Intended Status: Best Current Practice

BEHAVE WG B. Ford
Internet-Draft M.I.T.
Expires: September 5, 2007 P. Srisuresh
Kazeon Systems

D. Kegel

kegel.com

March 5, 2007

Application Design Guidelines for Traversal
through Network Address Translators
<draft-ford-behave-app-05. txt>

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/lid-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

This document defines guidelines by which application designers

can create applications that communicate reliably and efficiently
in the presence of Network Address Translators (NATs),

particularly when the application has a need for "peer-to-peer"
(P2P) type of communication. The guidelines allow a P2P application
to work reliably across a majority of existing NATs, as well as all
future NATs that conform to the behave requirements specified in

Ford, Srisuresh, Kegel [Page 1]

https://datatracker.ietf.org/doc/html/draft-ford-behave-app-05.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft P2P Application Design Guidelines March 2007

companion documents. The NAT traversal techniques described in
the document do not require the use of special proxy or relay
protocols, do not require specific knowledge about the network
topology or the number and type of NATs in the path, and do not
require any modifications to IP or transport-layer protocols

on the end hosts.

Table of Contents

=

Introduction and SCOPE. .. vttt i et
Terminology and Conventions Usediiiiiinnnnnnnnnnn
BEHAVE-compliant versus Legacy NATS ...t iiiiinrnnnnnnnnenns
General NAT Traversal CONCeptsSt ii ittt
4.1. NAT Functions Influencing Traversal LogiC
4.2. Communication Between Peers Behind Distinct NATs
4.3. Short-Circuiting Sessions on Private Networks
4.4, Authenticating Peer-to-Peer Connections
4.5. NAT Behavior Detectionuiiiiiiiiinnnnnnnnnsan
5. NAT Traversal for UDPttt i e eas

5.1. UDP Idle TimeoutsSttt it
6. NAT Traversal for TCPttt ittt e it

6.1. Ensuring RobuUStNesSS i i i e
7. Summary of Requirements i e
8. Security Considerations i i s

8.1. Denial-of-service attacksiiiiiiiinininenns

8.2. Man-in-the-middle attackscc i,
9. IANA Considerationst et i s
10. Normative referenCes ... it i e i i e
11. Informative referencesot

A WODN PR

Introduction and Scope

The present-day Internet has seen ubiquitous deployment of Network
Address Translators (NATs), driven by a variety of practical
challenges such as privacy and the ongoing depletion of the IPv4
address space. The asymmetric addressing and connectivity regimes
established by NATs, however, cause problems for many applications
such as teleconferencing ([SIP], [H.323]) and multiplayer on-line
gaming systems. Such application protocols require "peer-to-peer"
communication directly between arbitrary hosts, and not just
traditional "client/server" communication between a "client" host
and a "well-known" server with a global IP address and DNS name.
RFC 3235 [NAT-APPL] already proposes NAT friendly design guidelines
for applications, but merely recommends against using peer-to-peer
communication and does not provide a workable solution to this
problem. This document acts as an adjunct to [NAT-APPL], with

focus on Peer-to-peer application design guidelines. The guidelines

https://datatracker.ietf.org/doc/html/rfc3235

Ford, Srisuresh, Kegel [Page 2]

Internet-Draft P2P Application Design Guidelines March 2007

N

in the document apply to Traditional NATs as described in RFC 2663
[NAT-TERM]. As such, the term NAT used throughput the document
refers to Traditional NAT.

Given the increasing demand for applications that require P2P
communication, in conjunction with the ubiquity of NATs, applications
are increasingly implementing and deploying various workarounds to
this problem. Most of the workarounds take the form of a NAT
traversal or "hole punching" algorithm, by which two "peers" lying
behind one or more NATs cooperate with a well-known "rendezvous
server" to set up a direct peer-to-peer communication path between
them. As pointed out in [UNSAF], application endpoints are fixed
uniquely in the public realm with the aid of the rendezvous server.
The rendezvous server is crucial to the initial path setup but

does not take part in the subsequent peer-to-peer data stream.

There are many different NAT traversal algorithms already in use and
currently being explored. However, due to the lack of standardization
for NAT behavior up to this point, none of these algorithms can be
guaranteed to work reliably over all currently deployed NATSs.
Further, without standardization of NAT traversal algorithms there

is a strong danger that the proliferation of traversal algorithms

may further compound the reliability and predictability problems

that NAT created in the first place.

This document focuses exclusively on NAT traversal techniques that do
not require the application to communicate explicitly with the NATs
in the path. Protocols that allow applications to obtain external
communication endpoints through explicit interaction with NATs in the
path are outside the scope of this document. Several such protocols
exist and are documented elsewhere ([SOCKS], [RSIP], [MIDCOM],
[UPNP]), but so far none of these protocols have become widely
accepted.

This document defines a set of best current practices for
implementing NAT traversal in applications. The specific
recommendations are described at length in the sections 2 through
5 and later summarized concisely in Section 6.

. Terminology and Conventions Used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", '"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, the IP addresses 192.0.2.1, 192.0.2.128, and
192.0.2.254 are used as example IP addresses [RFC3330]. Although

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3330

Ford, Srisuresh, Kegel [Page 3]

Internet-Draft P2P Application Design Guidelines March 2007

these addresses are all from the same /24 network, this is a
limitation of the example addresses available in [RFC3330]. In
practice, these addresses would be on different networks

[eM]

BEHAVE-compliant versus Legacy NATs

BEHAVE-compliant NATs are those NAT devices that conform to the
behavioral requirements set out in [BEH-TCP], [BEH-UDP],
[BEH-ICMP], and other protocol specific behave document(s) in the
future which define requirements for NATs when handling protocol
specific traffic.

The NAT traversal techniques described in this document are known
to work in practice with a variety of existing NATs in the most
common interconnection scenarios.

To be considered "BEHAVE-compliant", an application MUST be
designed to operate reliably when all NATs in its communication
paths are BEHAVE-compliant. It is also RECOMMENDED that new
applications assume that all NATs in the application path are
BEHAVE-compliant, since non-BEHAVE-compliant NATs are expected to
be deprecated quickly. Adding complexity to applications for the
purpose of handling legacy NATs risks introducing additional
unpredictability into the network.

