Internet Engineering Task T0C

A. Ford
Force
Internet-Draft Roke Manor Research
Intended status: ..
. C. Raiciu
Experimental
Expires: September 16
P P ! M. Handley

2010

University College
London

March 09, 2010

TCP Extensions for Multipath Operation with Multiple Addresses
draft-ford-mptcp-multiaddressed-03

Abstract

TCP/IP communication is currently restricted to a single path per
connection, yet multiple paths often exist between peers. The
simultaneous use of these multiple paths for a TCP/IP session would
improve resource usage within the network, and thus improve user
experience through higher throughput and improved resilience to network
failure.

Multipath TCP provides the ability to simultaneously use multiple paths
between peers. This document presents a set of extensions to
traditional TCP to support multipath operation. The protocol offers the
same type of service to applications as TCP - reliable bytestream - and
provides the components necessary to establish and use multiple TCP
flows across potentially disjoint paths.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 10, 2010.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the BSD License.

Table of Contents

=

[[>

B | [© |0\ [0 o
EBlPERe

Introduction

1.1. Design Assumptions
1.2. Layered Representation
1.3. Operation Summary

1.4. Requirements Language
Terminology

Semantic Issues

MPTCP Protocol

4.1. Connection Initiation
4.2. Starting a New Subflow

4.3. Address Knowledge Exchange (Path Management)

4.3.1. Address Advertisement

.3.2. Remove Address

4.4. General MPTCP Operation
.4.1. Data Sequence Numbering
Data Acknowledgements
Receiver Considerations
Sender Considerations
Congestion Control Considerations
.6. Subflow Policy
4.5. Closing a Connection
4.6. Error Handling
Security Considerations
Interactions with Middleboxes
Interfaces
Open Issues
Acknowledgements
IANA Considerations
References
11.1. Normative References
11.2. 1Informative References

N

Eo N N N AN N N
E o e e N R F N
g (W N

Appendix A. Notes on use of TCP Options

Appendix B. Signaling Control Information in the Payload
Appendix C. Resync Packet

Appendix D. Changelog
D.1. Changes since draft-ford-mptcp-multiaddressed-02
8 Authors' Addresses

1. Introduction TOC

Multipath TCP (henceforth referred to as MPTCP) is set of extensions to
regular TCP [2] (Postel, J., “Transmission Control Protocol,”

September 1981.) to allow a transport connection to operate across
multiple paths simultaneously. This document presents the protocol
changes required by Multipath TCP, specifically those for signalling
and setting up multiple paths ("subflows"), managing these subflows,
reassembly of data, and termination of sessions. This is not the only
information required to create a Multipath TCP implementation, however.
This document is complemented by several others:

*Architecture [3] (Ford, A., Raiciu, C., Barre, S., and J.
Iyvengar, “Architectural Guidelines for Multipath TCP
Development,” March 2010.), which explains the motivations behind
Multipath TCP and a functional separation through which an
extensible MPTCP implementation can be developed.

*Congestion Control [4] (Raiciu, C., Handley, M., and D. Wischik,
“Coupled Multipath-Aware Congestion Control,” October 2009.),
presenting a safe congestion control algorithm for coupling the
behaviour of the multiple paths in order to "do no harm" to other
network users.

*Application Considerations [5] (Scharf, M. and A. Ford, “MPTCP
Application Interface Considerations,” October 2009.), discussing
what impact MPTCP will have on applications, what applications
will want to do with MPTCP, and as a consequence of these
factors, what API extensions an MPTCP implementation should
present.

T0C

1.1. Design Assumptions

In order to limit the potentially huge design space, the authors
imposed two key constraints on the multipath TCP design presented in
this document:

*It must be backwards-compatible with current, regular TCP, to
increase its chances of deployment

*It can be assumed that one or both endpoints are multihomed and
multiaddressed

To simplify the design we assume that the presence of multiple
addresses at an endpoint is sufficient to indicate the existence of
multiple paths. These paths need not be entirely disjoint: they may
share one or many routers between them. Even in such a situation making
use of multiple paths is beneficial, improving resource utilisation and
resilience to a subset of node failures. The congestion control
algorithms as discussed in [4] (Raiciu, C., Handley, M., and D.
Wischik, “Coupled Multipath-Aware Congestion Control,” October 2009.)
ensure this does not act detrimentally.

There are three aspects to the backwards-compatibility listed above
(discussed in more detail in [3] (Ford, A., Raiciu, C., Barre, S., and
J. Iyengar, “Architectural Guidelines for Multipath TCP Development,”
March 2010.)):

External Constraints: The protocol must function through the vast
majority of existing middleboxes such as NATs, firewalls and
proxies, and as such must resemble existing TCP as far as
possible on the wire. Furthermore, the protocol must not assume
the segments it sends on the wire arrive unmodified at the
destination: they may be split or coalesced; options may be
removed or duplicated.

Application Constraints: The protocol must be usable with no change
to existing applications that use the standard TCP API (although
it is reasonable that not all features would be available to such
legacy applications).

Fall-back: The protocol should be able to fall back to standard TCP
with no interference from the user, to be able to communicate
with legacy hosts.

Areas for further study:

*In theory, since this is purely a TCP extension, it should be
possible to use MPTCP with both IPv4 and IPv6 subflows for the
same connection on dual-stack hosts, thus having the additional
possible benefit of aiding transition.

*Some features of the design presented here could be extended to
work with non-multi-addressed hosts by using other packet
metadata (such as ports or flow label), packet marking, or
partial multipath (such as by using a proxy).

1.2. Layered Representation TOC

MPTCP operates at the transport layer, and its existence aims to be
transparent to both higher and lower layers. It is a set of additional
features on top of standard TCP, and as such MPTCP is designed to be
usable by legacy applications with no changes. A possible
implementation would be for such a feature to be a system-wide setting:
"Use multipath TCP by default? Y/N". Multipath-aware applications would
be able to use an extended sockets API to have further influence on the
behaviour of MPTCP. Figure 1 (Comparison of Standard TCP and MPTCP
Protocol Stacks) illustrates this layering.

g +

| Application |
B S —— + oo m e e e e e e e e e oo +
| Application | | MPTCP |
R + T T
| TCP | | Subflow (TCP) | Subflow (TCP) |
B R —— + e e e e e e e e mmmom oo +
| IP | | IP | IP |
D R + . +

Figure 1: Comparison of Standard TCP and MPTCP Protocol Stacks

Detailed discussion of an architecture for developing a multipath TCP
implementation, especially regarding the functional separation by which
different components should be developed, is given in [3] (Ford, A.,
Raiciu, C., Barre, S., and J. Iyengar, “Architectural Guidelines for
Multipath TCP Development,” March 2010.).

