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Abstract

   Collective signatures are compact cryptographic proofs showing that
   several distinct secret key holders, called cosigners, have
   cooperated to sign a given message.  This document describes a
   collective signature extension to the EdDSA signing schemes for the
   Ed25519 and Ed448 elliptic curves.  A collective EdDSA signature
   consists of a point R, a scalar s, and a bitmask Z indicating the
   specific subset of a known group of cosigners that produced this
   signature.  A collective signature produced by n cosigners is of size
   64+ceil(n/8) bytes for Ed25519 and 114+ceil(n/8) bytes for Ed448,
   respectively, instead of 64n and 114n bytes for n individual
   signatures.  Further, collective signature verification requires only
   one double scalar multiplication rather than n.  The verifier learns
   exactly which subset of the cosigners participated, enabling the
   verifier to implement flexible acceptance-threshold policies, and
   preserving transparency and accountability in the event a bad message
   is collectively signed.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 1, 2018.
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1.  Introduction

   A conventional digital signature on some statement S is produced by
   the holder of a secret key k, and may be verified by anyone against
   the signer's corresponding public key K.  An attacker who
   successfully steals or compromises the secret key k gains
   unrestricted ability to impersonate and "sign for" the key-holder.
   In security-critical contexts it is thus often desirable to divide
   trust and signing capabilities across several parties.  For example,
   some threshold t out of n known parties may be required to sign a
   message before verifiers consider it acceptable.  A cryptographic
   proof that multiple parties have cooperated to sign a message is
   generally known as a multisignature.

   One form of multisignature is simply a list of individual signatures,
   which the verifier must check against a given policy.  For example,
   in a 2-of-3 group defined by three public keys, a multisignature is
   simply a list of two individual signatures, which the verifier must
   ensure were produced by the holders of any two distinct public keys
   in the group.  Multisignatures of this kind are well-established in
   many contexts, such as Bitcoin multisignature wallets [BITCOIN], and
   are practical when the group of signers is small.

   Another form of multisignatures is based on threshold cryptography
   that uses mechanisms like Shamir secret sharing [SHAMIR] enabling any
   threshold t-of-n group members to create a constant-size signature
   that reveals nothing about which particular set of t members signed.
   This approach simplifies verification and is desirable when the
   specific set of cosigners is irrelevant or privacy-sensitive.  Secret
   sharing based multisignatures are inappropriate when transparency is
   required, though, because t colluding members can potentially sign a
   bad message but then (individually) deny involvement once the
   compromise is discovered.  Moreover, threshold signature schemes
   usually do not scale well for larger numbers of n.
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   Collective signatures are compact multisignatures that convey the
   same information as a list of individual signatures and thereby offer
   the same transparency, but, at the same time, are comparable in size
   and verification cost to an individual signature.  Group members need
   not coordinate for the creation of their key-pairs beyond selecting a
   common elliptic curve, and verifiers can apply flexible acceptance
   policies beyond simple t-of-n thresholds.  Generating collective
   signatures requires cooperation, but can be done efficiently at with
   thousands of participants using a tree-aggregation mechanisms as done
   in the collective signing (CoSi) protocol [COSI].

2.  Scope

   This document does not attempt to describe CoSi in the context of any
   particular Internet protocol; instead it describes an abstract
   protocol that can be easily fitted to a particular application.  For
   example, the specific format of messages is not specified.  These
   issues are left to the protocol implementor to decide.

3.  Notations and Conventions

   The following notation is used throughout the document:

   o  p: Prime number.

   o  GF(p): Finite field with p elements.

   o  a || b: Concatenation of (bit-)string a with (bit-) string b.

   o  a + b mod p: Addition of integers a and b modulo prime p.

   o  a * b mod p: Multiplications of integers a and b modulo prime p.

   o  B: Generator of the group or subgroup of interest.

   o  L: Order of the group generated by B.

   o  I: Neutral element of the group generated by B.

   o  X + Y: Addition of group elements X and Y.

   o  [a]X: Addition of X to itself a times (scalar multiplication).

   o  Aggregation either refers to the addition of two group elements X
      and Y or to the addition of two scalars a and b.

