if it is, many of the cryptographic algorithms
 and protocols currently in use would be insecure. A quantum computer
 would be able to solve DH and ECDH problems, and this would imply
 that the security of existing IKEv2 systems would be compromised.
 IKEv1 when used with preshared keys does not share this
 vulnerability, because those keys are one of the inputs to the key
 derivation function. If the preshared key have sufficient entropy
 and the PRF and encryption and authentication transforms are
 postquantum secure, then the resulting system is believed to be
 quantum resistant, that is, believed to be invulnerable to an
 attacker with a Quantum Computer.

 This document describes a way to extend IKEv2 to have a similar
 property; assuming that the two end systems share a long secret key,
 then the resulting exchange is quantum resistant. By bringing
 postquantum security to IKEv2, this note removes the need to use an
 obsolete version of the Internet Key Exchange in order to achieve
 that security goal.

 The general idea is that we add an additional secret that is shared
 between the initiator and the responder; this secret is in addition
 to the authentication method that is already provided within IKEv2.
 We stir in this secret when generating the IKE keys (along with the
 parameters that IKEv2 normally uses); this secret adds quantum
 resistance to the exchange.

 It was considered important to minimize the changes to IKEv2. The
 existing mechanisms to do authentication and key exchange remain in

Fluhrer, et al. Expires February 5, 2017 [Page 2]

Internet-Draft Postquantum Security for IKEv2 August 2016

 place (that is, we continue to do (EC)DH, and potentially a PKI
 authentication if configured). This does not replace the
 authentication checks that the protocol does; instead, it is done as
 a parallel check.

1.1. Changes

 Changes in this draft from the previous versions

draft-01

 - Added explicit guidance as to what IKE and IPsec algorithms are
 Quantum Resistant

draft-00

 - We switched from using vendor ID's to transmit the additional data
 to notifications

 - We added a mandatory cookie exchange to allow the server to
 communicate to the client before the initial exchange

 - We added algorithm agility by having the server tell the client
 what algorithm to use in the cookie exchange

 - We have the server specify the PPK Indicator Input, which allows
 the server to make a trade-off between the efficiency for the search
 of the clients PPK, and the anonymity of the client.

 - We now use the negotiated PRF (rather than a fixed HMAC-SHA256) to
 transform the nonces during the KDF

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Assumptions

 We assume that each IKE peer (both the initiator and the responder)
 has an optional Postquantum Preshared Key (PPK) (potentially on a
 per-peer basis), and also has a configurable flag that determines
 whether this postquantum preshared key is mandatory. This preshared
 key is independent of the preshared key (if any) that the IKEv2
 protocol uses to perform authentication.

https://datatracker.ietf.org/doc/html/draft-01
https://datatracker.ietf.org/doc/html/draft-00
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Fluhrer, et al. Expires February 5, 2017 [Page 3]

Internet-Draft Postquantum Security for IKEv2 August 2016

 In addition, we assume that the initiator knows which PPK to use with
 the peer it is initiating to (for instance, if it knows the peer,
 then it can determine which PPK will be used).

3. Exchanges

 If the initiator has a configured postquantum preshared key (whether
 or not it is optional), then it will include a notify payload in its
 initial exchange as follows:

 Initiator Responder
 --
 HDR, SAi1, KEi, Ni, N(PPK_REQUEST) --->

 N(PPK_REQUEST) is a status notification payload with the type [TBA];
 it has a protocol ID of 0, and no SPI and no notification data
 associated with it.

 When the responder recieves the initial exchange with the notify
 payload, then (if it is configured to support PPK), it responds with:

 Initiator Responder
 --
 <--- HDR, N(COOKIE), N(PPK_ENCODE)

 If it is not configured to support PPK, the responder continues with
 the standard IKEv2 protocol.