This document does not specifically prohibit applications from
implementing more elaborate NAT traversal algorithms that may
function over a wider variety of non-BEHAVE-compliant, "legacy"
NATs. Some known techniques for operating over such poorly-behaved
NATs are outlined briefly in [P2P-STATE], and are described more
thoroughly in [NUTSS], [P2PNAT], [NATBLAST], and [NATTRAV].
Applications implementing fancier protocols such as these, however,
must ensure that their traversal algorithms operate just as
efficiently as the ones specified here over BEHAVE-compliant NATSs,
and do not create new security vulnerabilities or unnecessarily
burden network components in the path.

REQ-1 Applications MUST be designed to operate reliably over BEHAVE-
compliant NATs. New applications are RECOMMENDED to assume
that all NATs in the path are BEHAVE-compliant.

[

General NAT Traversal Concepts

This section describes requirements and techniques for NAT traversal
that are independent of transport protocol; subsequent sections will
specifically address NAT traversal for the UDP and TCP transport
protocols. For more detailed background information on current

https://datatracker.ietf.org/doc/html/rfc3330

Ford, Srisuresh, Kegel [Page 4]

Internet-Draft P2P Application Design Guidelines March 2007

practices in use by existing applications, please refer to the
companion document [P2P-STATE].

4.1. NAT Functions Influencing Traversal Logic

Traditional NATs ([NAT-TRAD]) are the most commonly deployed NATSs.
These NATs integrate two logical functions, each of which interferes
with peer-to-peer communication in a different way and thus requires
NAT traversal support in applications.

Address Translation:

A NAT modifies the IP-level and often the transport-level header
information in packets flowing across the boundary, in order to
enable many "private" hosts behind the NAT to share the use of a
smaller number of public IP addresses (often just one). Hosts
behind the NAT usually have no unique, permanently usable address
on the public Internet, and can only communicate through
temporary public endpoints that the NAT assigns them dynamically
as a result of communication attempts initiated by hosts on the
private network.

When two hosts reside on two different private networks behind
distinct NATs, neither of them has a permanent address that the
other can reach at any time, so in order to establish peer-to-peer
connections the hosts must rely on the temporary public endpoints
their NATs assign them as a result of prior outgoing

client/server style communication sessions. Discovering,
exchanging, and using these temporary public endpoints generally
requires that the two hosts first collaborate through a well-known
server on the public Internet that both hosts can reach, as
described below.

Filtering of Unsolicited Traffic:

The filtering function in a Traditional NAT device restricts
communication between a private internal network and the public
Internet by dropping incoming sessions that are deemed
"unsolicited". All packets arriving from the public Internet
are dropped unless they are part of an existing communication
session that was previously initiated by a host on the private
network.

When two hosts reside on two different private networks behind
distinct NATs, an attempt by either host to initiate a peer-to-
peer connection to the other will usually fail, even if the
connection attempt is directed to the correct temporary public
endpoint assigned by the opposite host's NAT, because the opposite

Ford, Srisuresh, Kegel [Page 5]

Internet-Draft P2P Application Design Guidelines March 2007

host's NATs will interpret this attempt as unsolicited incoming
traffic and reject it. NAT traversal in this case requires the
two hosts to cooperate, typically by communicating initially
through a well-known server on the public Internet that they can
both reach, so as to make their peer-to-peer connection appear to
each host's NAT as if it was initiated from within that host's own
private network.

The cooperation of two hosts to create a peer-to-peer connection
across NATs does not constitute a violation of the filtering policy
imposed by the NAT. Network firewall functionality in general is
outside the scope of this document, and this document does not
condone any attempts by application developers to subvert security
policies that may be imposed by NATs or firewalls.

4.2. Communication Between Peers Behind Distinct NATs

Although the details of NAT traversal vary from one transport
protocol to another depending on how NATs recognize and handle
sessions for that transport, the basic approach to NAT traversal is
transport-independent. We merely assume for now that each transport
uses session endpoints consisting of an (IP address, port number)
pair to identify and differentiate communication sessions, and that
each communication session is uniquely identified by its two
endpoints. We focus here specifically on the one NAT traversal
algorithm recommended here for new applications.

Suppose client hosts A and B both have private IP addresses and lie
behind different NATs, as shown below.

Server S
192.0.2.128:1234

Fomm e e e e e eeoooo-- Fomm e e e e e e emooo-- +
I I
| N Registry Session(A-S) A N Registry Session(B-S) /N |
| | 192.0.2.128:1234 | | 192.0.2.128:1234 | |
| | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
I I
| N~ P2P Session (A-B) A A P2P Session (B-A) A
| | 192.0.2.254:31000 | | 192.0.2.1:62000 |]
| | 192.0.2.1:62000 | | 192.0.2.254:31000 |]
I I
- + e +
192.0.2.1 192.0.2.254

NAT A

Ford, Srisuresh, Kegel [Page 6]

Internet-Draft P2P Application Design Guidelines March 2007

>

N Registry Session(A-S) A Registry Session(B-S) A

I I

I I

| | 192.0.2.128:1234 | | 192.0.2.128:1234 |

| | 10.0.0.1:1234 | | 10.1.1.3:1234 | |

I I

| A P2P Session (A-B) N N P2P Session (B-A) A

| | 192.0.2.254:31000 | | 192.0.2.1:62000 |

| | 10.0.0.1:1234 | | 10.1.1.3:1234 | |

I I
Client A Client B
10.0.0.1:1234 10.1.1.3:1234

Figure 1: Simultaneous outgoing sessions to accomplish direct-P2P

A peer-to-peer application running on clients A and B, and also on a
well-known rendezvous server S, each use port number 1234 at their
own IP address to form their primary local communication endpoint. A
and B have each initiated communication sessions from their local
endpoint server S's endpoint. As a result of A's outgoing connection
attempt to S, NAT A has dynamically assigned port 62000 at its own
public IP address, 192.0.2.1, to A's session with S, so that S

sees this session as having been initiated from the endpoint
192.0.2.1:62000, rather than from A's original private endpoint of
10.0.0.1:1234. Similarly, B's outgoing connection to S causes NAT B
to assign port 31000 at its own IP address to B's session with S,
thus forming B's public endpoint of 192.0.2.254:31000.