   CoSi uses the parameters of the elliptic curves Curve25519 and
   Curve448 defined in Sections 4.1 and 4.2 of [RFC7748], respectively.

https://datatracker.ietf.org/doc/html/rfc7748
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   Encoding and decoding of integers is done as specified in Sections
   5.1.2 and 5.1.3 of [RFC8032], respectively.

4.  Collective Signing

   The collective signing (CoSi) algorithm is an aggregate signature
   scheme based on Schnorr signatures and the EdDSA signing procedure.
   CoSi signatures are non-deterministic though as they include random
   participant commitments and a bitmask identifying participants that
   have not contributed to the signature generation.  This section first
   presents the collective key setup mechanism, the abstract signature
   generation algorithm and finally the signature verification
   procedure.

4.1.  Collective Public Key Setup

   Let N denote the list of participants.  First, each participant i of
   N generates his longterm private-public key pair (a_i, A_i) as in
   EdDSA, see Section 5.1.5 of RFC8032 [1].  Afterwards, given a list of
   public keys A_1, ..., A_n, the collective public key is specified as
   A = A_1 + ... + A_n.

4.2.  Signature Generation

   This section presents the collective signature generation scheme.

   The inputs of the signature process are:

   o  A collective public key A generated from the public keys of
      participants N.

   o  A subset of participants M of N who actively participate in the
      signature creation.  The size of M is denoted by m.

   o  A statement (or message) S.

   The signature is generated as follow:

   1.  For each participant i in M, generate a random secret r_i by
       hashing 32 bytes of cryptographically secure random data.  For
       efficiency, reduce each r_i mod L.  Each r_i MUST be re-generated
       until it is different from 0 mod L or 1 mod L.

   2.  Compute the integer addition r of all r_i: r = SUM_{i in M}(r_i).

   3.  Compute the encoding of the fixed-base scalar multiplication [r]B
       and call the result R.

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
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   4.  Compute SHA512(R || A || S) and interpret the 64-byte digest as
       an integer c mod L.

   5.  For each participant i in M, compute the response s_i = (r_i + c
       * a_i) mod L.

   6.  Compute the integer addition s of all s_i: s = SUM_{i in M}(s_i).

   7.  Initialize a bitmask Z of length n to all zero.  For each
       participant i who is present in N but not in M set the i-th bit
       of Z to 1, i.e., Z[i] = 1.

   8.  The signature is the concatenation of the encoded point R, the
       integer s, and the bitmask Z, denoted as sig = R || s || Z.

4.3.  Signature Verification

   The inputs to the signature verification process are:

   o  A list of public keys A_i of all participants i in N.

   o  The collective public key A.

   o  The statement S.

   o  The signature sig = R || s || Z.

   o  A signature policy which is a function that takes a bitmask as an
      input and returns true or false.  For example, a basic signature
      policy might require that a certain threshold of participants took
      part in the generation of the collective signature.

   A signature is considered valid if the verification process finishes
   each of the steps below successfully.

   1.  Split sig into two 32-byte sequences R and s and a bitmask Z.
       Interpret R as a point on the used elliptic curve and check that
       it fulfills the curve equation.  Interpret s as an unsigned
       integer and verify that it is non-zero and smaller than L.
       Verify that Z has length n.  If any of the mentioned checks
       fails, abort the verification process and return false.

   2.  Check Z against the signature policy.  If the policy does not
       hold, abort the verification process and return false.

   3.  Compute SHA512(R || A || S) and interpret the 64-byte digest as
       an integer c.
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   4.  Initialize a new elliptic curve point T = I.  For each bit i in
       the bitmask that is equal to 1, add the corresponding public key
       A_i to the point T.  Formally, T = SUM_{i in N, Z[i] == 1}(A_i)
       for all i set to 1 in the bitmask.