 In other words, it asks for the responder to generate and send a
 cookie in its responses (as listed in section 2.6 of RFC7296), and in
 addition, include a notify that gives details of how the initiator
 should indicate what the PPK is. This notification payload has the
 type [TBA}; it has a protocol ID of 0, and no SPI; the notification
 data is of the format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PPK Indicator Algorithm |
 +-+
 | PPK Indicator Input (variable) |
 +-+

 The PPK Indicator Algorithm is a 4 byte word that states which PPK
 indicator to use. That is, it gives the encoding format for the PPK
 that should be used is given to the responder. At present, the only
 assigned encoding is 0x00000001, which indicates that AES256_SHA256
 will be used (as explained below).

https://datatracker.ietf.org/doc/html/rfc7296#section-2.6

Fluhrer, et al. Expires February 5, 2017 [Page 4]

Internet-Draft Postquantum Security for IKEv2 August 2016

 PPK Indicator Input is a data input to the PPK indicator Algorithm;
 its length will depend on the PPK indicator; for the indicator
 AES256_SHA256, this PPK Indicator Input is 16 bytes.

 The contents of this PPK Indicator Input is selected by responder
 policy; below we give trade-offs of the various possibilities

 When the initiator receives this notification, it responds as
 follows:

 Initiator Responder
 --
 HDR, N(COOKIE), SAi1, KEi, Ni, N(PPK_REQUEST) --->

 This is the standard IKEv2 cookie response, with a PPK_REQUEST
 notification added

 N(PPK_REQUEST) is a status notification payload with the type [TBA];
 it has a protocol ID of 0, and no SPI; however this time, the
 notification data as as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PPK Indicator Algorithm |
 +-+
 | PPK Indicator Input (variable) |
 +-+
 | PPK Indicator (variable) |
 +-+

 The PPK Indicator Algorithm and PPK Indicator Input are precisely the
 same as was given in the PPK_ENCODE format (as is repeated in case
 the responder ran this cookie protocol in a stateless manner). The
 PPK Indicator is the encoded version of the PPK that the initiator
 has. The idea behind this is to allow the responder to select which
 PPK it should use when it derives the IKEv2 keys.

 For the AES256_SHA256 PPK indicator, the PPK Indicator is 16 bytes.
 To compute it, we use HMAC_SHA256(PPK, "A") as the 256 bit AES key to
 encrypt the 16 bytes on PPK Indicator Input (in ECB mode), where "A"
 is a string consisting of a single 0x41 octet.

 When the responder receives this notification payload, it verifies
 that the PPK Indicator Algorithm is as it has specified, and it MAY
 verify that the PPK Indicator Input is as it has specified. If
 everything is on the level, it scans through its list of configured
 postquantum preshared keys, and determines which one it is (possibly

Fluhrer, et al. Expires February 5, 2017 [Page 5]

Internet-Draft Postquantum Security for IKEv2 August 2016

 (assuming AES256_SHA256_PPK) by computing AES256(HMAC_SHA256(PPK,
 "A"), PPK_Indicator_Input) and comparing that value to the 16 bytes
 within the payload. Alternatively, it may have preselected a PPK
 Indicator Input, and has precomputed (again assuming
 AES256_SHA256_PPK) AES256(HMAC_SHA256(PPK, "A"), PPK_Indicator_Input)
 for each PPK it knows about (in which case, this is a simple search).

 If the responder finds a value that matches the payload for a
 particular PPK, that indicates that the intiator and responder share
 a PPK and can make use of this extension. Upon finding such a
 preshared key, the responder includes a notification payload with the
 response:

 Initiator Responder
 --
 <--- HDR, SAr1, Ker, Nr, [CERTREQ], N(PPK_ACK)

 N(PPK_ACK) is a status notification payload with the type [TBA]; it
 has a protocol ID of 0, and no SPI and no notification data
 associated with it. This notification serves as a postquantum
 preshared key confirmation.

 If the responder does not find such a PPK, then it MAY continue with
 the protocol without including a notification ID (if it is configured
 to not have mandatory preshared keys), or it MAY abort the exchange
 (if it configured to make preshared keys mandatory).

 When the initiator receives the response, it MUST check for the
 presence of the notification. If it receives one, it marks the SA as
 using the configured preshared key; if it does not receive one, it
 MAY either abort the exchange (if the preshared key was configured as
 mandatory), or it MAY continue without using the preshared key (if
 the preshared key was configured as optional).

