
Intended Status: Best Current Practice
BEHAVE WG B. Ford
Internet-Draft M.I.T.
Expires: September 5, 2007 P. Srisuresh
 Kazeon Systems
 D. Kegel
 kegel.com
 March 5, 2007

Application Design Guidelines for Traversal
through Network Address Translators
<draft-ford-behave-app-05.txt>

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 This document defines guidelines by which application designers
 can create applications that communicate reliably and efficiently
 in the presence of Network Address Translators (NATs),
 particularly when the application has a need for "peer-to-peer"
 (P2P) type of communication. The guidelines allow a P2P application
 to work reliably across a majority of existing NATs, as well as all
 future NATs that conform to the behave requirements specified in

Ford, Srisuresh, Kegel [Page 1]

https://datatracker.ietf.org/doc/html/draft-ford-behave-app-05.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft P2P Application Design Guidelines March 2007

 companion documents. The NAT traversal techniques described in
 the document do not require the use of special proxy or relay
 protocols, do not require specific knowledge about the network
 topology or the number and type of NATs in the path, and do not
 require any modifications to IP or transport-layer protocols
 on the end hosts.

Table of Contents

 1. Introduction and Scope..
 2. Terminology and Conventions Used
 3. BEHAVE-compliant versus Legacy NATs
 4. General NAT Traversal Concepts
 4.1. NAT Functions Influencing Traversal Logic
 4.2. Communication Between Peers Behind Distinct NATs
 4.3. Short-Circuiting Sessions on Private Networks
 4.4. Authenticating Peer-to-Peer Connections
 4.5. NAT Behavior Detection
 5. NAT Traversal for UDP ..
 5.1. UDP Idle Timeouts
 6. NAT Traversal for TCP ..
 6.1. Ensuring Robustness
 7. Summary of Requirements
 8. Security Considerations
 8.1. Denial-of-service attacks
 8.2. Man-in-the-middle attacks
 9. IANA Considerations ..
 10. Normative references ...
 11. Informative references

1. Introduction and Scope

 The present-day Internet has seen ubiquitous deployment of Network
 Address Translators (NATs), driven by a variety of practical
 challenges such as privacy and the ongoing depletion of the IPv4
 address space. The asymmetric addressing and connectivity regimes
 established by NATs, however, cause problems for many applications
 such as teleconferencing ([SIP], [H.323]) and multiplayer on-line
 gaming systems. Such application protocols require "peer-to-peer"
 communication directly between arbitrary hosts, and not just
 traditional "client/server" communication between a "client" host
 and a "well-known" server with a global IP address and DNS name.

RFC 3235 [NAT-APPL] already proposes NAT friendly design guidelines
 for applications, but merely recommends against using peer-to-peer
 communication and does not provide a workable solution to this
 problem. This document acts as an adjunct to [NAT-APPL], with
 focus on Peer-to-peer application design guidelines. The guidelines

https://datatracker.ietf.org/doc/html/rfc3235

Ford, Srisuresh, Kegel [Page 2]

Internet-Draft P2P Application Design Guidelines March 2007

 in the document apply to Traditional NATs as described in RFC 2663
 [NAT-TERM]. As such, the term NAT used throughput the document
 refers to Traditional NAT.

 Given the increasing demand for applications that require P2P
 communication, in conjunction with the ubiquity of NATs, applications
 are increasingly implementing and deploying various workarounds to
 this problem. Most of the workarounds take the form of a NAT
 traversal or "hole punching" algorithm, by which two "peers" lying
 behind one or more NATs cooperate with a well-known "rendezvous
 server" to set up a direct peer-to-peer communication path between
 them. As pointed out in [UNSAF], application endpoints are fixed
 uniquely in the public realm with the aid of the rendezvous server.
 The rendezvous server is crucial to the initial path setup but
 does not take part in the subsequent peer-to-peer data stream.

 There are many different NAT traversal algorithms already in use and
 currently being explored. However, due to the lack of standardization
 for NAT behavior up to this point, none of these algorithms can be
 guaranteed to work reliably over all currently deployed NATs.
 Further, without standardization of NAT traversal algorithms there
 is a strong danger that the proliferation of traversal algorithms
 may further compound the reliability and predictability problems
 that NAT created in the first place.

 This document focuses exclusively on NAT traversal techniques that do
 not require the application to communicate explicitly with the NATs
 in the path. Protocols that allow applications to obtain external
 communication endpoints through explicit interaction with NATs in the
 path are outside the scope of this document. Several such protocols
 exist and are documented elsewhere ([SOCKS], [RSIP], [MIDCOM],
 [UPNP]), but so far none of these protocols have become widely
 accepted.

 This document defines a set of best current practices for
 implementing NAT traversal in applications. The specific
 recommendations are described at length in the sections 2 through
 5 and later summarized concisely in Section 6.

2. Terminology and Conventions Used

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, the IP addresses 192.0.2.1, 192.0.2.128, and
 192.0.2.254 are used as example IP addresses [RFC3330]. Although

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3330

Ford, Srisuresh, Kegel [Page 3]

Internet-Draft P2P Application Design Guidelines March 2007

 these addresses are all from the same /24 network, this is a
 limitation of the example addresses available in [RFC3330]. In
 practice, these addresses would be on different networks

3. BEHAVE-compliant versus Legacy NATs

 BEHAVE-compliant NATs are those NAT devices that conform to the
 behavioral requirements set out in [BEH-TCP], [BEH-UDP],
 [BEH-ICMP], and other protocol specific behave document(s) in the
 future which define requirements for NATs when handling protocol
 specific traffic.

 The NAT traversal techniques described in this document are known
 to work in practice with a variety of existing NATs in the most
 common interconnection scenarios.

 To be considered "BEHAVE-compliant", an application MUST be
 designed to operate reliably when all NATs in its communication
 paths are BEHAVE-compliant. It is also RECOMMENDED that new
 applications assume that all NATs in the application path are
 BEHAVE-compliant, since non-BEHAVE-compliant NATs are expected to
 be deprecated quickly. Adding complexity to applications for the
 purpose of handling legacy NATs risks introducing additional
 unpredictability into the network.