   5.  Compute the reduced public key A' = A - T.

   6.  Check if the group equation [8][s]B = [8]R + [8][c]A' holds.

5.  Collective Signing Protocol

   This section introduces the distributed CoSi protocol with n
   participants.  For simplicity, we assume there is a designated leader
   who is responsible for collecting the shares and generating the
   signature.  This leader could be any of the signers and is not
   trusted in any way.  All participants are communicating through a
   reliable channel with the leader.

5.1.  Collective Signature

   The leader must know the statement S to be signed and the set of
   public keys of the participants N.  The point A is defined as the
   collective key of the participants N.  A collective signature is
   generated in four steps over two round trips between the leader and
   the rest of the participants.

5.1.1.  Announcement

   Upon the request to generate a signature on a statement S, the leader
   broadcasts an announcement message indicating the start of a signing
   process.  It is up to the implementation to decide whether to send S
   itself during that phase or not.

5.1.2.  Commitment

   Upon the receipt of an announcement message or if the participant is
   the leader, each participant i generates a random secret r_i by
   hashing 32 bytes of cryptographically secure random data.  Each r_i
   MUST be re-generated until it is different from 0 mod L or 1 mod L.
   Each participants then constructs the commitment R_i as the encoding
   of [r_i]B, sends R_i to the leader and stores the generated r_i for
   usage in the response phase.  If the participant is the leader, it
   executes the challenge step.
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5.1.3.  Challenge

   The leader waits to receive the commitments R_i from the other
   participants for a certain time frame as defined by the application.
   After the timeout, the leader constructs the subset M of participants
   from whom he has received a commitment R_i and computes the sum R =
   SUM_{i in M}(R_i).  The leader then computes SHA512(R || A || M) and
   interprets the resulting 64-byte digest as an integer c mod L.  The
   leader broadcasts c to all participants.

5.1.4.  Response

   Upon reception of c or if the participant is the leader, each
   participant generates his response s_i = (r_i + c * a_i) mod L.  Each
   non-leader participant sends his s_i to the leader.  If the
   participant is the leader, he executes the signature generation step.

5.1.5.  Signature Generation

   The leader waits to receive the responses s_i from the other
   participants for a certain time frame as defined by the application.
   After the timeout, the leader checks if he received responses from
   all participants in M and if not he MUST abort the protocol.  The
   leader then computes the aggregate response s = SUM{i in M}(s_i) mod
   L and initializes a bitmask Z of size n to all zero.  For each
   participant i who is present in N but not in M the leader sets the
   i-th bit of Z to 1, i.e., Z[i] = 1.  The leader then forms the
   signature sig as the concatenation of the byte-encoded point R, the
   byte-encoded scalar s, and the bitmask Z.  The resulting signature is
   of the form sig = R || s || Z and MUST be of length 32 + 32 +
   ceil(n/8) bytes.

5.2.  Collective Verification

   The verification process is the same as defined in the
   Section "Signature Verification" above.

6.  Tree-based CoSi Protocol

   This section presents the CoSi protocol using a tree-shaped network
   communication overlay.  While the core protocol stays the same, the
   tree-shaped communication enables CoSi to handle large numbers of
   participants during signature generation efficiently.
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6.1.  CoSi Tree

   Any tree used by CoSi SHOULD be a complete tree for performance
   reasons, i.e., every level except possible the last one of the tree
   MUST be filled.  The leader is the root node of the tree and is
   responsible for creating the tree.  An intermediate node is a node
   who has one parent node and at least one child node.  A leaf node is
   a node who has only one parent and no child nodes.

   We define the BROADCAST operation as:

   o  The leader multicasts a message to his direct child nodes.

   o  Upon reception of a message, each node stores the message and
      multicasts it further down to its children node, except if the
      node is a leaf.

   The internal representation of the tree, and its propagation to the
   participants is left to the application.