1.3. Operation Summary TOC

This section provides a high-level summary of normal operation of
MPTCP, and is illustrated by the scenario shown in Figure 2 (Example

MPTCP Usage Scenario). A detailed description of operation is given in
Section 4 (MPTCP Protocol).

*To a non-MPTCP-aware application, MPTCP will be indistinguishable
from normal TCP. All MPTCP operation is handled by the MPTCP
implementation, although extended APIs could provide additional
control and influence [5] (Scharf, M. and A. Ford, “MPTCP
Application Interface Considerations,” October 2009.). An
application begins by opening a TCP socket in the normal way.

*An MPTCP connection begins as a single TCP session. This is
illustrated in Figure 2 (Example MPTCP Usage Scenario) as being
between Addresses Al and Bl on Hosts A and B respectively.

*If extra paths are available, additional TCP sessions are created
on these paths, and are combined with the existing session, which
continues to appear as a single connection to the applications at
both ends. The creation of the additional TCP session 1is
illustrated between Address A2 on Host A and Address Bl on Host
B.

*MPTCP identifies multiple paths by the presence of multiple
addresses at endpoints. Combinations of these multiple addresses
equate to the additional paths. In the example, other potential
paths that could be set up are Al<->B2 and A2<->B2. Although this
additional session is shown as being initiated from A2, it could
equally have been initiated from B1.

*The discovery and setup of additional TCP sessions (termed
'subflows') will be achieved through a path management method.
This document describes a mechanism by which an endpoint can
initiate new subflows by using its additional addresses, or by
signalling its available addresses to the other endpoint.

*MPTCP adds connection-level sequence numbers to allow the
reassembly of the in-order data stream from multiple subflows
which may deliver packets out-of-order due to differing network
delays. Connections are terminated by connection-level FIN
packets as well as those relating to the individual subflows.

I

I
| oo > |
| <o | |
I I I I
| (additional subflow setup) |
I R LR Rl >| I
I [<-----mmmmme I I
I I I I
I I I I

Figure 2: Example MPTCP Usage Scenario
1.4. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [1].

2. Terminology TOC

Path: A sequence of links between a sender and a receiver, defined
in this context by a source and destination address pair.

Subflow: A stream of TCP packets sent over a path. A subflow is a
component part of a connection between two endpoints.

Connection: A collection of one or more subflows, over which an
application can communicate between two endpoints. There is a
one-to-one mapping between a connection and a socket.

Data-level: The payload data is nominally transfered over a
connection, which in turn is transported over subflows. Thus the
term "data-level" is synonymous with "connection level", in

contrast to "subflow-level" which refers to properties of an
individual subflow.

Token: A locally unique identifier given to a multipath connection
by an endpoint. May also be referred to as a "Connection ID".

Endpoint: A host operating an MPTCP implementation, and either
initiating or terminating a MPTCP connection.

3. Semantic Issues TOC

In order to support multipath operation, the semantics of some TCP
components have changed. To aid clarity, this section collects these
semantic changes as a reference.

Sequence Number: The (in-header) TCP sequence number is specific to
the subflow. To allow the receiver to reorder application data,
an additional data-level sequence space is used. In this data-
level sequence space, the initial SYN and the final DATA_FIN
occupy one octet. There is an explicit mapping of data sequence
space to subflow sequence space, which is signalled through TCP
options in data packets.

ACK: The ACK field in the TCP header acknowledges the subflow
sequence number only, not the data-level sequence space. Although
data acknowledgments could be inferred from the subflow ACK, an
explicit connection-level DATA_ACK is used to ensure end-to-end
reliability in the presense of certain types of middlebox.

Receive Window: The receive window in the TCP header indicates the
amount of free buffer space for this connection (as opposed to
for this subflow) that is available at the receiver. This is a
change to the semantics of the field. With regular TCP the window
is relative to the acknowledgment number in the TCP header. This
is not meaningful for multipath TCP. Instead with multipath TCP
the receive window is relative to the DATA_ACK field, indicating
the amount of buffer space available at the data-level. This
permits the receive window to serve its original purpose and

provide flow-control of the data sent by the TCP sending
application.

FIN: The FIN flag in the TCP header applies only to the subflow it
is sent on, not to the whole connection. For connection-level FIN
semantics, the DATA_FIN option 1is used.

RST: The RST flag in the TCP header applies only to the subflow it
is sent on, not to the whole connection. A connection is
considered reset if a RST is received on every subflow.

Address List: Address management is handled on a per-connection
basis (as opposed to per-subflow, per host, or per pair of
communicating hosts). This permits the application of per-
connection local policy. Adding an address to one connection has
no implication whatsoever for other connections between the same
pair of hosts.

5-tuple: The 5-tuple (protocol, local address, local port, remote
address, remote port) presented to the application layer in a
non-multipath-aware application is that of the first subflow,
even if the subflow has since been closed and removed from the
connection. These API issues are discussed in more detail in [5]
(Scharf, M. and A. Ford, “MPTCP Application Interface
Considerations,” October 2009.).

4. MPTCP Protocol TOC

This section describes the operation of the MPTCP protocol, and is
subdivided into sections for each key part of the protocol operation.
All MPTCP operations are signalled using optional TCP header fields.
These TCP Options will have option numbers allocated by IANA, as listed
in Section 10 (IANA Considerations), and are defined throughout the
following subsections.