 This document does not specifically prohibit applications from
 implementing more elaborate NAT traversal algorithms that may
 function over a wider variety of non-BEHAVE-compliant, "legacy"
 NATs. Some known techniques for operating over such poorly-behaved
 NATs are outlined briefly in [P2P-STATE], and are described more
 thoroughly in [NUTSS], [P2PNAT], [NATBLAST], and [NATTRAV].
 Applications implementing fancier protocols such as these, however,
 must ensure that their traversal algorithms operate just as
 efficiently as the ones specified here over BEHAVE-compliant NATs,
 and do not create new security vulnerabilities or unnecessarily
 burden network components in the path.

 REQ-1 Applications MUST be designed to operate reliably over BEHAVE-
 compliant NATs. New applications are RECOMMENDED to assume
 that all NATs in the path are BEHAVE-compliant.

4. General NAT Traversal Concepts

 This section describes requirements and techniques for NAT traversal
 that are independent of transport protocol; subsequent sections will
 specifically address NAT traversal for the UDP and TCP transport
 protocols. For more detailed background information on current

https://datatracker.ietf.org/doc/html/rfc3330

Ford, Srisuresh, Kegel [Page 4]

Internet-Draft P2P Application Design Guidelines March 2007

 practices in use by existing applications, please refer to the
 companion document [P2P-STATE].

4.1. NAT Functions Influencing Traversal Logic

 Traditional NATs ([NAT-TRAD]) are the most commonly deployed NATs.
 These NATs integrate two logical functions, each of which interferes
 with peer-to-peer communication in a different way and thus requires
 NAT traversal support in applications.

 Address Translation:

 A NAT modifies the IP-level and often the transport-level header
 information in packets flowing across the boundary, in order to
 enable many "private" hosts behind the NAT to share the use of a
 smaller number of public IP addresses (often just one). Hosts
 behind the NAT usually have no unique, permanently usable address
 on the public Internet, and can only communicate through
 temporary public endpoints that the NAT assigns them dynamically
 as a result of communication attempts initiated by hosts on the
 private network.

 When two hosts reside on two different private networks behind
 distinct NATs, neither of them has a permanent address that the
 other can reach at any time, so in order to establish peer-to-peer
 connections the hosts must rely on the temporary public endpoints
 their NATs assign them as a result of prior outgoing
 client/server style communication sessions. Discovering,
 exchanging, and using these temporary public endpoints generally
 requires that the two hosts first collaborate through a well-known
 server on the public Internet that both hosts can reach, as
 described below.

 Filtering of Unsolicited Traffic:

 The filtering function in a Traditional NAT device restricts
 communication between a private internal network and the public
 Internet by dropping incoming sessions that are deemed
 "unsolicited". All packets arriving from the public Internet
 are dropped unless they are part of an existing communication
 session that was previously initiated by a host on the private
 network.

 When two hosts reside on two different private networks behind
 distinct NATs, an attempt by either host to initiate a peer-to-
 peer connection to the other will usually fail, even if the
 connection attempt is directed to the correct temporary public
 endpoint assigned by the opposite host's NAT, because the opposite

Ford, Srisuresh, Kegel [Page 5]

Internet-Draft P2P Application Design Guidelines March 2007

 host's NATs will interpret this attempt as unsolicited incoming
 traffic and reject it. NAT traversal in this case requires the
 two hosts to cooperate, typically by communicating initially
 through a well-known server on the public Internet that they can
 both reach, so as to make their peer-to-peer connection appear to
 each host's NAT as if it was initiated from within that host's own
 private network.

 The cooperation of two hosts to create a peer-to-peer connection
 across NATs does not constitute a violation of the filtering policy
 imposed by the NAT. Network firewall functionality in general is
 outside the scope of this document, and this document does not
 condone any attempts by application developers to subvert security
 policies that may be imposed by NATs or firewalls.

4.2. Communication Between Peers Behind Distinct NATs

 Although the details of NAT traversal vary from one transport
 protocol to another depending on how NATs recognize and handle
 sessions for that transport, the basic approach to NAT traversal is
 transport-independent. We merely assume for now that each transport
 uses session endpoints consisting of an (IP address, port number)
 pair to identify and differentiate communication sessions, and that
 each communication session is uniquely identified by its two
 endpoints. We focus here specifically on the one NAT traversal
 algorithm recommended here for new applications.

 Suppose client hosts A and B both have private IP addresses and lie
 behind different NATs, as shown below.

 Server S
 192.0.2.128:1234
 |
 +----------------------------+----------------------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:1234 | | 192.0.2.128:1234 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31000 | | 192.0.2.1:62000 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 +------------------+ +------------------+
 | 192.0.2.1 | | 192.0.2.254 |
 | | | |
 | BEHAVE-compliant | | BEHAVE-compliant |
 | NAT A | | NAT B |

Ford, Srisuresh, Kegel [Page 6]

Internet-Draft P2P Application Design Guidelines March 2007

 +------------------+ +------------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:1234 | | 192.0.2.128:1234 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31000 | | 192.0.2.1:62000 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 1: Simultaneous outgoing sessions to accomplish direct-P2P

 A peer-to-peer application running on clients A and B, and also on a
 well-known rendezvous server S, each use port number 1234 at their
 own IP address to form their primary local communication endpoint. A
 and B have each initiated communication sessions from their local
 endpoint server S's endpoint. As a result of A's outgoing connection
 attempt to S, NAT A has dynamically assigned port 62000 at its own
 public IP address, 192.0.2.1, to A's session with S, so that S
 sees this session as having been initiated from the endpoint
 192.0.2.1:62000, rather than from A's original private endpoint of
 10.0.0.1:1234. Similarly, B's outgoing connection to S causes NAT B
 to assign port 31000 at its own IP address to B's session with S,
 thus forming B's public endpoint of 192.0.2.254:31000.

 Now suppose that host A wants to establish a communication session
 directly with host B. If A just naively initiates a new
 communication session to the endpoint B believes itself to be using,
 namely 10.1.1.3:1234, then A's connection attempt will either reach
 the wrong host - a different host on A's own private network that
 happens to have the private IP address 10.1.1.3 - or it will reach no
 host at all, because B's private IP address 10.1.1.3 is not routable
 over the Internet.