6.2.  Collective Signature

   The leader must know the statement S, the set N of the participants
   and their public keys, and the subset M of active participants.  The
   actual communication tree T is created from the subset M, and MUST
   contain all participants of M.  The point A is defined as the
   collective key of the set P.

6.2.1.  Announcement

   The leader BROADCASTS an announcement message.  Upon reception, each
   leaf node executes the commitment step.

6.2.2.  Commitment

   Every node must generate a random commitment R_i as described in the
   previous commitment section [...].  Each leaf node directly sends its
   commitment R_i to its parent node.  Each non-leaf node generates a
   bit mask Z_i of n bits initialized with all 0 bits and starts waiting
   for a commitment and a bit mask from each of its children.  After the
   timeout defined by the application, each node aggregates all its
   children's commitments R_i received using point addition formulas,
   adds its own commitment and stores the result in R'.  For every
   absent commitment from a child at index j in N, the node sets the
   j-th of its bit mask Z_i to 1.  The node also performs an OR
   operation between all the received bitmasks from its children and its
   own bit mask, and let the result be B'.
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   // XXX Should we reject invalid messages, like too-long-bitmask or
   so? // XXX Bitmasks should be signed and checked?  If the node is an
   intermediate node, it sends the aggregated commitment R' alongside
   with the Z' bitmask to its parents.  If the node is the root node, it
   executes the challenge step.

   // XXX What happens when a node does not receive any commitment from
   a child node.  Does it contact the sub-nodes?

6.2.3.  Challenge

   The leader computes the challenge c = H( R' || A || S) and BROADCASTS
   it down the tree.  The leader also saves the bitmask Z' computed in
   the previous step.  Upon reception, each leaf node executes the
   response step.

6.2.4.  Response

   Each node generates its response s_i as defined in XXX Response XXX.
   Each leaf node sends its response to their parent and is allowed to
   leave the protocol.
   Each other node starts waiting for the responses of its children.

   XXX HOW to signal / abort?  Is it application dependent also?  What
   happens if the root times out?

   For each response s received in node i from node's children j, the
   node i SHOULD perform a verification of the partial response.  Let t
   be the sub-tree with the node j at the root, and D the aggregation of
   all the public keys of the participants in t.  Let V be the
   aggregation of all commitments generated by all participants in t.
   If the equation [8][s]B = [8]V + [8][c]D does not hold, then the node
   i MUST abort the protocol.

   After the timeout occurs, if at least one child's response is
   missing, the node MUST signal the leader to abort the protocol.
   Otherwise, each intermediate node aggregates all its children's
   responses, adds its own response s_i, using scalar addition formulas
   and sends the resulting scalar s' up to its parent.  Each
   intermediate node can now leave the protocol.

   When the root node receives all the responses s' from its children,
   it can generate the signature.
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6.2.5.  Signature Generation

   The generation procedure is exactly the same as in the XXX Generation
   XXX section above.

6.3.  Verification

   The verification procedure is exactly the same as in the XXX Verify
   XXX section above.

7.  Message Format

   All packets exchanged during a CoSi protocol's instance MUST be
   encoded using Google's Protobuf technology [PROTOBUF].  All packets
   for a CoSi protocol must be encoded inside the CoSiPacket message
   format.  The "phase" field indicates which message is encoded in the
   packet.  The CoSi packet message contains a "phase" field which is
   set accordingly to the current phase of the protocol: + Announcement
   = 1 + Commitment = 2 + Challenge = 3 + Response = 4

    message CoSiPacket {
      // Announcement = 1, Commitment = 2, Challenge = 3, Response = 4
      required uint32 phase = 1;
      optional Announcement ann = 2;
      optional Commitment comm = 3;
      optional Challenge chal = 4;
      optional Response resp = 5;
    }

7.1.  Announcement

   The Announcement message notifies participants of the beginning of a
   CoSi round.  Implementations can extent the message specifications to
   include the message to sign.  That way, participants can refuse to
   vote at this step by not replying with a commitment.  This do not
   cause any restart of the protocol later.