3.1. Computing SKEYSEED

 When it comes time to generate the keying material during the initial
 Exchange, the implementation (both the initiator and the responder)
 checks to see if there was an agreed-upon preshared key. If there
 was, then both sides use this alternative formula:

 SKEYSEED = prf(prf(PPK, Ni) | prf(PPK, Nr), g^ir)
 (SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr) =
 prf+(SKEYSEED, prf(PPK, Ni) | prf(PPK, Nr) |
 SPIi | SPIr)

Fluhrer, et al. Expires February 5, 2017 [Page 6]

Internet-Draft Postquantum Security for IKEv2 August 2016

 where PPK is the postquantum preshared key, Ni, Nr are the nonces
 exchanged in the IKEv2 exchange, and prf is the pseudorandom function
 that was negotiated for this SA.

 We reuse the negotiated PRF to transform the received nonces. We use
 this PRF, rather than negotiating a separate one, because this PRF is
 agreed by both sides to have sufficient security properties
 (otherwise, they would have negotiated something else), and so that
 we don't need to specify a separate negotiation procedure.

3.2. Verifying preshared key

 Once both the initiator and the responder have exchanged identities,
 they both double-check with their policy database to verify that they
 were configured to use those preshared keys when negotiating with the
 peer. If they are not, they MUST abort the exchange.

3.3. Child SAs

 When you create a child SA, the initiator and the responder will
 transform the nonces using the same PPK as they used during the
 original IKE SA negotiation. That is, they will use one of the
 alternative derivations (depending on whether an optional Diffie-
 Hellman was included):

 KEYMAT = prf+(SK_d, prf(PPK, Ni) | prf(PPK, Nr))

 or

 KEYMAT = prf+(SK_d, g^ir (new) |
 prf(PPK, Ni) | prf(PPK, Nr))

 When you rekey an IKE SA (generating a fresh SKEYSEED), the initiator
 and the responder will transform the nonces using the same PPK as
 they used during the original IKE SA negotiation. That is, they will
 use the alternate derivation:

 SKEYSEED = prf(SK_d (old), g^ir (new) |
 prf(PPK, Ni) | prf(PPK, Nr))
 (SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr) =
 prf+(SKEYSEED, prf(PPK, Ni) | prf(PPK, Nr) |
 SPIi | SPIr)

4. Security Considerations

 The PPK Indicator Input within the PPK_ENCODE notification are there
 to prevent anyone from deducing whether two different exchanges use
 the same PPK values. To prevent such a leakage, servers are

Fluhrer, et al. Expires February 5, 2017 [Page 7]

Internet-Draft Postquantum Security for IKEv2 August 2016

 encouraged to vary them as much as possible (however, they may want
 to repeat values to speed up the search for the PPK). Repeating
 these values places the anonymity at risk; however it has no other
 security implication.

 Quantum computers are able to perform Grover's algorithm; that
 effectively halves the size of a symmetric key. Because of this, the
 user SHOULD ensure that the postquantum preshared key used has at
 least 256 bits of entropy, in order to provide a 128 bit security
 level.

 In addition, the policy SHOULD be set to negotiate only quantum-
 resistant symmetric algorithms; here is a list of defined IKEv2 (and
 IPsec) algorithms which are believed to be Quantum Resistant

 IKE Encryption algorithm: assuming that the negotiated keysize is >=
 256, then all of: ENCR_AES_CBC, ENCR_AES_CTR, ENCR_AES_CCM_*,
 ENCR_AES-GCM, ENCR_CHACHA20_POLY1305, ENCR_CAMELLIA, ENCR_RC5,
 ENCR_BLOWFISH

 IKE PRF: PRF_HMAC_SHA2_256, PRF_HMAC_SHA2_384, PRF_SHA2_512. Note
 that PRF_AES128_XCBC and PRF_AES128_CBC are not on this list, even
 though they can use larger keys, because they use a 128 bit key
 internally

 IKE Integrity algorithm: AUTH_HMAC_SHA2_256, AUTH_HMAC_SHA2_384,
 AUTH_HMAC_SHA2_512, AUTH_AES_256_GMAC

 AH Transforms: AH-SHA2-256, AH-SHA2-384, AH-SHA2-512, AH-AES-256-GMAC

 ESP Transforms: assuming that the negotiated keysize is >= 256, then
 all of: ESP_AES-CBC, ESP_AES-CR, ESP_AES-CCM, ESP_AES-GCM,
 ESP_CAMELLIA, ESP_RC5, ESP_BLOWFISH, ESP_NULL_AUTH_AES-GMAC