 Even if A learns B's temporary public endpoint, 192.0.2.254:31000,
 from server S, and attempts to initiate a communication session to
 that destination endpoint, NAT B may reject this attempt because
 the IP packet's source and destination endpoints do not match
 those of an existing session previously initiated from within the
 private network. The destination endpoint of A's connection attempt
 to B matches the source endpoint of B's existing session with S,
 but the source endpoint of A's connection attempt is of course
 different. Similarly, if B makes a unilateral connection attempt
 to A's public endpoint, NAT A may similarly reject B's attempt.

Ford, Srisuresh, Kegel [Page 7]

Internet-Draft P2P Application Design Guidelines March 2007

 As it turns out, this difficulty could arise even if NAT-A and
 NAT-B are replaced by firewalls with the standard filtering
 policy of rejecting unsolicited incoming communication attempts.

 In order to operate reliably across NATs and firewalls that reject
 unsolicited incoming communication, the client hosts A and B
 collaborate with an external server S to learn each other's public
 AND private endpoints, and then each of the two client hosts
 initiate "approximately simultaneous" connection attempts from their
 existing primary local endpoints (the same local endpoints they used
 previously for the connection to S), and directed at all of the known
 endpoints (public and private) for the other host. In the scenario
 illustrated above, A's connection attempt to B's public endpoint is
 interpreted by NAT A as a legitimate, outgoing session whose private
 source endpoint (10.0.0.1:1234) is the same as that of A's existing
 session with S, but whose public destination endpoint
 (192.0.2.254:31000) is different. If NAT A is BEHAVE-compliant, it
 will translate A's private source endpoint for this new session in
 the same way that it did for A's existing session with S, so that the
 new session appears on the public Internet to be a session between
 A's public endpoint, 192.0.2.1:62000, and B's public endpoint,
 192.0.2.254:31000.

 In similar fashion, B's "approximately simultaneous" connection
 attempt from its private endpoint, 10.1.1.3:1234, to A's public
 endpoint, 192.0.2.1:62000, results in NAT B opening a new
 translation session that reuses the existing public endpoint for B,
 192.0.2.254:31000, which NAT B previously assigned to B's session
 with S. NAT B is now set up to allow communication between A's
 public endpoint and B's private endpoint, and on the public Internet
 this session has the endpoints 192.0.2.1:62000 and
 192.0.2.254:31000, the same as the endpoints of the session that A
 initiated above toward B's public endpoint. Both NATs are thus set
 up to permit communication between these two public endpoints,
 translating and forwarding the traffic comprising this session to the
 respective client hosts on the private networks as appropriate.

 Applications wishing to establish peer-to-peer communication MUST
 support NAT traversal using the "approximate simultaneous"
 connection technique. The traversal technique relies on certain
 aspects of NAT behavior described fully in the companion documents
 [BEH-TCP], [BEH-UDP], and [BEH-ICMP]. The technique also relies on
 the transport protocol allowing a connection to be initiated
 actively by two endpoints, rather than asymmetrically in traditional
 client/server fashion. Fortunately both of the two ubiquitous
 transports, TCP and UDP, allow symmetric connection initiation in
 this way.

Ford, Srisuresh, Kegel [Page 8]

Internet-Draft P2P Application Design Guidelines March 2007

 REQ-2 Applications wishing to establish peer-to-peer communication
 MUST support NAT traversal using the "approximate
 simultaneous" connection technique and using the help of a
 "rendezvous server" in the public network.

4.3. Short-Circuiting Sessions on Private Networks

 Although the network topology illustrated in figure 1 is typical
 of the situation seen by P2P applications, it is by no means
 the only possible scenario. Only one of the client hosts may be
 behind, or one or more of the clients may be located behind two or
 more levels of NATs, any number of which may be shared between the
 two clients. The general NAT traversal algorithm described above
 will work reliably in all of the common topological scenarios
 provided that the NATs involved are BEHAVE-compliant. One other
 particularly common scenario is worth special consideration however.
 In the situation illustrated below the two clients (probably
 unknowingly) happen to reside behind the same NAT, and are therefore
 located in the same private IP address space.

Ford, Srisuresh, Kegel [Page 9]

Internet-Draft P2P Application Design Guidelines March 2007

 Server S
 192.0.2.128:1234
 |
 ^ Registry Session(A-S) ^ | ^ Registry Session(B-S) ^
 | 192.0.2.128:1234 | | | 192.0.2.128:1234 |
 | 192.0.2.1:62000 | | | 192.0.2.1:62001 |
 |
 +------------------+
 | 192.0.2.1 |
 | |
 | Behave-Compliant |
 | NAT |
 +------------------+
 |
 +-----------------------------+----------------------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:1234 | | 192.0.2.128:1234 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session-try1(A-B) ^ ^ P2P Session-try1 (B-A)^ |
 | | 10.1.1.3:1234 | | 10.0.0.1:1234 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session-try2(A-B) ^ ^ P2P Session-try2(B-A)^ |
 | | 192.0.2.1:62001 | | 192.0.2.1:62000 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 2: Register private identity & NAT identity with Relay server

 In this scenario, client A has established a session with well-known
 server S as before, to which the common NAT has assigned public port
 number 62000. Client B has similarly established a session with S,
 to which the NAT has assigned public port number 62001. Suppose that
 A and B use the NAT traversal technique outlined above to establish a
 communication channel using server S as an introducer. If A and B
 only attempt simultaneous connections to each other's public
 endpoints, 192.0.2.1:62001 and 192.0.2.1:62000 respectively,
 then their connection attempts will succeed only if the NAT supports
 hairpin translation, as described in [P2P-STATE] and [BEH-TOP].
 Although hairpin translation is required for a NAT to be
 considered fully BEHAVE-compliant, this feature is not yet widely
 supported by commonly deployed NATs at the time of this writing.

Ford, Srisuresh, Kegel [Page 10]

Internet-Draft P2P Application Design Guidelines March 2007

 Additionally, the resulting connection between A and B will be
 sub-optimal in this case because all traffic will unnecessarily
 pass through and be translated by the NAT, whereas the two
 endpoint hosts are perfectly capable of communicating directly on
 their common IP network without the NAT intervention.

 To address this problem, P2P applications MUST exchange their local
 endpoints as known to themselves, in addition to the global
 endpoints they register with the rendezvous server. In case an
 application host has multiple IP addresses or is registered with
 multiple rendezvous servers, the P2P application SHOULD exchange
 all pertinent endpoints with its peers.