Now suppose that host A wants to establish a communication session
directly with host B. If A just naively initiates a new

communication session to the endpoint B believes itself to be using,
namely 10.1.1.3:1234, then A's connection attempt will either reach
the wrong host - a different host on A's own private network that
happens to have the private IP address 10.1.1.3 - or it will reach no
host at all, because B's private IP address 10.1.1.3 is not routable
over the Internet.

Even if A learns B's temporary public endpoint, 192.0.2.254:31000,
from server S, and attempts to initiate a communication session to
that destination endpoint, NAT B may reject this attempt because
the IP packet's source and destination endpoints do not match

those of an existing session previously initiated from within the
private network. The destination endpoint of A's connection attempt
to B matches the source endpoint of B's existing session with S,
but the source endpoint of A's connection attempt is of course
different. Similarly, if B makes a unilateral connection attempt

to A's public endpoint, NAT A may similarly reject B's attempt.

Ford, Srisuresh, Kegel [Page 7]

Internet-Draft P2P Application Design Guidelines March 2007

As it turns out, this difficulty could arise even if NAT-A and
NAT-B are replaced by firewalls with the standard filtering
policy of rejecting unsolicited incoming communication attempts.

In order to operate reliably across NATs and firewalls that reject
unsolicited incoming communication, the client hosts A and B
collaborate with an external server S to learn each other's public
AND private endpoints, and then each of the two client hosts

initiate "approximately simultaneous" connection attempts from their
existing primary local endpoints (the same local endpoints they used
previously for the connection to S), and directed at all of the known
endpoints (public and private) for the other host. 1In the scenario
illustrated above, A's connection attempt to B's public endpoint is
interpreted by NAT A as a legitimate, outgoing session whose private
source endpoint (10.0.0.1:1234) is the same as that of A's existing
session with S, but whose public destination endpoint
(192.0.2.254:31000) is different. If NAT A is BEHAVE-compliant, it
will translate A's private source endpoint for this new session in
the same way that it did for A's existing session with S, so that the
new session appears on the public Internet to be a session between
A's public endpoint, 192.0.2.1:62000, and B's public endpoint,
192.0.2.254:31000.

In similar fashion, B's "approximately simultaneous" connection
attempt from its private endpoint, 10.1.1.3:1234, to A's public
endpoint, 192.0.2.1:62000, results in NAT B opening a new
translation session that reuses the existing public endpoint for B,
192.0.2.254:31000, which NAT B previously assigned to B's session
with S. NAT B is now set up to allow communication between A's
public endpoint and B's private endpoint, and on the public Internet
this session has the endpoints 192.0.2.1:62000 and
192.0.2.254:31000, the same as the endpoints of the session that A
initiated above toward B's public endpoint. Both NATs are thus set
up to permit communication between these two public endpoints,
translating and forwarding the traffic comprising this session to the
respective client hosts on the private networks as appropriate.

Applications wishing to establish peer-to-peer communication MUST
support NAT traversal using the "approximate simultaneous"
connection technique. The traversal technique relies on certain
aspects of NAT behavior described fully in the companion documents
[BEH-TCP], [BEH-UDP], and [BEH-ICMP]. The technique also relies on
the transport protocol allowing a connection to be initiated
actively by two endpoints, rather than asymmetrically in traditional
client/server fashion. Fortunately both of the two ubiquitous
transports, TCP and UDP, allow symmetric connection initiation in
this way.

Ford, Srisuresh, Kegel [Page 8]

Internet-Draft P2P Application Design Guidelines March 2007

REQ-2 Applications wishing to establish peer-to-peer communication
MUST support NAT traversal using the "approximate
simultaneous" connection technique and using the help of a
"rendezvous server" in the public network.

4.3. Short-Circuiting Sessions on Private Networks

Although the network topology illustrated in figure 1 is typical

of the situation seen by P2P applications, it is by no means

the only possible scenario. Only one of the client hosts may be
behind, or one or more of the clients may be located behind two or
more levels of NATs, any number of which may be shared between the
two clients. The general NAT traversal algorithm described above
will work reliably in all of the common topological scenarios
provided that the NATs involved are BEHAVE-compliant. One other
particularly common scenario is worth special consideration however.
In the situation illustrated below the two clients (probably
unknowingly) happen to reside behind the same NAT, and are therefore
located in the same private IP address space.

Ford, Srisuresh, Kegel [Page 9]

Internet-Draft P2P Application Design Guidelines March 2007

Server S
192.0.2.128:1234

I
N Registry Session(A-S) A |
| 192.0.2.128:1234 | | 192.0.2.128:1234 [
I
I

N Registry Session(B-S) 2
I
| 192.0.2.1:62001 |

| 192.0.2.1:62000 |

NAT
o m e aaaaas +
I

o e e e e aooo- o e e e e e e +

I I

| A Registry Session(A-S) A A Registry Session(B-S) /N |

| | 192.0.2.128:1234 | | 192.0.2.128:1234 |]

| | 10.0.0.1:1234 | | 10.1.1.3:1234 | |

I I

| A P2P Session-tryl(A-B) A A P2P Session-tryl (B-A)A |

|] 10.1.1.3:1234 | | 10.0.0.1:1234 |]

| 10.0.0.1:1234 | | 10.1.1.3:1234 |

I I

| A P2P Session-try2(A-B) A A P2P Session-try2(B-A)A |

| | 192.0.2.1:62001 | | 192.0.2.1:62000 |]

| | 10.0.0.1:1234 | | 10.1.1.3:1234 | |

I I
Client A Client B
10.0.0.1:1234 10.1.1.3:1234

Figure 2: Register private identity & NAT identity with Relay server

In this scenario, client A has established a session with well-known
server S as before, to which the common NAT has assigned public port
number 62000. Client B has similarly established a session with S,
to which the NAT has assigned public port number 62001. Suppose that
A and B use the NAT traversal technique outlined above to establish a
communication channel using server S as an introducer. If A and B
only attempt simultaneous connections to each other's public
endpoints, 192.0.2.1:62001 and 192.0.2.1:62000 respectively,

then their connection attempts will succeed only if the NAT supports
hairpin translation, as described in [P2P-STATE] and [BEH-TOP].
Although hairpin translation is required for a NAT to be

considered fully BEHAVE-compliant, this feature is not yet widely
supported by commonly deployed NATs at the time of this writing.