4.1. Connection Initiation TOC

Connection Initiation begins with a SYN, SYN/ACK exchange on a single
path. Each of these packets will additionally feature the MP_CAPABLE
TCP option (Figure 3 (Multipath Capable option)) This option declares
its sender is capable of performing multipath TCP and wishes to do so
on this particular connection). As well as this declaration, this field

presents a locally-unique token identifying this connection. This is
used when adding additional subflows to this connection.

This token is generated by the sender and has local meaning only, hence
it MUST be unique for the sender. The token MUST be difficult for an
attacker to guess, and thus it is recommended it SHOULD be generated
randomly. (However, see further discussions about security in Section 5
(Security Considerations), including the possibility of 64-bit

tokens.)

This option is only present in packets with the SYN flag set. It is
only used in the first TCP session of a connection, in order to
identify the connection; all following connections will use path
management options (see Section 4.2 (Starting a New Subflow)) to join
the existing connection.

1 2 3
©1234567890123456789012345678901
S S e oo o e e e ooooo----
| Kind=MP_CAP | Length=11 | Sender Token
o m e e e e a o - o m e e e e a o - o m e e e e a o - o m e e e e a o -
Sender Token (cont 4 octets) | Initial Data Sequence Number
o mm o e m e e e e e e e e mmm— oo oo B R ——
Initial Data Sequence Number (cont - 6 bytes)
o m e e e e e e e e e e e e e e e e e e eo o o m e e e e oo -

Figure 3: Multipath Capable option

If a SYN contains an MP_CAPABLE option but the SYN/ACK does not, it is
assumed that the passive opener is not multipath capable and thus the
MPTCP session will operate as regular, single-path TCP. If a SYN does
not contain a MP_CAPABLE option, the SYN/ACK MUST NOT contain one in
response.

If the SYN packets are unacknowledged, it is up to local policy to
decide how to respond. It is expected that a sender will eventually
fall back to single-path TCP (i.e. without the MP_CAPABLE Option), in
order to work around middleboxes that may drop packets with unknown
options; however, the number of multipath-capable attempts that are
made first will be up to local policy. Once the active opener has sent
a SYN without the MP_CAPABLE option, it MUST fall back to regular TCP
behavior, even if it subsequently receives a SYN/ACK that contains an
MP_CAPABLE option. This might happen if the MP_CAPABLE SYN and
subsequent non-MP-capable SYN are reordered. This is to ensure that the
two endpoints end up in an interoperable state, no matter what order
the SYNs arrive at the passive opener. This final state is inferred

from the presence or absence of the DATA_ACK option in the third packet
of the TCP handshake.

The MPC option includes the most significant 6 bytes of the 8-byte
initial Data Sequence Number option (discussed in Section 4.4 (General
MPTCP Operation)). The least significant two bytes should be zeroed.
This is also used as an implicit mapping of the SYN to the data
sequence space (and this initial SYN counts as one octet in this space,
as for a regular SYN in single-path TCP). This will be used to ensure
both ends agree on whether the connection is multipath or standard TCP,
regardless of middlebox behaviour. This could also have some (minor)
security benefits, discussed in Section 5 (Security Considerations). To
preserve option space, only the most significant six bytes are sent in
the SYN, as there is no significant security benefit from randomizing
the values of the lower two bytes given that these fall within typical
receive windows sizes.

4.2. Starting a New Subflow TOC

Endpoints have knowledge of their own address(es), and can become aware
of the other endpoint's addresses through signalling exchanges as
described in Section 4.3 (Address Knowledge Exchange (Path
Management)). Using this knowledge, an endpoint can initiate a new
subflow over a currently unused pair of addresses. Either endpoint that
is part of a connection can initiate the creation of a new subflow.

A new subflow is started as a normal TCP SYN/ACK exchange. The "Join"
TCP option (Figure 4 (Join Connection option)) is used to identify of
which connection the new subflow should become a part. The token used
is the locally unique token of the destination for the subflow, as
defined by the MP_CAPABLE option received in the first SYN/ACK
exchange.

1 2 3
©12345678901234567890123456789601
B RS —— B RS —— e e e e e e e e oo - oo
| Kind=OPT_JOIN | Length =7 |Receiver Token (4 octets total):
o m e e e e a o - o m e e e e a o - Fom e e o - o m e e o -
Receiver Token (continued) | Address ID |
e e e e e e e oo oo - B +

Figure 4: Join Connection option

In response to a SYN with the "Join" option, if the token is valid for
an existing MPTCP connection, the recipient MUST respond with a SYN/ACK
also containing a "Join" option, with the initiator's token. This
serves two purposes: firstly, to ensure both endpoints agree on the
connection being referred to (this is particularly relevant when both
addresses being used are new to the connection); and secondly, to
ensure there are no middleboxes in the path that will drop MPTCP
options on the return path. This behaviour is illustred in Figure 5
(Example use of MPTCP Tokens).

| SYN/ACK + OPT_JOIN(Token A) |
I I I

Figure 5: Example use of MPTCP Tokens

If the token is unknown, the recipient MUST respond with a TCP RST in
the same way as when an unknown TCP port is used.

It should be noted that additional subflows can exist between any pair
of ports; no explicit accept calls or bind calls are required to open
additional subflows. To associate a new subflow to an existing
connection, the token supplied in the subflow's SYN exchange is used
for demultiplexing. This means that port numbers on subflow SYN
exchanges are not important, and a receiver of a SYN SHOULD allow any
values to be used, as long as the 5-tuple is unique for each host.
However the sender of a SYN containing a JOIN option SHOULD send the
SYN to the port used by the remote party for the first subflow in the
connection. The local port for such SYNs MAY be chosen locally, either
dynamically, or by the application if an API allows the application to
do so. This strategy is intended to maximize the probability of the SYN
being permitted by a firewall or NAT at the recipient and to avoid
confusing any network monitoring software.

Deumultiplexing subflow SYNs MUST be done using the token; this is
unlike traditional TCP, where the destination port is used for
demultiplexing SYN packets. Once a subflow is setup, demultiplexing
packets is done using the five-tuple, as in traditional TCP.