 Further, P2P applications MUST be prepared to make "approximately
 simultaneous" connection attempts to all exchanged endpoints,
 including the private endpoints and the public endpoints of the
 desired peer. By doing this, a P2P application is able to use
 whichever connection succeeds first in establishing bi-directional
 communication between the correct peers. If the two end hosts
 happen to be located in the same private network, their connection
 attempt using each others' private endpoints is likely to succeed
 first because it follows a shorter network path not involving the
 NAT. If the NAT does not support hairpin translation, the
 connection attempts using the hosts' private endpoints will be the
 only one to succeed.

 REQ-3 Applications implementing NAT traversal MUST exchange their
 local endpoints as known to themselves, in addition to the
 global endpoints they register with the rendezvous server.
 In case an application host has multiple IP addresses or
 is registered with multiple rendezvous servers, the P2P
 application SHOULD exchange all pertinent endpoints with
 its peers. Further, peering applications MUST be prepared to
 make "approximately simultaneous" connection attempts to all
 exchanged endpoints of the desired peer.

4.4. Authenticating Peer-to-Peer Connections

 It is extremely important not only for security but also for general
 robustness that applications implementing a NAT traversal protocol
 authenticate any peer-to-peer connections they establish, using some
 higher-level application-specific notion of host or user identity.
 To operate reliably and securely, applications must consider any IP
 addresses and port numbers they use for communication with other
 hosts to be merely "locators" for hosts, serving as hints indicating
 how the desired host might be reached, and not as a reliable
 "identifier" for the target host or user.

Ford, Srisuresh, Kegel [Page 11]

Internet-Draft P2P Application Design Guidelines March 2007

 In particular, applications must not merely assume that the first
 communication attempt that establishes transport-level connectivity
 and elicits a response from a particular target endpoint (IP address
 and port number) necessarily represents a connection to the desired
 host. Consider the following topological scenario, for example,
 which is in fact extremely common in today's Internet.

 Server S
 192.0.2.128:1234
 |
 +----------------------------+----------------------------+
 | |
 | |
 +------------------+ +------------------+
 | 192.0.2.1 | | 192.0.2.254 |
 | | | |
 | BEHAVE-compliant | | BEHAVE-compliant |
 | NAT A | | NAT B |
 +------------------+ +------------------+
 | |
 -------+----+-----------+ |
 | | |
 Client X Client A Client B
 10.1.1.10:1234 10.0.0.11:1234 10.1.1.10:1234

 Figure 3: Clients behind different NATs can bear same local endpoint

 In this scenario, suppose that NAT A and NAT B are both "off-the-
 shelf" consumer NAT routers from the same vendor, which the vendor
 has configured by default to act as DHCP servers that hand out
 private IP addresses starting at 10.1.1.10. (Most users of such
 devices know little or nothing about IP addresses, and therefore are
 very unlikely to reconfigure their NATs any more than is necessary to
 get them to connect to the Internet.) As before, Client A wishes to
 establish a peer-to-peer connection with Client B with the help of
 Server S. Client A happened to receive private IP address 10.1.1.11
 on NAT A's private network, after Client X had already been assigned
 private IP address 10.1.1.10. Client B happens to be the only host
 on NAT B's private network, and thus received the first available
 private IP address, 10.1.1.10. Client X happens to be running the
 same P2P application as is running on clients A and B, and thus has
 port 1234 allocated and ready to initiate and accept peer-to-peer
 connections.

 Suppose Client A follows the NAT traversal approach described above
 to establish a peer-to-peer session with Client B. As per the
 suggested protocol, A and B each make approximately simultaneous

Ford, Srisuresh, Kegel [Page 12]

Internet-Draft P2P Application Design Guidelines March 2007

 connection attempts both to each other's public and private
 endpoints. B's connection attempt to A's private endpoint,
 10.1.1.11:1234, will of course fail because there is no host
 10.1.1.11 on NAT B's private network and that IP address is not
 globally routable. A's connection attempt to B's public endpoint and
 B's connection attempt to A's public endpoint will eventually succeed
 in establishing the desired peer-to-peer connection if the two NATs
 are BEHAVE-compliant. However, A's connection attempt to B's private
 endpoint, 10.1.1.10:1234, will succeed at the transport layer but
 connect to the wrong host: namely client X, the host on NAT A's
 private network that happens to have the same private IP address as B
 does on NAT B's network. Furthermore, this bogus connection to
 client X is likely to succeed much more quickly than the actually
 desired connection to client B, because X is on the same private
 network as A. If the application running on client A does not
 properly authenticate its peer-to-peer connections using some higher-
 level notion of identity that is independent of IP address, then
 client A is likely to assume that its transport-level connection to X
 is the desired peer-to-peer connection, cancel its attempt to connect
 to B's public endpoint, and subsequently become very confused when
 the peer it connected to fails to behave like client B.

 Given the prevalence of NAT routers that are pre-configured by their
 vendors to hand out private IP addresses via DHCP in more-or-less
 deterministic fashion from a standard private IP address block,
 different hosts on different private networks are very likely to have
 the same private IP addresses, making the above scenario extremely
 likely for P2P applications to encounter. P2P applications therefore
 MUST authenticate their transport-layer connections using a
 higher level application-specific notion of identity, before
 concluding they have successfully connected to the desired host.
 Strong cryptographic authentication using standard algorithms is of
 course preferred.

 REQ-4 P2P applications MUST authenticate their transport-layer
 connections using a higher level application-specific notion
 of identity, before concluding they have successfully
 connected to the desired host.

4.5. NAT Behavior Detection

 In many existing NAT traversal protocols for both TCP and UDP, each
 client attempts to determine experimentally certain properties of any
 NATs it is located behind before attempting to establish peer-to-peer
 connections with other clients. For example, even when a NAT does
 not re-use the same public endpoint for all sessions involving a
 given private endpoint as required for BEHAVE compliance, it is
 sometimes possible to predict which port the NAT will assign to a

Ford, Srisuresh, Kegel [Page 13]

Internet-Draft P2P Application Design Guidelines March 2007

 new session.