Ford, Srisuresh, Kegel [Page 10]

Internet-Draft P2P Application Design Guidelines March 2007

Additionally, the resulting connection between A and B will be
sub-optimal in this case because all traffic will unnecessarily
pass through and be translated by the NAT, whereas the two
endpoint hosts are perfectly capable of communicating directly on
their common IP network without the NAT intervention.

To address this problem, P2P applications MUST exchange their local
endpoints as known to themselves, in addition to the global
endpoints they register with the rendezvous server. In case an
application host has multiple IP addresses or is registered with
multiple rendezvous servers, the P2P application SHOULD exchange
all pertinent endpoints with its peers.

Further, P2P applications MUST be prepared to make "approximately
simultaneous" connection attempts to all exchanged endpoints,
including the private endpoints and the public endpoints of the
desired peer. By doing this, a P2P application is able to use
whichever connection succeeds first in establishing bi-directional
communication between the correct peers. If the two end hosts
happen to be located in the same private network, their connection
attempt using each others' private endpoints is likely to succeed
first because it follows a shorter network path not involving the
NAT. If the NAT does not support hairpin translation, the
connection attempts using the hosts' private endpoints will be the
only one to succeed.

REQ-3 Applications implementing NAT traversal MUST exchange their
local endpoints as known to themselves, in addition to the
global endpoints they register with the rendezvous server.
In case an application host has multiple IP addresses or
is registered with multiple rendezvous servers, the P2P
application SHOULD exchange all pertinent endpoints with
its peers. Further, peering applications MUST be prepared to
make "approximately simultaneous" connection attempts to all
exchanged endpoints of the desired peer.

4.4. Authenticating Peer-to-Peer Connections

It is extremely important not only for security but also for general
robustness that applications implementing a NAT traversal protocol
authenticate any peer-to-peer connections they establish, using some
higher-level application-specific notion of host or user identity.
To operate reliably and securely, applications must consider any IP
addresses and port numbers they use for communication with other
hosts to be merely "locators" for hosts, serving as hints indicating
how the desired host might be reached, and not as a reliable
"identifier" for the target host or user.

Ford, Srisuresh, Kegel [Page 11]

Internet-Draft P2P Application Design Guidelines March 2007

In particular, applications must not merely assume that the first
communication attempt that establishes transport-level connectivity
and elicits a response from a particular target endpoint (IP address
and port number) necessarily represents a connection to the desired
host. Consider the following topological scenario, for example,
which is in fact extremely common in today's Internet.

Server S
192.0.2.128:1234

NAT A NAT B
Fom e oo oo + S +
I
------- B |
I I I
Client X Client A Client B
10.1.1.10:1234 10.0.0.11:1234 10.1.1.10:1234

Figure 3: Clients behind different NATs can bear same local endpoint

In this scenario, suppose that NAT A and NAT B are both "off-the-
shelf" consumer NAT routers from the same vendor, which the vendor
has configured by default to act as DHCP servers that hand out
private IP addresses starting at 10.1.1.10. (Most users of such
devices know little or nothing about IP addresses, and therefore are
very unlikely to reconfigure their NATs any more than is necessary to
get them to connect to the Internet.) As before, Client A wishes to
establish a peer-to-peer connection with Client B with the help of
Server S. Client A happened to receive private IP address 10.1.1.11
on NAT A's private network, after Client X had already been assigned
private IP address 10.1.1.10. Client B happens to be the only host
on NAT B's private network, and thus received the first available
private IP address, 10.1.1.10. Client X happens to be running the
same P2P application as is running on clients A and B, and thus has
port 1234 allocated and ready to initiate and accept peer-to-peer
connections.

Suppose Client A follows the NAT traversal approach described above
to establish a peer-to-peer session with Client B. As per the
suggested protocol, A and B each make approximately simultaneous

Ford, Srisuresh, Kegel [Page 12]

Internet-Draft P2P Application Design Guidelines March 2007

connection attempts both to each other's public and private
endpoints. B's connection attempt to A's private endpoint,
10.1.1.11:1234, will of course fail because there is no host
10.1.1.11 on NAT B's private network and that IP address is not
globally routable. A's connection attempt to B's public endpoint and
B's connection attempt to A's public endpoint will eventually succeed
in establishing the desired peer-to-peer connection if the two NATs
are BEHAVE-compliant. However, A's connection attempt to B's private
endpoint, 10.1.1.10:1234, will succeed at the transport layer but
connect to the wrong host: namely client X, the host on NAT A's
private network that happens to have the same private IP address as B
does on NAT B's network. Furthermore, this bogus connection to
client X is likely to succeed much more quickly than the actually
desired connection to client B, because X is on the same private
network as A. If the application running on client A does not
properly authenticate its peer-to-peer connections using some higher-
level notion of identity that is independent of IP address, then
client A is likely to assume that its transport-level connection to X
is the desired peer-to-peer connection, cancel its attempt to connect
to B's public endpoint, and subsequently become very confused when
the peer it connected to fails to behave like client B.

Given the prevalence of NAT routers that are pre-configured by their
vendors to hand out private IP addresses via DHCP in more-or-less
deterministic fashion from a standard private IP address block,
different hosts on different private networks are very likely to have
the same private IP addresses, making the above scenario extremely
likely for P2P applications to encounter. P2P applications therefore
MUST authenticate their transport-layer connections using a

higher level application-specific notion of identity, before
concluding they have successfully connected to the desired host.
Strong cryptographic authentication using standard algorithms is of
course preferred.

REQ-4 P2P applications MUST authenticate their transport-layer
connections using a higher level application-specific notion
of identity, before concluding they have successfully
connected to the desired host.

4.5. NAT Behavior Detection

In many existing NAT traversal protocols for both TCP and UDP, each
client attempts to determine experimentally certain properties of any
NATs it is located behind before attempting to establish peer-to-peer
connections with other clients. For example, even when a NAT does

not re-use the same public endpoint for all sessions involving a
given private endpoint as required for BEHAVE compliance, it is
sometimes possible to predict which port the NAT will assign to a

Ford, Srisuresh, Kegel [Page 13]

Internet-Draft P2P Application Design Guidelines March 2007

o

new session.