The JOIN option includes an "Address ID". This is an identifier,
locally unique to the sender of this option, and with only per-
connection relevance, which identifies the source address of this
packet. The key purpose of this identifier is, if an address becomes
unexpectedly unavailable on the sender, it can signal this to the
receiver via a remove address option (Section 4.3.2 (Remove Address))
without needing to know what the source address actually is (thus
allowing the use of NATs). It also allows correlation between new
connection attempts and address signalling (Section 4.3.1 (Address
Advertisement)), to prevent duplicate subflow initiation.

The Address IDs of the subflow used in the initial SYN exchange of the
first subflow in the connection are implicit, and have the value zero.
The Address ID must be stored by the receiver in a data structure that
gathers all the Address ID to address mappings for a connection
identified by a token pair. In this way there is a stored mapping
between Address ID, observed source address and token pair for future
processing of control information for a connection.

This option can only be present when the SYN flag is set.

4.3. Address Knowledge Exchange (Path Management) TOC

We use the term "path management" to refer to the exchange of
information about additional paths between endpoints, which in this
design is managed by multiple addresses at endpoints. For more detail
of the architectural thinking behind this design, see the separate
document [3] (Ford, A., Raiciu, C., Barre, S., and J. Iyengar,
“Architectural Guidelines for Multipath TCP Development,” March 2010.).
This design makes use of two methods of sharing such information, used
simultaneously. The first is the direct setup of new subflows, already
described in Section 4.2 (Starting a New Subflow), where the initiator
has an additional address. The second method is described in the
following subsections, whereby addresses are signalled explicitly to
the other endpoint, to allow it to initiate new connections. This
approach, of two complementary mechanisms, has been chosen to allow
addresses to change in flight, and thus support operation through NATs,
whilst also allowing the signalling of previously unknown addresses,
such as those belonging to other address families (e.g. IPv4 and IPv6).
Here is an example of typical operation of the protocol:

*An endpoint that is multihomed starts an additional TCP session
to an address/port pair that is already in use on the other
endpoint, using a token to identify the flow (Section 4.2

(Starting a New Subflow)). (A multihomed destination may open a
new subflow from its new address to an existing subflow's source
address and port, or a multihomed source may open a new subflow
from its new address to an existing subflow's destination and
port).

*More concretely, say a connection is intiated from host "A" on
(address, port) combination Al to destination (address, port) Bl
on host "B". If host A is multihomed, it starts an additional
connection from new (address, port) A2 to B1l, using B's
previously declared token. Alternatively, if B is multhomed, it
will try to set up a new TCP connection from B2 to Al, using A's
previously declared token.

*Simultaneously (or after a timeout), an "Add Address" option
(Section 4.3.1 (Address Advertisement)) is sent on an existing
subflow, informing the receiver of the sender's alternative
address(es). The recipient can use this information to open a new
subflow to the sender's additional address. Using the previous
notation, this would be an Add Address packet sent from Al to B1,
informing B of address A2.

*The mix of using the SYN-based option and the Add Address option,
including timeouts, is implementation-specific and can be
tailored to agree with local policy.

*If host B successfully receives the first SYN, starting a new
subflow, it can use the Address ID in the Join option to
correlate this with the Add Address option that will also arrive
on an existing subflow. Assuming the endpoint has already
responded to the SYN with a SYN/ACK, it will know to ignore the
Add Address option. Otherwise, if it has not received such a SYN,
it will try to initiate a new subflow from one or more of its
addresses to address A2 (triggered by the Add Address option).
This is intended to permit new sessions to be opened if one
endpoint is behind a NAT. A slight security improvement can be
gained if a host ensures there is a correlated Add Address option
before responding to the SYN.

Other scenarios are valid, however, such as those where entirely new
addresses are signalled, e.g. to allow an IPv6 and an IPv4 path to be
used simultaneously.

4.3.1. Address Advertisement TOC

The Add Address TCP Option announces additional addresses on which an
endpoint can be reached (Figure 6 (Add Address option (for IPv4))),

which allows several (ID, address) pairs to be announced to the other
endpoint. Multiple addresses can be added if there is sufficient TCP
option space, otherwise multiple TCP messages containing this option
will be sent. This option can be used at any time during a connection,
depending on when the sender wishes to enable multiple paths and/or
when paths become available.

Every address has an ID which can be used for address removal, and
therefore endpoints must cache the mapping between ID and address. This
is also used to identify Join Connection options (Section 4.2 (Starting
a New Subflow)) relating to the same address, even when address
translators are in use. The ID must be unique to the sender and
connection, per address, but its mechanism for allocating such IDs is
implementation-specific.

This option is shown for IPv4. For IPv6, the IPVer field will read 6,
and the length of the address will be 16 octets not 4, and thus the
length of the option will be 2 + (18 * number_of_entries). If there is
sufficient TCP option space, multiple addresses can be included, with
an ID following on immediately from the previous address, and their
existance can be inferred through the option length and version fields.
NB: by having a IPVer field, we get four free reserved bits. These
could be used in later versions of this protocol for expressing sender
policy, e.g. one bit for "use now" or similar, to differentiate between
subflows for backup purposes and those for throughput.

1 2 3
©01234567890123456789012345678901
R R R e e
| Kind=OPT_ADDR | Length | Address ID | IPVer |(resvd) |
B R —— B R —— B R —— Fommm oo Fommm oo

(... further ID/Version/Address fields as required ...)

Figure 6: Add Address option (for IPv4)

Ideally, we'd like to ensure the Add Address (and Remove Address)
option is sent reliably and in order to the other end. This is to
ensure that we don't close the connection when remove/add addresses are
processed in reverse order, and to ensure that all possible paths are
used. We note, however, that losing reliability and ordering it will
not break the multipath connections; they will just reduce the
opportunity to open multipath paths and to survive different patterns
of path failures.

Subflow level ACKs do not cover options, so if we want explicit
guarantees we need to build in other mechanisms. Solutions include

echoing the options and sending one option per RTT, or adding a
sequence number to the option which is explicitly acked in another
option. However, we feel these mechanisms' added complexity is not
worth the benefits they bring. There are two basic failure modes for
options: a) every new option gets stripped or b) some options get
stripped, randomly. The second option looks more like a middlebox
implementation error, so we believe it is not worth optimizing for. In
the first case, resending the option on a different subflow is the
thing to do. To achieve similar reliability without explicit ACKs, we
propose sending all Add/Remove Address options on all existing
subflows. If ordering is needed, we should only send one add/remove
option per RTT (modulo lost packets at subflow level).