 Extensive testing of various existing NATs, however, has revealed
 that there is no truly robust way a client can predict how a legacy
 NAT will behave in the future based on such experimental tests. Some
 legacy NATs behave differently depending on the local port number the
 application is using on the client, and can even switch behaviors
 dynamically depending on unpredictable timing and network conditions.
 Therefore, applications SHOULD NOT attempt to predict the future
 behavior of NATs in the path through empirical tests. If they do use
 such experimental tests in an attempt to make peer-to-peer
 connections work across a wider variety of legacy NATs, they MUST
 ensure that such methods do not delay or otherwise impede the
 the performance or reliability of the application over
 BEHAVE-compliant NATs.

 REQ-5 Applications SHOULD NOT attempt to predict the future behavior
 of NATs in the path through empirical tests. If they do,
 applications MUST ensure that any such tests do not delay or
 otherwise impede the performance or reliability of NAT
 traversal over BEHAVE-compliant NATs.

5. NAT Traversal for UDP

 NAT traversal for UDP, also commonly known as UDP "hole punching",
 was mentioned briefly in section 5.1 of RFC 3027 [NAT-PROT], and
 first publicly documented informally on the Internet [KEGEL].
 Because of UDP's simplicity and its connectionless nature, NAT
 traversal for UDP is somewhat simpler, more widely understood, and
 hence more universally supported by NATs and applications than is NAT
 traversal for TCP, though the principles are the same for both
 transports. NAT traversal for UDP has been used in several recent
 experimental Internet protocols [TEREDO], [ICE] along with various
 proprietary or non-standardized protocols. The NAT traversal
 approach recommended in this document is also described informally in
 [P2PNAT], and other variations of hole punching are explored more
 thoroughly in other recent research papers [NUTSS], [NATBLAST],
 and [NATTRAV].

 To set up a peer-to-peer UDP session between two clients A and B, we
 assume that the clients have each bound to a particular primary local
 UDP port, and that the clients have each initiated a UDP session from
 this primary local port to a well-known rendezvous server S, as
 described earlier. Each client then learns the other's public and
 private UDP endpoints from the server S, and simply begins sending
 UDP datagrams, from their respective primary local ports (the same
 ports they used to contact S), to all of the other client's known
 endpoints. If one or both of the clients is behind a BEHAVE-

https://datatracker.ietf.org/doc/html/rfc3027#section-5.1

Ford, Srisuresh, Kegel [Page 14]

Internet-Draft P2P Application Design Guidelines March 2007

 compliant NAT, the outgoing datagrams from each client will "open a
 hole" through a firewall or establish a translation session
 through the NAT, causing the NAT to forward subsequent incoming
 datagrams from the opposite client as desired.

5.1. UDP Idle Timeouts

 Because of its inherently connectionless nature, NATs have no fully
 reliable way to determine when a UDP communication session crossing
 the NAT has terminated, other than simply by assuming the session is
 over if it observes a sufficiently long idle period. Applications
 whose UDP communication sessions may experience long idle periods
 must therefore account for this idle timeout.

 As specified in [BEH-UDP], any BEHAVE-compliant NAT is required to
 have an idle timeout of at least two minutes, but idle timeouts as
 small as 30 seconds have been observed in existing NATs.
 Additionally, BEHAVE-compliant NATs are only required to reset the
 idle timer on the observance of outgoing traffic leaving the private
 network; the NAT may ignore incoming traffic for this purpose, in
 order to prevent external hosts from being able to hold UDP sessions
 open unilaterally and thus consume NAT resources indefinitely.
 BEHAVE-compliant NATs are required to support Address and Port
 Dependent filtering Behavior, which essentially resets the idle
 timer for each session whenever outbound traffic is seen for that
 session. A NAT's UDP idle timeouts affects P2P applications
 implementing NAT traversal in two main ways:

 Rendezvous Server Registration Sessions:

 Client hosts implementing UDP hole punching typically register
 with one or more well-known rendezvous servers, S in the above
 scenarios, and expect to be notified by S when a second client
 wishes to open a peer-to-peer connection to the first. However,
 if a NAT's UDP idle timer times out while the first client is
 waiting for incoming connections, then the client will not
 receive the notification from S of the second client's desire
 to connect. The client therefore SHOULD send periodic outbound
 "keep-alive" packets to the rendezvous server(s) in order to
 ensure that the registration session remains open while the
 application is active. If a UDP application maintains active
 registration sessions with more than one well-known rendezvous
 server simultaneously, then the application SHOULD send outbound
 keep-alive packets periodically to each of the rendezvous
 servers it is registered with. The periodicity is at least once
 within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].

 If a UDP application merely desires to be compatible with BEHAVE-

Ford, Srisuresh, Kegel [Page 15]

Internet-Draft P2P Application Design Guidelines March 2007

 compliant NATs, then its outbound keep-alive packets need not
 elicit a response from the server unless the application is
 concerned about detecting if the server disappears.

 REQ-6 Applications wishing to accept connections from other peers
 after registering via UDP with one or more rendezvous servers
 SHOULD send periodic outgoing UDP "keep-alive" packets to
 each of the rendezvous servers, at least once within the
 BEHAVE-compliant NAT UDP timeout [BEH-UDP] in order to ensure
 that the registration session remains open while the
 application is active.

 Peer-to-Peer Sessions:

 Once two client hosts have used a rendezvous server to set up a
 peer-to-peer UDP communication session between them, this peer-to-
 peer session is similarly vulnerable to being closed by any of the
 NATs along the path if it goes idle for too long.

 If an application has only a few peer-to-peer sessions active at
 once, then the application SHOULD use keep-alives for each of the
 active peering sessions to keep the sessions open. If an
 application has many idle peer-to-peer sessions at once, then
 the application SHOUL NOT use keep-alives on peer-to-peer sessions
 so the network is not flooded with keep-alives. Instead, the
 application SHOULD be prepared to re-establish peer-to-peer
 sessions as needed after an idle period, by simply re-running the
 NAT traversal protocol via the original rendezvous server.