Extensive testing of various existing NATs, however, has revealed
that there is no truly robust way a client can predict how a legacy
NAT will behave in the future based on such experimental tests. Some
legacy NATs behave differently depending on the local port number the
application is using on the client, and can even switch behaviors
dynamically depending on unpredictable timing and network conditions.
Therefore, applications SHOULD NOT attempt to predict the future
behavior of NATs in the path through empirical tests. If they do use
such experimental tests in an attempt to make peer-to-peer
connections work across a wider variety of legacy NATs, they MUST
ensure that such methods do not delay or otherwise impede the

the performance or reliability of the application over
BEHAVE-compliant NATs.

REQ-5 Applications SHOULD NOT attempt to predict the future behavior
of NATs in the path through empirical tests. If they do,
applications MUST ensure that any such tests do not delay or
otherwise impede the performance or reliability of NAT
traversal over BEHAVE-compliant NATS.

NAT Traversal for UDP

NAT traversal for UDP, also commonly known as UDP "hole punching",
was mentioned briefly in section 5.1 of RFC 3027 [NAT-PROT], and
first publicly documented informally on the Internet [KEGEL].

Because of UDP's simplicity and its connectionless nature, NAT
traversal for UDP is somewhat simpler, more widely understood, and
hence more universally supported by NATs and applications than is NAT
traversal for TCP, though the principles are the same for both
transports. NAT traversal for UDP has been used in several recent
experimental Internet protocols [TEREDO], [ICE] along with various
proprietary or non-standardized protocols. The NAT traversal
approach recommended in this document is also described informally in
[P2PNAT], and other variations of hole punching are explored more
thoroughly in other recent research papers [NUTSS], [NATBLAST],

and [NATTRAV].

To set up a peer-to-peer UDP session between two clients A and B, we
assume that the clients have each bound to a particular primary local
UDP port, and that the clients have each initiated a UDP session from
this primary local port to a well-known rendezvous server S, as
described earlier. Each client then learns the other's public and
private UDP endpoints from the server S, and simply begins sending
UDP datagrams, from their respective primary local ports (the same
ports they used to contact S), to all of the other client's known
endpoints. If one or both of the clients is behind a BEHAVE-

https://datatracker.ietf.org/doc/html/rfc3027#section-5.1

Ford, Srisuresh, Kegel [Page 14]

Internet-Draft P2P Application Design Guidelines March 2007

compliant NAT, the outgoing datagrams from each client will "open a
hole" through a firewall or establish a translation session

through the NAT, causing the NAT to forward subsequent incoming
datagrams from the opposite client as desired.

5.1. UDP Idle Timeouts

Because of its inherently connectionless nature, NATs have no fully
reliable way to determine when a UDP communication session crossing
the NAT has terminated, other than simply by assuming the session is
over if it observes a sufficiently long idle period. Applications
whose UDP communication sessions may experience long idle periods
must therefore account for this idle timeout.

As specified in [BEH-UDP], any BEHAVE-compliant NAT is required to
have an idle timeout of at least two minutes, but idle timeouts as
small as 30 seconds have been observed in existing NATSs.
Additionally, BEHAVE-compliant NATs are only required to reset the
idle timer on the observance of outgoing traffic leaving the private
network; the NAT may ignore incoming traffic for this purpose, in
order to prevent external hosts from being able to hold UDP sessions
open unilaterally and thus consume NAT resources indefinitely.
BEHAVE-compliant NATs are required to support Address and Port
Dependent filtering Behavior, which essentially resets the idle
timer for each session whenever outbound traffic is seen for that
session. A NAT's UDP idle timeouts affects P2P applications
implementing NAT traversal in two main ways:

Rendezvous Server Registration Sessions:

Client hosts implementing UDP hole punching typically register
with one or more well-known rendezvous servers, S in the above
scenarios, and expect to be notified by S when a second client
wishes to open a peer-to-peer connection to the first. However,
if a NAT's UDP idle timer times out while the first client is
waiting for incoming connections, then the client will not
receive the notification from S of the second client's desire
to connect. The client therefore SHOULD send periodic outbound
"keep-alive" packets to the rendezvous server(s) in order to
ensure that the registration session remains open while the
application is active. If a UDP application maintains active
registration sessions with more than one well-known rendezvous
server simultaneously, then the application SHOULD send outbound
keep-alive packets periodically to each of the rendezvous
servers it is registered with. The periodicity is at least once
within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].

If a UDP application merely desires to be compatible with BEHAVE-

Ford, Srisuresh, Kegel [Page 15]

Internet-Draft P2P Application Design Guidelines March 2007

compliant NATs, then its outbound keep-alive packets need not
elicit a response from the server unless the application is
concerned about detecting if the server disappears.

REQ-6 Applications wishing to accept connections from other peers
after registering via UDP with one or more rendezvous servers
SHOULD send periodic outgoing UDP "keep-alive" packets to
each of the rendezvous servers, at least once within the
BEHAVE-compliant NAT UDP timeout [BEH-UDP] in order to ensure
that the registration session remains open while the
application is active.

Peer-to-Peer Sessions:

Once two client hosts have used a rendezvous server to set up a
peer-to-peer UDP communication session between them, this peer-to-
peer session is similarly vulnerable to being closed by any of the
NATs along the path if it goes idle for too long.

If an application has only a few peer-to-peer sessions active at
once, then the application SHOULD use keep-alives for each of the
active peering sessions to keep the sessions open. If an
application has many idle peer-to-peer sessions at once, then

the application SHOUL NOT use keep-alives on peer-to-peer sessions
so the network is not flooded with keep-alives. Instead, the
application SHOULD be prepared to re-establish peer-to-peer
sessions as needed after an idle period, by simply re-running the
NAT traversal protocol via the original rendezvous server.