 ESP Authentication algorithms: HMAC-SHA2-256, HMAC-SHA2-384, HMAC-
 SHA2-512, AES-256-GMAC

5. References

5.1. Normative References

 [AES] National Institute of Technology, "Specification for the
 Advanced Encryption Standard (AES)", 2001, <FIPS 197>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104

Fluhrer, et al. Expires February 5, 2017 [Page 8]

Internet-Draft Postquantum Security for IKEv2 August 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

5.2. Informational References

 [SPDP] McGrew, D., "A Secure Peer Discovery Protocol (SPDP)",
 2001, <http://www.mindspring.com/~dmcgrew/spdp.txt>.

Appendix A. Discussion and Rationale

 The idea behind this is that while a Quantum Computer can easily
 reconstruct the shared secret of an (EC)DH exchange, they cannot as
 easily recover a secret from a symmetric exchange this makes the
 SKEYSEED depend on both the symmetric PPK, and also the Diffie-
 Hellman exchange. If we assume that the attacker knows everything
 except the PPK during the key exchange, and there are 2**n plausible
 PPK's, then a Quantum Computer (using Grover's algorithm) would take
 O(2**(n/2)) time to recover the PPK. So, even if the (EC)DH can be
 trivially solved, the attacker still can't recover any key material
 unless they can find the PPK, and that's too difficult if the PPK has
 enough entropy (say, 256 bits).

 Another goal of this protocol is to minimize the number of changes
 within the IKEv2 protocol, and in particular, within the cryptography
 of IKEv2. By limiting our changes to notifications, and translating
 the nonces, it is hoped that this would be implementable, even on
 systems that perform much of the IKEv2 processing is in hardware.

 A third goal was to be friendly to incremental deployment in
 operational networks, for which we might not want to have a global
 shared key, and also if we're rolling this out incrementally. This
 is why we specifically try to allow the PPK to be dependent on the
 peer, and why we allow the PPK to be configured as optional.

 A fourth goal was to avoid violating any of the security goals of
 IKEv2. One such goal is anonymity; that someone listening into the
 exchanges cannot easily determine who is negotiating with whom.

 The third and fourth goals are in partial conflict. In order to
 achieve postquantum security, we need to stir in the PPK when the
 keys are computed, however the keys are computed before we know who

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7296
http://www.rfc-editor.org/info/rfc7296
http://www.mindspring.com/~dmcgrew/spdp.txt

Fluhrer, et al. Expires February 5, 2017 [Page 9]

Internet-Draft Postquantum Security for IKEv2 August 2016

 we're talking to (and so which PPK we should use). And, we can't
 just tell the other side which PPK to use, as we might use different
 PPK's for different peers, and so that would violate the anonymity
 goal. If we just (for example) included a hash of the PPK, someone
 listening in could easily tell when we're using the same PPK for
 different exchanges, and thus deduce that the systems are related.
 The compromise we selected was to allow the responder to make the
 trade-off between anonymity and efficiency (by including the PPK
 Indicator Input, which varies how the PPK is encoded, and allowing
 the responder to specify it).

 A responder who values anonymitity may select a random PPK Indicator
 Input each time; in this case, the responder needs to do a linear
 scan over all PPK's it has been configured with

 A responder who can't afford a linear scan could precompute a small
 (possibly rolling) set of the PPK Indicator Inputs; in this case, it
 would precompute how each PPK would be indicated. If it reissues the
 same PPK Indicator Input to two different exchanges, someone would be
 able to verify whether the same PPK was used; this is some loss of
 anonymity; but is considerably more efficient.

 An alternative approach to solve this problem would be to do a normal
 (non-QR) IKEv2 exchange, and when the two sides obtain identities,
 see if they need to be QR, and if so, create an immediate IKEv2 child
 SA (using the PPK). One issue with this is that someone with a
 quantum computer could deduce the identities used; another issue is
 the added complexity required by the IKE state machines.