 REQ-7 An Application SHOULD use the following guidelines with regard
 to its UDP peer-to-peer sessions.
 a) If the application has only a small number of peer-to-peer
 sessions active at once, then send periodic outgoing UDP
 "keep-alive" packets to each active peer at least once
 within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].
 b) If the application has many peer-to-peer sessions active
 at once, then do not send periodic "keep-alive" packets to
 peers so the network is not flooded with keep-alives.
 c) If the application has a peer-to-peer UDP session that may
 go idle for more than the BEHAVE-compliant NAT UDP timeout at
 a time without a keep-alive, and the session connectivity is
 detected to have been lost, then be prepared to re-run the
 original NAT traversal protocol to re-establish the
 peer-to-peer session.

6. NAT Traversal for TCP

 NAT traversal for TCP, or "TCP hole punching," is not yet as well-

Ford, Srisuresh, Kegel [Page 16]

Internet-Draft P2P Application Design Guidelines March 2007

 understood or widely supported as is UDP hole punching.
 Nevertheless, the general technique described in section 2 above
 works for TCP as well as UDP, as long as all NATs in the path are
 well-behaved. The recommended NAT traversal algorithm for TCP,
 described here, makes use of the symmetric TCP connection initiation
 feature of TCP as specified in RFC 793 [TCP] and RFC 1122 [RFC1122].
 This algorithm is guaranteed to work reliably as long as all NATs in
 the path are BEHAVE-compliant [BEH-TCP], and as long as the end-hosts
 correctly implement the TCP protocol.

 Other more complex TCP hole punching algorithms have been developed
 and explored elsewhere in [NUTSS], [NATBLAST], and [NATTRAV].
 These algorithms use various tricks to work around the nonstandard
 behaviors of many existing NATs, and/or to work around bugs in the
 TCP implementations of certain existing operating systems.
 Applications MAY implement more complex algorithms such as these
 in order to achieve broader compatibility with existing NATs and
 hosts, but applications MUST ensure that any such alternative
 algorithm still works reliably and efficiently over
 BEHAVE-compliant NATs without substantially burdening the network
 and any NATs on the path.

 To prepare for TCP NAT traversal, a P2P client application first
 binds to an arbitrary local port, which becomes the application's
 primary local port. The Application SHOULD use the port to
 simultaneously listen for incoming peer-to-peer connections and to
 initiate outgoing connections to rendezvous servers and other peers.
 Because standard sockets APIs usually associate TCP sockets with
 individual TCP sessions rather than with a local port as with UDP,
 the application must typically open multiple TCP sockets - one
 listen socket and one or more connect-sockets - and explicitly bind
 them to the same local port, using a special socket option usually
 named SO_REUSEADDR or SO_REUSEPORT.

 Once a TCP application has bound to its primary local port, started
 listening on it, and opened connections to one or more rendezvous
 servers, the application SHOULD use "approximately simultaneous"
 connection technique to initiate outgoing connections or to accept
 incoming connections. Each peer SHOULD use the "approximate
 simultaneous" connection technique to connect to all of the known
 endpoints (including original and translated) of its peer. For
 example, say two clients, A and B, wish to establish a peer-to-peer
 connection with the help of a common rendezvous server S. They first
 exchange their public and private TCP endpoints through S as
 described in section 2. Each client then simultaneously attempts
 to initiate outgoing TCP connections from its primary local port to
 each of the opposite client's known TCP endpoints (public and
 private). As long as all NATs in the path are well-behaved, each

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Ford, Srisuresh, Kegel [Page 17]

Internet-Draft P2P Application Design Guidelines March 2007

 client's outgoing TCP connection attempt will open firewall and/or
 translation sessions through any NATs it is located behind,
 eventually resulting in a working bi-directional TCP connection
 through all intervening NATs on the path, in the same way as for UDP.

 Because of timing dependencies and differences in TCP
 implementations, applications may observe slightly different (but
 functionally equivalent) results when a P2P connection is
 successfully established using this method. If client B is not
 actually located behind a firewall or NAT, for example, and client
 A's first attempt to connect directly to B reaches B before its peer-
 to-peer connection request relayed through S reaches B, then B will
 accept A's connection via its outstanding listen socket, in
 traditional client/server fashion. Even if A's connection request
 (SYN packet) to B crosses B's corresponding request to A, resulting
 in a TCP simultaneous open at the protocol level, some end-host
 operating systems may still "deliver" the resulting connection to the
 application via the application's outstanding listen socket for its
 primary local port, rather than via the socket by which the
 application explicitly initiated a connection to the opposite client.
 The application must be prepared to handle all such possible cases
 gracefully.

 Applications MAY alternatively establish peer-to-peer TCP
 connections via other, asymmetric methods if one or both endpoint
 hosts do not correctly support simultaneous TCP open.

 REQ-8 Applications implementing peer-to-peer communication via
 TCP SHOULD simultaneously listen for incoming peer-to-peer
 connections and open connections to rendezvous servers and
 other peers from the same endpoint.

 REQ-9 Applications SHOULD establish peer-to-peer TCP connections by
 making "approximately simultaneous" connection attempts from
 each peer to all of the known endpoints (including original
 and translated) for its peer.
 Applications MAY alternatively establish peer-to-peer TCP
 connections via other, asymmetric methods if one or both
 endpoint hosts do not correctly support simultaneous TCP open.

6.1. Ensuring Robustness

 Some existing NATs actively reject an apparently-unsolicited incoming
 TCP connection by sending back TCP RST or ICMP error packets to the
 connection initiator, rather than simply dropping the incoming SYN.
 This behavior can cause one of the clients to observe bogus
 timing-dependent connection failures. While this NAT behavior is

Ford, Srisuresh, Kegel [Page 18]

Internet-Draft P2P Application Design Guidelines March 2007

 deprecated and not allowed for BEHAVE-compliant NATs, P2P
 applications can easily make themselves robust against this
 behavior. If a client's attempt to initiate a peer-to-peer
 connection fails with a "Connection Refused" or "Network Unreachable"
 or similar network-related error before some application-defined
 peer-to-peer connection timeout has expired, the application SHOULD
 simply retry the same outgoing connection attempt. However, the
 application MUST NOT retry more frequently than once per second.
 Doing so avoids accidental flooding of the network with SYNs if
 the cause of the error is close to the client and is thus reported
 very quickly after each attempt.

 REQ-10 Applications SHOULD re-try peer-to-peer TCP connection
 attempts that fail due to network conditions other than
 timeout, but MUST NOT re-try connecting to a given peer
 more than once per second.