REQ-7 An Application SHOULD use the following guidelines with regard
to its UDP peer-to-peer sessions.
a) If the application has only a small number of peer-to-peer
sessions active at once, then send periodic outgoing UDP
"keep-alive" packets to each active peer at least once
within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].
b) If the application has many peer-to-peer sessions active
at once, then do not send periodic "keep-alive" packets to
peers so the network is not flooded with keep-alives.
c) If the application has a peer-to-peer UDP session that may
go idle for more than the BEHAVE-compliant NAT UDP timeout at
a time without a keep-alive, and the session connectivity is
detected to have been lost, then be prepared to re-run the
original NAT traversal protocol to re-establish the
peer-to-peer session.

6. NAT Traversal for TCP

NAT traversal for TCP, or "TCP hole punching," is not yet as well-

Ford, Srisuresh, Kegel [Page 16]

Internet-Draft P2P Application Design Guidelines March 2007

understood or widely supported as is UDP hole punching.

Nevertheless, the general technique described in section 2 above
works for TCP as well as UDP, as long as all NATs in the path are
well-behaved. The recommended NAT traversal algorithm for TCP,
described here, makes use of the symmetric TCP connection initiation
feature of TCP as specified in RFC 793 [TCP] and RFC 1122 [RFC1122].
This algorithm is guaranteed to work reliably as long as all NATs in
the path are BEHAVE-compliant [BEH-TCP], and as long as the end-hosts
correctly implement the TCP protocol.

Other more complex TCP hole punching algorithms have been developed
and explored elsewhere in [NUTSS], [NATBLAST], and [NATTRAV].
These algorithms use various tricks to work around the nonstandard
behaviors of many existing NATs, and/or to work around bugs in the
TCP implementations of certain existing operating systems.
Applications MAY implement more complex algorithms such as these
in order to achieve broader compatibility with existing NATs and
hosts, but applications MUST ensure that any such alternative
algorithm still works reliably and efficiently over
BEHAVE-compliant NATs without substantially burdening the network
and any NATs on the path.

To prepare for TCP NAT traversal, a P2P client application first
binds to an arbitrary local port, which becomes the application's
primary local port. The Application SHOULD use the port to
simultaneously listen for incoming peer-to-peer connections and to
initiate outgoing connections to rendezvous servers and other peers.
Because standard sockets APIs usually associate TCP sockets with
individual TCP sessions rather than with a local port as with UDP,
the application must typically open multiple TCP sockets - one
listen socket and one or more connect-sockets - and explicitly bind
them to the same local port, using a special socket option usually
named SO_REUSEADDR or SO_REUSEPORT.

Once a TCP application has bound to its primary local port, started
listening on it, and opened connections to one or more rendezvous
servers, the application SHOULD use "approximately simultaneous"
connection technique to initiate outgoing connections or to accept
incoming connections. Each peer SHOULD use the "approximate
simultaneous" connection technique to connect to all of the known
endpoints (including original and translated) of its peer. For
example, say two clients, A and B, wish to establish a peer-to-peer
connection with the help of a common rendezvous server S. They first
exchange their public and private TCP endpoints through S as
described in section 2. Each client then simultaneously attempts
to initiate outgoing TCP connections from its primary local port to
each of the opposite client's known TCP endpoints (public and
private). As long as all NATs in the path are well-behaved, each

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Ford, Srisuresh, Kegel [Page 17]

Internet-Draft P2P Application Design Guidelines March 2007

client's outgoing TCP connection attempt will open firewall and/or
translation sessions through any NATs it is located behind,
eventually resulting in a working bi-directional TCP connection
through all intervening NATs on the path, in the same way as for UDP.

Because of timing dependencies and differences in TCP
implementations, applications may observe slightly different (but
functionally equivalent) results when a P2P connection is
successfully established using this method. If client B is not
actually located behind a firewall or NAT, for example, and client
A's first attempt to connect directly to B reaches B before its peer-
to-peer connection request relayed through S reaches B, then B will
accept A's connection via its outstanding listen socket, in
traditional client/server fashion. Even if A's connection request
(SYN packet) to B crosses B's corresponding request to A, resulting
in a TCP simultaneous open at the protocol level, some end-host
operating systems may still "deliver" the resulting connection to the
application via the application's outstanding listen socket for its
primary local port, rather than via the socket by which the
application explicitly initiated a connection to the opposite client.
The application must be prepared to handle all such possible cases
gracefully.

Applications MAY alternatively establish peer-to-peer TCP
connections via other, asymmetric methods if one or both endpoint
hosts do not correctly support simultaneous TCP open.

REQ-8 Applications implementing peer-to-peer communication via
TCP SHOULD simultaneously listen for incoming peer-to-peer
connections and open connections to rendezvous servers and
other peers from the same endpoint.

REQ-9 Applications SHOULD establish peer-to-peer TCP connections by
making "approximately simultaneous" connection attempts from
each peer to all of the known endpoints (including original
and translated) for its peer.

Applications MAY alternatively establish peer-to-peer TCP
connections via other, asymmetric methods if one or both
endpoint hosts do not correctly support simultaneous TCP open.

6.1. Ensuring Robustness

Some existing NATs actively reject an apparently-unsolicited incoming
TCP connection by sending back TCP RST or ICMP error packets to the
connection initiator, rather than simply dropping the incoming SYN.
This behavior can cause one of the clients to observe bogus
timing-dependent connection failures. While this NAT behavior is

Ford, Srisuresh, Kegel [Page 18]

Internet-Draft P2P Application Design Guidelines March 2007

I~

deprecated and not allowed for BEHAVE-compliant NATs, P2P
applications can easily make themselves robust against this
behavior. If a client's attempt to initiate a peer-to-peer
connection fails with a "Connection Refused" or "Network Unreachable"
or similar network-related error before some application-defined
peer-to-peer connection timeout has expired, the application SHOULD
simply retry the same outgoing connection attempt. However, the
application MUST NOT retry more frequently than once per second.
Doing so avoids accidental flooding of the network with SYNs if

the cause of the error is close to the client and is thus reported
very quickly after each attempt.

REQ-10 Applications SHOULD re-try peer-to-peer TCP connection
attempts that fail due to network conditions other than
timeout, but MUST NOT re-try connecting to a given peer
more than once per second.

Summary of Requirements

An application that supports all of the mandatory requirements of
this specification (the "MUST" requirements), is "compliant with
this specification" or "BEHAVE-compliant". An application that
supports all of the mandatory and optional recommendations of this
specification (including the "SHOULD" or "RECOMMENDED" ones) is
"fully compliant with all the mandatory and recommended
requirements of this specification."