                          message Announcement {
                          }

7.2.  Commitment

   The commitment message includes the aggregated commitment as well as
   the bitmask if the tree based CoSi protocol is used.
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                       message Commitment {
                         // aggregated commitment R'
                         required bytes comm = 1;
                         // bitmask B'
                         optional bytes mask = 2;
                       }

7.3.  Challenge

   The challenge message includes the challenge computed by the leader
   of the CoSi protocol.

                        message Challenge {
                          // commputed challenge c
                          required bytes chall = 1;
                        }

7.4.  Response

   The response message includes the aggregated response to be sent to
   the leader.

                        message Response {
                          // aggregated response s'
                          required bytes resp = 1;
                        }

8.  Security Considerations

8.1.  General Implementations Checks

   The checks described throughout the different protocols MUST be
   enforced.  Namely that includes: + the random component r MUST
   conform to r != 0 mod L and r != 1 mod L.  + the resulting signature
   s MUST conform to s != 0 mod L during signature generation + the
   signature s MUST conform to 0 < s < L + the intermediate signature at
   each level of the tree MUST be verifiable correctly as described in
   section the Response step in section XXX

8.2.  Random Number Generation

   CoSi requires a cryptographically secure pseudorandom number
   generator (PRNG) for the generation of the private key and the seed
   to get the random integer r.  In most cases, the operating system
   provides an appropriate facility such as /dev/urandom, which should
   be used absent other (performance) concerns.  It is generally
   preferable to use an existing PRNG implementation in preference to
   crafting a new one, and many adequate cryptographic libraries are
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   already available under favorable license terms.  Should those prove
   unsatisfactory, [RFC4086] provides guidance on the generation of
   random values.  The hashing of the seed provides an additional layer
   of security regardless of the security of the PRNG.

8.3.  Group Membership

   Elements should be checked for group membership: failure to properly
   validate group elements can lead to attacks.  In particular it is
   essential to verify that received points are valid compressions of
   points on an elliptic curve when using elliptic curves.

8.4.  Multiplication by Cofactor in Verification

   The given verification formulas multiply points by the cofactor.
   While this is not strictly necessary for security (in fact, any
   signature that meets the non-multiplied equation will satisfy the
   multiplied one), in some applications it is undesirable for
   implementations to disagree about the exact set of valid signatures.

8.5.  Related-Key Attacks

   Before any CoSi round happens, all the participants MUST have the
   list of public keys of the whole set of participants, including a
   self signature for each public key.  This list MUST be generated
   before any round.  If it it not the case, an attacker can craft a
   special public key which has the effect of eliminating the
   contribution of a specific participant to the signature.

8.6.  Availability

   The participating servers should be highly available and should be
   operated by reputable and competent organizations so the risk a of
   DDOS attack by un-reliable participants is greatly diminished.  In
   case of failures before the Challenge phase, the leader might abort
   the protocol if the threshold of present participants is too low.

   If a participant detects one of its children in the tree as missing,
   a simple mechanism is to return an error which propagates back up the
   tree to the leader.  The leader can then restart the round accounting
   for this missing participant in the bitmask B described in the
   Commitment section XXX.

9.  Discussions

https://datatracker.ietf.org/doc/html/rfc4086
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9.1.  Hashing the Public Keys in the commitment

   Either do H(R || A || msg) with A being the collective public key OR
   do H(R || SUM(X_i) || msg) where SUM(X_i) is the sum of all public
   keys that participated in the collective signature,i.e. the
   aggregation of all keys in the active participant subset Q.

9.2.  Hashing the bitmask in the commitment

   To truely bind one signature to a set of signers, the bitmask can be
   included in the challenge computation such like H(R || A ||
   bitmask || msg).  The signature verification process could detect any
   modifications of the original signature before proceeding the
   computationally expensive process.

9.3.  Exception Mechanism

   XXX What to do in case a node goes offline, doesn't sign, or doesn't
   relay up etc. in the tree approach.
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