If an address index is in use, the Add Address option SHOULD be
silently ignored.

4.3.2. Remove Address TOC

If, during the lifetime of a MPTCP connection, a previously-announced
address becomes invalid (e.g. if the interface disappears), the
affected endpoint should announce this so that the other endpoint can
remove subflows related to this address.

This is achieved through the Remove Address option (Figure 7 (Remove
Address option)), which will remove a previously-added address (or list
of addresses) from a connection and terminate any subflows currently
using that address.

The sending and receipt of this message should trigger the sending of
FINs by both endpoints on the affected subflow(s) (if possible), as a
courtesy to cleaning up middlebox state, but endpoints may clean up
their internal state without a long timeout.

Address removal is undertaken by ID, so as to permit the use of NATs
and other middleboxes. If there is no address at the requested ID, the
receiver will silently ignore the request.

The standard way to close a subflow (so long as it is still
functioning) is to use a FIN exchange as in regular TCP - for more
information, see Section 4.5 (Closing a Connection).

1 2 3
©1234567890123456789012345678901
[R [R [R +
| Kind=OPT_REMADR| Length = 2+n | Address ID |
o m e e e oo - o m e e e oo - o m e e e oo - +

Figure 7: Remove Address option

4.4. General MPTCP Operation TOC

This section discusses operation of MPTCP for data transfer. At a high
level, an MPTCP implementation will take one input data stream from an
application, and split it into one or more subflows, with sufficient
control information to allow it to be reassembled and delivered
reliably and in-order to the recipient application. The following
subsections define this behaviour in detail.

4.4.1. Data Sequence Numbering TOC

The data stream as a whole can be reassembled through the use of the
Data Sequence Mapping (Figure 8 (Data Sequence Mapping option)) option,
which defines the mapping from the data sequence number to the subflow
sequence number. This is used by the receiver to ensure in-order
delivery to the application layer. Meanwhile, the subflow-level
sequence numbers (i.e. the regular sequence numbers in the TCP header)
have subflow-only relevance. It is expected (but not mandated) that
SACK [6] (Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, “TCP
Selective Acknowledgment Options,” October 1996.) is used at the
subflow level to improve efficiency.

1 2 3
©1234567890123456789012345678901
S S e +
| Kind=OPT_DSN | Length | Data Sequence Number
B S B S B +
((length-8) octets) | Data-level Length (2 octets) |
. e +
Subflow Sequence Number (4 octets) |
T Y™ T +

Figure 8: Data Sequence Mapping option

This option specifies a full mapping from data sequence number to
subflow sequence number, informing the receiver that there is a one-to-
one correspondence between the two sequence spaces for the specified
length. The purpose of the explicit mapping is to assist with

compatibility with situations where TCP/IP segmentation or coalescing
is undertaken separately from the stack that is generating the data
flow (e.g. through the use of TCP segmentation offloading on network
interface cards, or by middleboxes such as performance enhancing
proxies).

The data sequence number specified in this option is absolute, whereas
the subflow sequence numbering is relative (the SYN at the start of the
subflow has subflow sequence number 1). This is to permit middleboxes
that may wish to alter sequence numbering, since the data stream itself
will not be affected.

TBD: if we used absolute sequence numbers that would make receiver code
a bit simpler, and would make it more difficult to inject data as the
attacker needs to guess both Data Sequence Number and Subflow Sequence
Number. How many middleboxes are there that change the sequence
numbers, and should we optimize for them?

A mapping is unique, in that the subflow sequence number is bound to
the data sequence number after the mapping has been processed. It is
not possible to change this mapping afterwards; however, the same data
sequence number can be mapped on different subflows for retransmission
purposes (see Section 4.4.4 (Sender Considerations)).

A receiver MUST NOT accept data for which it does not have a mapping to
the data sequence space. To do this, the receiver will not acknowledge
the unmapped data at subflow level. It is better to have a subflow fail
than to accept data in the wrong order. However, if there was a lost
packet in the subflow, the receiver SHOULD wait for this to be
retransmitted before closing the subflow, since the lost packet may
contain the necessary mapping information.

NOTE: if the subflow did ACK data for which it did not have a mapping,
it would be possible to use the DATA_ACK to detect when the mapping was
lost. This will likely not increase reliability, as the subflow will
likely drop all unknown options. In addition, the receiver is now
storing potentially useless data: what happens if the mapping never
arrives? Should the receiver have a timer to delete this data?

Data sequence numbers are always 64-bit quantities, and should be
maintained as such in implementations. If a connection is progressing
at a slow rate, so that protection against wrapped sequence numbers is
not required, and security requirements against blind insertion attacks
are not stringent, then it is permissible to include just the lower 32
bits of the sequence number in the OPT_DSN option as an optimization.
Implementations MUST accept this and implicitly promote it to a 64-bit
quantity. In all other cases, the full 64 bits should be included.
Security implications are discussed in Section 5 (Security
Considerations).

As with the standard TCP sequence number, the data sequence number
should not start at zero, but at a random value to make session
hijacking harder. This is done by including a Data Sequence Mapping
option along with the MP_CAPABLE option in the initial SYN (which
occupies one octet of data sequence space; see Section 4.1 (Connection
Initiation)). In this case, to save option space, neither the data-

level length nor the subflow sequence number fields are present in this
option, so the Length field will be the length of the Data Sequence
Number, plus two octets.

The Data Sequence Mapping does not need to be included in every MPTCP
packet, as long as the subflow sequence space in that packet is covered
by a mapping known at a receiver. This can be used to reduce overhead
in cases where the mapping is known in advance; one such case is when
there is a single subflow between the endpoints, another is when
segments of data are scheduled in larger than packet-sized chunks.

4.4.2. Data Acknowledgements TOC

In a perfect world, it would be possible to make do with only subflow-
level acknowledgements, with the sender keeping track of these
acknowledgements to derive what data has been successfully received. If
there are ever cases where the subflow data is dropped after it has
been acked (which may occur if a proxy middlebox fails, or if a buffer
fills on a host), the connection will break entirely since the sender
will assume the data has been received when it hasn't.