7. Summary of Requirements

 An application that supports all of the mandatory requirements of
 this specification (the "MUST" requirements), is "compliant with
 this specification" or "BEHAVE-compliant". An application that
 supports all of the mandatory and optional recommendations of this
 specification (including the "SHOULD" or "RECOMMENDED" ones) is
 "fully compliant with all the mandatory and recommended
 requirements of this specification."

 REQ-1 Applications MUST be designed to operate reliably over BEHAVE-
 compliant NATs. New applications are RECOMMENDED to assume
 that all NATs in the path are BEHAVE-compliant.

 REQ-2 Applications wishing to establish peer-to-peer communication
 MUST support NAT traversal using the "approximate
 simultaneous" connection technique and using the help of a
 "rendezvous server" in the public network.

 REQ-3 Applications implementing NAT traversal MUST exchange their
 local endpoints as known to themselves, in addition to the
 global endpoints they register with the rendezvous server.
 In case an application host has multiple IP addresses or
 is registered with multiple rendezvous servers, the P2P
 application SHOULD exchange all pertinent endpoints with
 its peers. Further, peering applications MUST be prepared to
 make "approximately simultaneous" connection attempts to all
 exchanged endpoints of the desired peer.

 REQ-4 P2P applications MUST authenticate their transport-layer

Ford, Srisuresh, Kegel [Page 19]

Internet-Draft P2P Application Design Guidelines March 2007

 connections using a higher level application-specific notion
 of identity, before concluding they have successfully
 connected to the desired host.

 REQ-5 Applications SHOULD NOT attempt to predict the future behavior
 of NATs in the path through empirical tests. If they do,
 applications MUST ensure that any such tests do not delay or
 otherwise impede the performance or reliability of NAT
 traversal over BEHAVE-compliant NATs.

 REQ-6 Applications wishing to accept connections from other peers
 after registering via UDP with one or more rendezvous servers
 SHOULD send periodic outgoing UDP "keep-alive" packets to
 each of the rendezvous servers, at least once within the
 BEHAVE-compliant NAT UDP timeout [BEH-UDP] in order to ensure
 that the registration session remains open while the
 application is active.

 REQ-7 An Application SHOULD use the following guidelines with regard
 to its UDP peer-to-peer sessions.
 a) If the application has only a small number of peer-to-peer
 sessions active at once, then send periodic outgoing UDP
 "keep-alive" packets to each active peer at least once
 within the BEHAVE-compliant NAT UDP timeout [BEH-UDP].
 b) If the application has many peer-to-peer sessions active
 at once, then do not send periodic "keep-alive" packets to
 peers so the network is not flooded with keep-alives.
 c) If the application has a peer-to-peer UDP session that may
 go idle for more than the BEHAVE-compliant NAT UDP timeout at
 a time without a keep-alive, and the session connectivity is
 detected to have been lost, then be prepared to re-run the
 original NAT traversal protocol to re-establish the
 peer-to-peer session.

 REQ-8 Applications implementing peer-to-peer communication via
 TCP SHOULD simultaneously listen for incoming peer-to-peer
 connections and open connections to rendezvous servers and
 other peers from the same endpoint.

 REQ-9 Applications SHOULD establish peer-to-peer TCP connections by
 making "approximately simultaneous" connection attempts from
 each peer to all of the known endpoints (including original
 and translated) for its peer.
 Applications MAY alternatively establish peer-to-peer TCP
 connections via other, asymmetric methods if one or both
 endpoint hosts do not correctly support simultaneous TCP open.

 REQ-10 Applications SHOULD re-try peer-to-peer TCP connection

Ford, Srisuresh, Kegel [Page 20]

Internet-Draft P2P Application Design Guidelines March 2007

 attempts that fail due to network conditions other than
 timeout, but MUST NOT re-try connecting to a given peer more
 than once per second.

8. Security Considerations

 This document does not inherently create new security issues.
 This section describes security risks the applications could
 inadvertently create in attempting to support P2P communication
 across NAT devices.

8.1. Denial-of-service attacks

 P2P applications and the public registry servers that support them
 must protect themselves against denial-of-service attacks, and
 ensure that they cannot be used by an attacker to mount
 denial-of-service attacks against other targets. To protect
 themselves, P2P applications and registry servers must avoid taking
 any action requiring significant local processing or storage
 resources until authenticated two-way communication is established.
 To avoid being used as a tool for denial-of-service attacks, P2P
 applications and servers must minimize the amount and rate of
 traffic they send to any newly-discovered IP address until after
 authenticated two-way communication is established with the intended
 target.

 For example, P2P applications that register with a public rendezvous
 server can claim to have any private IP address, or perhaps multiple
 IP addresses. A well-connected host or group of hosts that can
 collectively attract a substantial volume of P2P connection attempts
 (e.g., by offering to serve popular content) could mount a
 denial-of-service attack on a target host C simply by including C's
 IP address in their own list of IP addresses they register with the
 rendezvous server. There is no way the rendezvous server can verify
 the IP addresses, since they could well be legitimate private
 network addresses useful to other hosts for establishing
 network-local communication. The P2P application protocol must
 therefore be designed to size- and rate-limit traffic to unverified
 IP addresses in order to avoid the potential damage such a
 concentration effect could cause.

8.2. Man-in-the-middle attacks

 Any network device on the path between a P2P client and a
 rendezvous server can mount a variety of man-in-the-middle
 attacks by pretending to be a NAT. For example, suppose
 host A attempts to register with rendezvous server S, but a
 network-snooping attacker is able to observe this registration

Ford, Srisuresh, Kegel [Page 21]

Internet-Draft P2P Application Design Guidelines March 2007

 request. The attacker could then flood server S with requests
 that are identical to the client's original request except with
 a modified source IP address, such as the IP address of the
 attacker itself. If the attacker can convince the server to
 register the client using the attacker's IP address, then the
 attacker can make itself an active component on the path of all
 future traffic from the server AND other P2P hosts to the
 original client, even if the attacker was originally only able
 to snoop the path from the client to the server.