REQ-1 Applications MUST be designed to operate reliably over BEHAVE-
compliant NATs. New applications are RECOMMENDED to assume
that all NATs in the path are BEHAVE-compliant.

REQ-2 Applications wishing to establish peer-to-peer communication
MUST support NAT traversal using the "approximate
simultaneous" connection technique and using the help of a
"rendezvous server" in the public network.

REQ-3 Applications implementing NAT traversal MUST exchange their
local endpoints as known to themselves, in addition to the
global endpoints they register with the rendezvous server.
In case an application host has multiple IP addresses or
is registered with multiple rendezvous servers, the P2P
application SHOULD exchange all pertinent endpoints with
its peers. Further, peering applications MUST be prepared to
make "approximately simultaneous" connection attempts to all
exchanged endpoints of the desired peer.

REQ-4 P2P applications MUST authenticate their transport-layer

Ford, Srisuresh, Kegel [Page 19]

Internet-Draft P2P Application Design Guidelines March 2007

REQ-5

REQ-6

REQ-7

REQ-8

REQ-9

connections using a higher level application-specific notion
of identity, before concluding they have successfully
connected to the desired host.

Applications SHOULD NOT attempt to predict the future behavior
of NATs in the path through empirical tests. If they do,
applications MUST ensure that any such tests do not delay or
otherwise impede the performance or reliability of NAT
traversal over BEHAVE-compliant NATS.

Applications wishing to accept connections from other peers
after registering via UDP with one or more rendezvous servers
SHOULD send periodic outgoing UDP "keep-alive" packets to
each of the rendezvous servers, at least once within the
BEHAVE-compliant NAT UDP timeout [BEH-UDP] in order to ensure
that the registration session remains open while the
application is active.

An Application SHOULD use the following guidelines with regard
to its UDP peer-to-peer sessions.

a) If the application has only a small number of peer-to-peer
sessions active at once, then send periodic outgoing UDP
"keep-alive" packets to each active peer at least once

within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].

b) If the application has many peer-to-peer sessions active
at once, then do not send periodic "keep-alive" packets to
peers so the network is not flooded with keep-alives.

c) If the application has a peer-to-peer UDP session that may
go idle for more than the BEHAVE-compliant NAT UDP timeout at
a time without a keep-alive, and the session connectivity is
detected to have been lost, then be prepared to re-run the
original NAT traversal protocol to re-establish the
peer-to-peer session.

Applications implementing peer-to-peer communication via
TCP SHOULD simultaneously listen for incoming peer-to-peer
connections and open connections to rendezvous servers and
other peers from the same endpoint.

Applications SHOULD establish peer-to-peer TCP connections by
making "approximately simultaneous" connection attempts from
each peer to all of the known endpoints (including original
and translated) for its peer.

Applications MAY alternatively establish peer-to-peer TCP
connections via other, asymmetric methods if one or both
endpoint hosts do not correctly support simultaneous TCP open.

REQ-10 Applications SHOULD re-try peer-to-peer TCP connection

Ford, Srisuresh, Kegel [Page 20]

Internet-Draft P2P Application Design Guidelines March 2007

attempts that fail due to network conditions other than
timeout, but MUST NOT re-try connecting to a given peer more
than once per second.

=]

. Security Considerations

This document does not inherently create new security issues.
This section describes security risks the applications could
inadvertently create in attempting to support P2P communication
across NAT devices.

8.1. Denial-of-service attacks

P2P applications and the public registry servers that support them
must protect themselves against denial-of-service attacks, and
ensure that they cannot be used by an attacker to mount
denial-of-service attacks against other targets. To protect
themselves, P2P applications and registry servers must avoid taking
any action requiring significant local processing or storage
resources until authenticated two-way communication is established.
To avoid being used as a tool for denial-of-service attacks, P2P
applications and servers must minimize the amount and rate of
traffic they send to any newly-discovered IP address until after
authenticated two-way communication is established with the intended
target.

For example, P2P applications that register with a public rendezvous
server can claim to have any private IP address, or perhaps multiple
IP addresses. A well-connected host or group of hosts that can
collectively attract a substantial volume of P2P connection attempts
(e.g., by offering to serve popular content) could mount a
denial-of-service attack on a target host C simply by including C's
IP address in their own list of IP addresses they register with the
rendezvous server. There is no way the rendezvous server can verify
the IP addresses, since they could well be legitimate private
network addresses useful to other hosts for establishing
network-local communication. The P2P application protocol must
therefore be designed to size- and rate-limit traffic to unverified
IP addresses in order to avoid the potential damage such a
concentration effect could cause.

8.2. Man-in-the-middle attacks

Any network device on the path between a P2P client and a
rendezvous server can mount a variety of man-in-the-middle
attacks by pretending to be a NAT. For example, suppose

host A attempts to register with rendezvous server S, but a
network-snooping attacker is able to observe this registration

Ford, Srisuresh, Kegel [Page 21]

Internet-Draft P2P Application Design Guidelines March 2007

request. The attacker could then flood server S with requests
that are identical to the client's original request except with
a modified source IP address, such as the IP address of the
attacker itself. If the attacker can convince the server to
register the client using the attacker's IP address, then the
attacker can make itself an active component on the path of all
future traffic from the server AND other P2P hosts to the
original client, even if the attacker was originally only able
to snoop the path from the client to the server.

The client cannot protect itself from this attack by
authenticating its source IP address to the rendezvous server,
because in order to be NAT-friendly the application must allow
intervening NATs to change the source address silently. This
appears to be an inherent security weakness of the NAT paradigm.
The only defense against such an attack is for the client to
authenticate and potentially encrypt the actual content of its
communication using appropriate higher-level identities, so that
the interposed attacker is not able to take advantage of its
position. Even if all application-level communication is
authenticated and encrypted, however, this attack could still be
used as a traffic analysis tool for observing who the client is
communicating with.

IANA Considerations

[©

There are no IANA considerations.