 A slightly different approach to try to make this even more friendly
 to IKEv2-based cryptographic hardware might be to use invertible
 cryptography when we present the nonces to the kdf. The idea here is
 in case we have IKEv2 hardware that insists on selecting its own
 nonces (and so we won't be able to give a difference nonce to the
 KDF); instead, we encrypt the nonce that we send (and decrypt the
 nonce that we get). Of course, this means that the responder will
 need to figure out which PPK we're using up front (based on the
 notifications); we're not sure if this idea would be a net
 improvement (especially since the transform we're proposing now is
 cryptographically secure and simple).

 The reasoning behind the cryptography used: the values we use in the
 AES256_SHA256 PPK Indicator Algorithm are cryptographically
 independent of the values used during the SKEYSEED generation
 (because, even if we use HMAC_256 as our PRF, HMAC_SHA256(PPK, A) is
 independent of HMAC_SHA256(PPK, B) if A and B are different strings
 (and as any real nonce must be longer than a single byte, there is

Fluhrer, et al. Expires February 5, 2017 [Page 10]

Internet-Draft Postquantum Security for IKEv2 August 2016

 never a collision between that and "A". This independent stems from
 the assumption that HMAC_SHA256 is a secure MAC.

 The method of encoding the PPK within the notification (using AES-
 256) was chosen as it met two goals:

 o Anonymity; given A, AES256_K1(A), B, AES256_K2(B), it's fairly
 obvious that gives someone (even if they have a quantum computer)
 no clue about whether K1==K2 (unless either A==B or AES256_K1(A)==
 AES256_K2(B); both highly unlikely events if A and B are chosen
 randomly).

 o Performance during the linear search; a responder could preexpand
 the AES keys, and so comparing a potential PPK against a
 notification from the initiator would amount to performing a
 single AES block encryption and then doing a 16 byte comparison.

 The first goal is considered important; one of the goals of IKEv2 is
 to provide anonymity. The second is considered important because the
 linear scan directly affects scalability. While this draft allows
 the server to gain performance at the cost of anonymity, it was
 considered useful if we make the fully-anonymous method as attractive
 as possible. This use of AES makes this linear scan as cheap as
 possible (while preserving security).

 We allow the responder to specify the PPK Indicator Algorithm; this
 was in response to requests for algorithm agility. At present, it
 appears unlikely that there would be a need for an additional
 encoding (as the current one is extremely conservative
 cryptographically); however the option is there.

 The current draft forces a cookie exchange, and hence adds a round
 trip over the normal IKEv2 operation. This was done to allow the
 server to specify the PPK Indicator algorithm. While as additional
 round trip may seem costly, it does not invalidate this proposal, The
 reason for this proposal is to give an alternative to IKEv1 with
 preshared keys. While this additional round trip may seem costly, it
 is important to note that, even with the additional round trip, this
 proposal is still cheaper than IKEv1. Thus the mechanisms specified
 in this note meet the goal of providing a better alternative than
 relying on an obsolete version of the protocol for post quantum
 security.

 One issue that is currently open: what should happen if the initiator
 guesses at the PPK Indicator Algorithm, selects a random PPK
 Indicator Input, and includes that in the initial message? After
 all, if the server follows the recommendation that the cookie
 exchange is stateless, and if the server chooses the PPK Indicator

Fluhrer, et al. Expires February 5, 2017 [Page 11]

Internet-Draft Postquantum Security for IKEv2 August 2016

 Input In randomly, it has no way to know that the client isn't
 running this protocol as specified. If the responder supports that
 PPK Indicator Algorithm, it could very well respond without forcing a
 cookie exchange (which would eliminate a message exchange round).
 It's not clear is whether we should endorse this mode of operation,
 and explicitly state that if the server recieves such an initial
 request, and it doesn't recognize the PPK Indicator Input, it should
 act like it recieved an iniital PPK_REQUEST.

Authors' Addresses

 Scott Fluhrer
 Cisco Systems

 Email: sfluhrer@cisco.com

 David McGrew
 Cisco Systems

 Email: mcgrew@cisco.com

 Panos Kampanakis
 Cisco Systems

 Email: pkampana@cisco.com

Fluhrer, et al. Expires February 5, 2017 [Page 12]