 The client cannot protect itself from this attack by
 authenticating its source IP address to the rendezvous server,
 because in order to be NAT-friendly the application must allow
 intervening NATs to change the source address silently. This
 appears to be an inherent security weakness of the NAT paradigm.
 The only defense against such an attack is for the client to
 authenticate and potentially encrypt the actual content of its
 communication using appropriate higher-level identities, so that
 the interposed attacker is not able to take advantage of its
 position. Even if all application-level communication is
 authenticated and encrypted, however, this attack could still be
 used as a traffic analysis tool for observing who the client is
 communicating with.

9. IANA Considerations

 There are no IANA considerations.

10. Normative References

[BEH-ICMP] Srisuresh, P., Ford, B., Sivakumar, S., and Guha, S., "NAT
 Behavioral Requirements for ICMP protocol",

draft-ietf-behave-nat-icmp-03.txt (Work In Progress),
 March 2007.

[BEH-TCP] Guha, S., Biswas, K., Ford, B., Francis, P., Sivakumar, S.,
 and Srisuresh, P., "NAT Behavioral Requirements for
 Unicast TCP", draft-ietf-behave-tcp-00.txt (Work In
 Progress), February 2006.

[BEH-UDP] F. Audet and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", RFC 4787, January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-icmp-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-behave-tcp-00.txt
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Ford, Srisuresh, Kegel [Page 22]

Internet-Draft P2P Application Design Guidelines March 2007

11. Informative References

[BEH-TOP] Srisuresh, P., and Ford, B., "Complications from Network
 Address Translator Deployment Topologies",

draft-ford-behave-top-02.txt (Work In Progress),
 July 2006.

[H.323] "Packet-based Multimedia Communications Systems", ITU-T
 Recommendation H.323, July 2003.

[ICE] Rosenberg, J. "Interactive Connectivity Establishment (ICE):
 A Methodology for Network Address Translator (NAT) Traversal
 for Offer/Answer Protocols", draft-ietf-mmusic-ice-09.txt
 (work in Progress), June 2006.

[KEGEL] Dan Kegel, "NAT and Peer-to-Peer Networking", July 1999.
http://www.alumni.caltech.edu/~dank/peer-nat.html

[MIDCOM] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 Rayhan, A., "Middlebox communication architecture and
 framework", RFC 3303, August 2002.

[NAT-APPL] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

[NAT-PROT] Holdrege, M., and Srisuresh, P., "Protocol Complications
 with the IP Network Address Translator", RFC 3027,
 January 2001.

[NAT-TERM] Srisuresh, P., and Holdrege, M., "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC 2663,
 August 1999.

[NAT-TRAD] Srisuresh, P., and Egevang, K., "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

[NATBLAST] Biggadike, A., Ferullo, D., Wilson, G. and Perrig, A.,
 "NATBLASTER: Establishing TCP Connections Between Hosts
 Behind NATs", ACM SIGCOMM Asia Workshop, April 2005.

[NUTSS] Guha, S., Takeday Y., and Francis, P., "NUTSS: A
 SIP-based Approach to UDP and TCP Network Connectivity",
 SIGCOMM 2004 Workshops, August 2004.

[NATTRAV] Eppinger, J.L., "TCP Connections for P2P Apps: A
 Software Approach to Solving the NAT Problem", Carnegie

https://datatracker.ietf.org/doc/html/draft-ford-behave-top-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-09.txt
http://www.alumni.caltech.edu/~dank/peer-nat.html
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3027
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc3022

Ford, Srisuresh, Kegel [Page 23]

Internet-Draft P2P Application Design Guidelines March 2007

 Mellon Tech Report CMU-ISRI-05-104, January 2005.

[P2PNAT] Ford, B., Srisuresh, P., and Kegel, D., "Peer-to-Peer
 Communication Across Network Address Translators", USENIX
 Annual Technical Conference, April 2005.

[P2P-STATE] Srisuresh, P., Ford, B., and Kegel, D., "State of Peer-to-
 Peer (P2P) communication across Network Address Translators
 (NATs)", draft-ietf-behave-p2p-state-02.txt (Work In
 Progress), February 2007.

[RFC1122] Braden, R., Editor, "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

[RFC3330] IANA, "Special-Use IPv4 Addresses", RFC 3330, September
 2002.

[RSIP] Borella, M., Lo, J., Grabelsky, D., and Montenegro, G.,
 "Realm Specific IP: Framework", RFC 3102, October 2001.

[SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and Schooler,
 E. "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

[SOCKS] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 Jones, L., "SOCKS Protocol Version 5", RFC 1928,
 March 1996.

[TCP] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

[TEREDO] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 NATs", draft-ietf-ngtrans-shipworm-08.txt (Work In
 Progress), September 2002.

[UPNP] UPnP Forum, "Internet Gateway Device (IGD) Standardized
 Device Control Protocol V 1.0", November 2001.

http://www.upnp.org/standardizeddcps/igd.asp

[UNSAF] Daigle, L., and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

Authors' Addresses:

 Bryan Ford
 Computer Science and Artificial Intelligence Laboratory

https://datatracker.ietf.org/doc/html/draft-ietf-behave-p2p-state-02.txt
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3330
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-shipworm-08.txt
http://www.upnp.org/standardizeddcps/igd.asp
https://datatracker.ietf.org/doc/html/rfc3424

Ford, Srisuresh, Kegel [Page 24]

Internet-Draft P2P Application Design Guidelines March 2007

 Massachusetts Institute of Technology
 77 Massachusetts Ave.
 Cambridge, MA 02139
 U.S.A.
 Phone: (617) 253-5261
 E-mail: baford@mit.edu
 Web: http://www.brynosaurus.com/

 Pyda Srisuresh
 Kazeon Systems, Inc.
 1161 San Antonio Rd.
 Mountain View, CA 94043
 U.S.A.
 Phone: (408)836-4773
 E-mail: srisuresh@yahoo.com

 Dan Kegel
 Kegel.com
 901 S. Sycamore Ave.
 Los Angeles, CA 90036
 Phone: (323) 931-6717
 E-mail: dank@kegel.com
 Web: http://www.kegel.com/

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

http://www.brynosaurus.com/
http://www.kegel.com/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Ford, Srisuresh, Kegel [Page 25]

Internet-Draft P2P Application Design Guidelines March 2007

Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 IETF Trust.

Ford, Srisuresh, Kegel [Page 26]

https://datatracker.ietf.org/doc/html/bcp78