Therefore, MPTCP provides a connection-level acknowledgement (the
DATA_ACK) to act as a cumulative ACK for the connection as a whole.
This is analogous to the behaviour of the standard TCP cumulative ACK
in SACK - indicating how much data has been successfully received (with
no holes). This option, illustrated in Figure 9 (Connection-level
Acknowledgement (DATA ACK)), is expected to be included in every packet
by an MPTCP host.

1 2 3
©1234567890123456789012345678901
R R s +
| Kind=OPT_DACK | Length | Data Sequence Number
B S B S B +
((length-8) octets) |
e +

Figure 9: Connection-level Acknowledgement (DATA_ACK)

TOC

4.4.3. Receiver Considerations

Regular TCP advertises a receive window in each packet, telling the
sender how much data the receiver is willing to accept past the
cumulative ack. The receive window is used to implement flow control,
throttling down fast senders when receivers cannot keep up.

MPTCP also uses a unique receive window, shared between the subflows.
The idea is to allow any subflow to send data as long as the receiver
is willing to accept it; the alternative, maintaining per subflow
receive windows, could end-up stalling some subflows while others would
not use up their window.

The receive window is relative to the DATA_ACK. As in TCP, a receiver
MUST NOT shrink the right edge of the receive window (e.g. DATA_ACK +
receive window). The receiver will use the Data Sequence Number to tell
if a packet should be accepted at connection level.

When deciding to accept packets at subflow level, normal TCP uses the
sequence number in the packet and checks it against the allowed receive
window. With multipath, such a check is done using only the connection
level window. A sanity check could be performed at subflow level to
ensure that: SSN-SUBFLOW_ACK <= DSN - DATA_ACK.

When should segments be processed at connection level? The default is
to wait until they arrive in order at subflow level, and only then do
connection level processing. However, one can optimize for speed by
processing at connection level segments that have not yet been acked at
subflow level; the only requirement for this optimization is to have a
valid data sequence mapping for the segment. Note that the segment can
be dropped at subflow level afterwards (e.g. because it is out of order
and there is more pressure); the DATA_ACK ensure the connection can
make progress without having to wait for the subflow retransmission.

An issue will arise regarding how large a receive buffer to implement.
The lower bound would be the maximum bandwidth/delay product of all
paths, however this could easily fill when a packet is lost on a slower
subflow and needs to be retransmitted (see Section 4.4.4 (Sender
Considerations)). The upper bound would be the maximum RTT multiplied
by the maximum total bandwidth available. This will cover most
eventualities, but could easily become very large. It is FFS what the
best approach is.

4.4.4. Sender Considerations TOC

The sender should only consider receive window advertisements where the
largest sequence number allowed (i.e. DATA_ACK + receive window)
increases. This is important to allow using paths with different RTTs,
and thus different feedback loops.

The data sequence mapping allows senders to re-send data with the same
data sequence number on a different subflow. When doing this, an

endpoint must still retransmit the original data on the original
subflow, in order to preserve the subflow integrity (middleboxes could
replay old data, and/or could reject holes in subflows), and a receiver
will ignore these retransmissions. While this is clearly suboptimal,
for compatibility reasons this is the best behaviour. Optimisations
could be negotiated in future versions of this protocol.

This protocol specification does not mandate any mechanisms for
handling retransmissions, and much will be dependent upon local policy
(as discussed in Section 4.4.6 (Subflow Policy)). One can imagine
aggressive connection level retransmissions policies where every packet
lost at subflow level is retransmitted on a different subflow (hence
wasting bandwidth but possibly reducing application-to-application
delays), or conservative retransmission policies where connection-level
retransmits are only used after a few subflow level retransmission
timeouts occur.

Whichever the retransmission strategy, the sender MUST keep data in its
send buffer as long as the data has not been acked at connection level
and on all subflows it has been sent on. In this way, the sender can
always retransmit the data if needed, on the same subflow or on a
different one. A special case is when a subflow fails: the sender will
typically resend the data on other working subflows, and will keep
trying to retransmit the data on the failed subflow too. The sender
will declare the subflow failed after a predefined upper bound on
retransmissions is reached, and only then delete the outstanding data
segments.

A sender will maintain connection level timers for unacknowledged
segments. These timers will be based on the subflow timers, and will
guard against pro-active acking by middleboxes.

The send buffer must be, at the minimum, as big as the receive buffer,
to enable the sender to reach maximum throughput.

4.4.5. Congestion Control Considerations TOC

Different subflows in an MPTCP connection have different congestion
windows. To achieve resource pooling, it is necessary to couple the
congestion windows in use on each subflow, in order to push most
traffic to uncongested links. One algorithm for achieving this is
presented in [4] (Raiciu, C., Handley, M., and D. Wischik, “Coupled
Multipath-Aware Congestion Control,” October 2009.); the algorithm does
not achieve perfect resource pooling but is "safe" in that it is
readily deployable in the current Internet.

It is foreseeable that different congestion controllers will be
implemented for MPTCP, each aiming to achieve different properties in
the resource pooling/fairness/stability design space. Much research 1is
expected in this area in the near future.

Regardless of the algorithm used, the design of the MPTCP protocol aims
to provide the congestion control implementations sufficient
information to take the right decisions; this information includes, for
each subflow, which packets where lost and when.

4.4.6. Subflow Policy TOC

Within a local MPTCP implementation, a host may use any local policy it
wishes to decide how to share the traffic to be sent over the available
paths.

In the typical use case, where the goal is to maximise throughput, all
available paths will be used simultaneously for data transfer, using
coupled congestion control as described in [4] (Raiciu, C., Handley,
M., and D. Wischik, “Coupled Multipath-Aware Congestion Control,”
October 2009.). It is expected, however, that other use cases will
appear.