10. Normative References

[BEH-ICMP] Srisuresh, P., Ford, B., Sivakumar, S., and Guha, S., "NAT
Behavioral Requirements for ICMP protocol",
draft-ietf-behave-nat-icmp-03.txt (Work In Progress),
March 2007.

[BEH-TCP] Guha, S., Biswas, K., Ford, B., Francis, P., Sivakumar, S.,
and Srisuresh, P., "NAT Behavioral Requirements for
Unicast TCP", draft-ietf-behave-tcp-00.txt (Work In
Progress), February 2006.

[BEH-UDP] F. Audet and C. Jennings, "NAT Behavioral Requirements for
Unicast UDP", REC 4787, January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-icmp-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-behave-tcp-00.txt
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Ford, Srisuresh, Kegel [Page 22]

Internet-Draft P2P Application Design Guidelines March 2007

11. Informative References

[BEH-TOP]

[H.323]

[ICE]

[KEGEL]

[MIDCOM]

[NAT-APPL]

[NAT-PROT]

[NAT-TERM]

[NAT-TRAD]

[NATBLAST]

[NUTSS]

[NATTRAV]

Srisuresh, P., and Ford, B., "Complications from Network
Address Translator Deployment Topologies",
draft-ford-behave-top-02.txt (Work In Progress),

July 2006.

"Packet-based Multimedia Communications Systems", ITU-T
Recommendation H.323, July 2003.

Rosenberg, J. "Interactive Connectivity Establishment (ICE):
A Methodology for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols", draft-ietf-mmusic-ice-09.txt
(work in Progress), June 2006.

Dan Kegel, "NAT and Peer-to-Peer Networking", July 1999.
http://www.alumni.caltech.edu/~dank/peer-nat.html

Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
Rayhan, A., "Middlebox communication architecture and
framework", RFC 3303, August 2002.

Senie, D., "Network Address Translator (NAT)-Friendly
Application Design Guidelines", RFC 3235, January 2002.

Holdrege, M., and Srisuresh, P., "Protocol Complications
with the IP Network Address Translator", RFC 3027,
January 2001.

Srisuresh, P., and Holdrege, M., "IP Network Address
Translator (NAT) Terminology and Considerations", RFC 2663,
August 1999.

Srisuresh, P., and Egevang, K., "Traditional IP Network
Address Translator (Traditional NAT)", REC 3022,
January 2001.

Biggadike, A., Ferullo, D., Wilson, G. and Perrig, A.,
"NATBLASTER: Establishing TCP Connections Between Hosts
Behind NATs", ACM SIGCOMM Asia Workshop, April 2005.

Guha, S., Takeday Y., and Francis, P., "NUTSS: A
SIP-based Approach to UDP and TCP Network Connectivity",
SIGCOMM 2004 Workshops, August 2004.

Eppinger, J.L., "TCP Connections for P2P Apps: A
Software Approach to Solving the NAT Problem", Carnegie

https://datatracker.ietf.org/doc/html/draft-ford-behave-top-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-09.txt
http://www.alumni.caltech.edu/~dank/peer-nat.html
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3027
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc3022

Ford, Srisuresh, Kegel [Page 23]

Internet-Draft P2P Application Design Guidelines March 2007

Mellon Tech Report CMU-ISRI-05-104, January 2005.

[P2PNAT] Ford, B., Srisuresh, P., and Kegel, D., "Peer-to-Peer
Communication Across Network Address Translators", USENIX
Annual Technical Conference, April 2005.

[P2P-STATE] Srisuresh, P., Ford, B., and Kegel, D., "State of Peer-to-
Peer (P2P) communication across Network Address Translators
(NATs)", draft-ietf-behave-p2p-state-02.txt (Work In
Progress), February 2007.

[RFC1122] Braden, R., Editor, "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122, October 1989.

[RFC3330] IANA, "Special-Use IPv4 Addresses'", REC 3330, September
2002.

[RSIP] Borella, M., Lo, J., Grabelsky, D., and Montenegro, G.,
"Realm Specific IP: Framework", RFC 3102, October 2001.

[SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and Schooler,
E. "SIP: Session Initiation Protocol", RFC 3261,

June 2002.

[SOCKS] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
Jones, L., "SOCKS Protocol Version 5", RFC 1928,
March 1996.

[TCP] Postel, J., "Transmission Control Protocol", STD 7,

REC 793, September 1981.

[TEREDO] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
NATs", draft-ietf-ngtrans-shipworm-08.txt (Work In
Progress), September 2002.

[UPNP] UPNP Forum, "Internet Gateway Device (IGD) Standardized
Device Control Protocol V 1.0", November 2001.
http://www.upnp.org/standardizeddcps/igd.asp

[UNSAF] Daigle, L., and IAB, "IAB Considerations for UNilateral
Self-Address Fixing (UNSAF) Across Network Address
Translation", RFEC 3424, November 2002.

Authors' Addresses:

Bryan Ford
Computer Science and Artificial Intelligence Laboratory

https://datatracker.ietf.org/doc/html/draft-ietf-behave-p2p-state-02.txt
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3330
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-shipworm-08.txt
http://www.upnp.org/standardizeddcps/igd.asp
https://datatracker.ietf.org/doc/html/rfc3424

Ford, Srisuresh, Kegel [Page 24]

Internet-Draft P2P Application Design Guidelines March 2007

Massachusetts Institute of Technology
77 Massachusetts Ave.

Cambridge, MA 02139

U.S.A.

Phone: (617) 253-5261

E-mail: baford@mit.edu

Web: http://www.brynosaurus.com/

Pyda Srisuresh

Kazeon Systems, Inc.

1161 San Antonio Rd.
Mountain View, CA 94043
U.S.A.

Phone: (408)836-4773
E-mail: srisuresh@yahoo.com

Dan Kegel

Kegel.com

901 S. Sycamore Ave.

Los Angeles, CA 90036
Phone: (323) 931-6717
E-mail: dank@kegel.com
Web: http://www.kegel.com/

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP_ 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

http://www.brynosaurus.com/
http://www.kegel.com/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Ford, Srisuresh, Kegel [Page 25]

Internet-Draft P2P Application Design Guidelines March 2007

Copyright Statement
Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
IETF Trust.

Ford, Srisuresh, Kegel [Page 26]

https://datatracker.ietf.org/doc/html/bcp78