For instance, a possibility is an 'all-or-nothing' approach, i.e. have
a second path ready for use in the event of failure of the first path,
but alternatives could include entirely saturating one path before
using an additional path (the 'overflow' case). Such choices would be
most likely based on the monetary cost of links, but may also be based
on properties such as the delay or jitter of links, where stability is
more important than throughput. Application requirements such as these
are discussed in detail in [5] (Scharf, M. and A. Ford, “MPTCP
Application Interface Considerations,” October 2009.).

The ability to make effective choices at the sender requires full
knowledge of the path "cost", which is unlikely to be the case. There
is no mechanism in MPTCP for a receiver to signal their own particular
preferences for paths, but this is a necessary feature since receivers
will often be the multihomed party, and may have to pay for metered
incoming bandwidth. Instead of incorporating complex signalling, it is
proposed to use existing TCP features to signal priority implicitly. If
a receiver wishes to keep a path active as a backup but wishes to
prevent data being sent on that path, it could stop sending ACKs for
any data it receives on that path. The sender would interpret this as
severe congestion or a broken path and stop using it. We do not
advocate this method, however, since this will result in unnecessary
retransmissions.

Therefore, a proposal is to use ECN [7] (Ramakrishnan, K., Floyd, S.,
and D. Black, “The Addition of Explicit Congestion Notification (ECN)
to IP,” September 2001.) to to provide fake congestion signals on paths
that a receiver wishes to stop being used for data. This has the
benefit of causing the sender to back off without the need to
retransmit data unnecessarily, as in the case of a lost ACK. This
should be sufficient to allow a receiver to express their policy,

although does not permit a rapid increase in throughput when switching
to such a path.

TBD: This is clearly an overload of the ECN signal, and as such other
solutions, such as explicitly signalling path operation preferences
(such as in the reserved bits of certain TCP options, or through
entirely new options) may be a preferred solution.

4.5. Closing a Connection TOC

Under single path TCP, a FIN signifies that the sender has no more data
to send. In order to allow subflows to operate independently, however,
and with as little change from regular TCP as possible, a FIN in MPTCP
only affects the subflow on which it is sent. This allows nodes to
exercise considerable freedom over which paths are in use at any one
time. The semantics of a FIN remain as for regular TCP, i.e. it is not
until both sides have ACKed each other's FINs that the subflow is fully
closed.

When an application calls close() on a socket, this indicates that it
has no more data to send, and for regular TCP this would result in a
FIN on the connection. For MPTCP, an equivalent mechanism is needed,
and this is the DATA_FIN. This option, shown in Figure 10 (DATA FIN
option), is attached to a regular FIN option on a subflow.

A DATA_FIN is an indication that the sender has no more data to send,
and as such can be used as a rapid indication of the end of data from a
sender. A DATA_FIN, as with the FIN on a regular TCP connection, is a
unidirectional signal.

A DATA_FIN occupies one octet (the final octet) of Data Sequence Number
space. This number is included in the option, and will be ACKed at data
level to ensure reliable delivery.

The DATA_FIN is an optimisation to rapidly indicate the end of a data
stream and clean up state associated with a MPTCP connection,
especially when some subflows may have failed. Specifically, when a
DATA_FIN has been received, IF all data has been successfully received,
timeouts on all subflows MAY be reduced. Similarly, when sending a
DATA_FIN, once all data (including the DATA_FIN, since it occupies one
octet of data sequence space) has been acknowledged, FINs must be sent
on every subflow. This applies to both endpoints, and is required in
order to clean up state in middleboxes.

There are complex interactions, however, between a DATA_FIN and subflow
properties:

*A DATA_FIN MUST only be sent on a packet which also has the FIN
flag set.

*When DATA_FIN is sent, it should be sent on all subflows.

*There is a one-to-one mapping between the DATA_FIN and the
subflow's FIN flag (and its associated sequence space and thus
its acknowlegement). In other words, when a subflow's FIN flag
has been acknowledged, the associated DATA_FIN is also
acknowledged.

*The DATA_ACK (Section 4.4.2 (Data Acknowledgements)), which will
be included with a DATA_FIN, is used to verify that all data has
been successfully received.

It should be noted that an endpoint may also send a FIN on an
individual subflow to shut it down, but this impact is limited to the
subflow in question. If all subflows have been closed with a FIN, that
is equivalent to having closed the connection with a DATA_FIN.

The full eight-byte data sequence number is always included in a
DATA_FIN.

1
012345678901 23456789012345678901
o m e e e e oo - o m e e e e oo - o m e e e e oo - R +
| Kind=OPT_DFIN | Length=10 | Data Sequence Number (8B)
B R B R B R B S +
Data Sequence Number (contd.)
o m e e e e oo - o m e e e e oo - o m e e e e oo - o m e +

Figure 10: DATA_FIN option

4.6. Error Handling TOC

TBD

Unknown token in MPTCP SYN should equate to an unknown port, e.g. a TCP
reset? We should make this as silent and tolerant as possible. Where
possible, we should keep this close to the semantics of TCP. However,
some MPTCP-specific issues such as where a data sequence number is
missing from a subflow, will definitely need MPTCP-specific errors
handling in those cases.

5. Security Considerations TOC

TBD

(Token generation, handshake mechanisms, new subflow authentication,
etc...)

A generic threat analysis for the addition of multipath capabilities to
TCP is presented in [8] (Bagnulo, M., “Threat Analysis for Multij-
addressed/Multi-path TCP,” February 2010.). The protocol presented here
has been designed to minimise or eliminate these identified threats. (A
future version of this document will explicitly address the presented
threats).

The development of a TCP extension such as this will bring with it many
additional security concerns. We have set out here to produce a
solution that is "no worse" than current TCP, with the possibility that
more secure extensions could be proposed later.

The primary area of concern will be around the handshake to start new
subflows which join existing connections. The proposal set out in
Section 4.1 (Connection Initiation) and Section 4.2 (Starting a New
Subflow) is for the initiator of the new subflow to include the token
of the other endpoint in the handshake. The purpose of this is to
indicate that the sender of this token was the same entity that
received this token at the initial handshake.

One area of concern is that the token could be simply brute-forced. The
token must be hard to guess, and as such could be randomly generated.
This may still not be strong enough, however, and so the use of 64 bits
for the token would alleviate this somewhat.

The two tokens don't need to be the same length. Token B could be 64
bits and token A 32 bits. If JOIN always contains Token B, this would
provide adequate security while saving scarce space in the initial SYN,
where it is most at a premium.

Use of these tokens only provide an indication that the token is the
same as at the initial handshake, and does not say anything about the
current sender of the token. Therefore, another approach would be to
bring a new measure of freshness in to the handshake, so instead of
using the initial token a sender could request a new token from the
receiver to use in the next handshake. Hash chains could also be used
for this purpose.

Yet another alternative would be for all SYN packets to include a data
sequence number. This could either be used as a passive identifier to
indicate an awareness of the current data sequence number (although a
reasonable window would have to be allowed for delays). Or, the SYN
could form part of the data sequence space - but this would cause
issues in the event of lost SYNs (if a new subflow is never
established), thus causing unnecessary delays for retransmissions.

T0C

6. Interactions with Middleboxes

Multipath TCP will be deployed in a network that no longer provides
just basic datagram delivery. A miriad of middleboxes are deployed to
optimize various perceived problems with the Internet protocols: NATs
primarily address space shortage [9] (Srisuresh, P. and K. Egevang,
“Traditional IP Network Address Translator (Traditional NAT),”

January 2001.), Performance Enhancing Proxies (PEPs) optimize TCP for
different link characteristics [10] (Border, J., Kojo, M., Griner, J.,
Montenegro, G., and Z. Shelby, “Performance Enhancing Proxies Intended
to Mitigate Link-Related Degradations,” June 2001.), firewalls [11]
(Freed, N., “Behavior of and Requirements for Internet Firewalls,”
October 2000.) and intrusion detection systems try to block malicious
content from reaching a host, and traffic normalizers [12] (Handley,
M., Paxson, V., and C. Kreibich, “Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End Protocol Semantics,” 2001.)
ensure a consistent view of the traffic stream to IDSes and hosts.

All these middleboxes optimize current applications at the expense of
future applications. In effect, future applications must mimic existing
ones if they want to be deployed. Further, the precise behaviour of all
these middleboxes is not clearly specified, and implementation errors
make matters worse, raising the bar for the deployment of new
technologies.

Multipath TCP was designed to be deployable in the present world. Its
design takes into account "reasonable" existing middlebox behaviour. In
this section we outline a few representative middlebox-related failure
scenarios and show how multipath TCP handles them. Next, we list the
design decisions multipath has made to accomodate the different
middleboxes.

A primary concern is our use of new TCP options. Most middleboxes
should just forward packets with new options unchanged, yet there are
some that don't. These we expect will either strip options and pass the
data, drop packets with new options, copy the same option into multiple
segments (e.g. when doing segmentation) or drop options during segment
coalescing.

MPTCP SYN packets contain the MPC option to indicate the use of MPTCP.
When the middlebox drops the packet containing the MPC option either on
the outgoing or the return path, the connection will fail. Host A
SHOULD fall back to TCP in such cases (studies suggest that few
middleboxes drop packets with unknown options). The same applies for
subflow setup.

The second case is when the middleboxes strip options. Let's first
discuss behaviour for initial connection SYNs (see Figure 11
(Connection Setup with Middleboxes that Strip Options from Packets)).
If the option is stripped from the packet on the outgoing path, the
connection falls back to regular TCP. If the option is stripped on the
return path, host B will wait for a DATA_ACK of its connection SYN,
retransmitting the SYN/ACK until it declares the connection failed.
Host A thinks it is talking to a regular host, and may send data

segments, but these will not be acked by host B as they do not have the
proper mapping. Hence the connection fails. Host A SHOULD fall back to
regular TCP after the connection times out.

Subflow SYNs contain the OPT_JOIN option. If this option is stripped on
the outgoing path the SYN will appear to be a regular SYN to host B.
Depending on whether there is a listening socket on the target port,
host B will reply either with SYN/ACK or RST (subflow connection
fails). When host A receives the SYN/ACK it sends a RST because the
SYN/ACK does not contain the OPT_JOIN option and its token. Either way,
the connection fails.

| Middlebox M |

I I I
| SYN/ACK | SYN/ACK(OPT_MPC) |

b) OPT_MPC option stripped on return path

Figure 11: Connection Setup with Middleboxes that Strip Options from Packets

We now examine data flow with MPTCP, assuming the flow is correctly
setup which implies the options in the SYN packets were allowed through
by the relevant middleboxes. If options are allowed through and there
is no resegmentation or coalescing to TCP segments, multipath TCP flows
can proceed without problems.

If options are stripped in either direction by middleboxes (this is
unlikely, as the SYN options did get through), the particular subflow
will timeout repeatedly while waiting for a DATA_ACK or subflow-level
ACK, and will be closed. If the subflow is the initial one, host A
SHOULD fall back to regular TCP.

We can further analyze what happens when a fraction of options is
stripped. The multipath subflow should survive losing a fraction of
DATA_ACKs and data sequence mappings, but performance will degrade as
the fraction of stripped options increases. We do not expect such cases

to appear in practice, though: most middleboxes will either strip all
options or let them all through.

We end this section with a list of middlebox classes, their behaviour
and the elements in the MPTCP design that allow operation through such
middleboxes. Issues surrounding dropping packets with options or
stripping options were discussed above, and are not included here:

*NAT: will prevent flow/subflow setup when the server does not
have a public address. MPTCP assumes the server has at least one
public address (or the client uses standard NAT traversal to
reach it) that is used to setup the connection. If uses Add
Address messages to signal the existence of other addresses.

*Performance Enhancing Proxies: might pro-actively ACK data and
then fail. MPTCP uses the DATA_ACK to make progress when one of
its subflows fails in this way. This is why MPTCP does not use
subflow ACKs to infer connection level ACKs.

*Traffic Normalizers: do not allow holes in sequence numbers,
cache packets and retransmit the same data. MPTCP looks like
standard TCP on the wire, and will not retransmit different data
on the same subflow sequence number.

*Segmentation/Coalescing (e.g. tcp segmentation offloading, etc):
might copy options between packets and might strip some options.
MPTCP's data sequence mapping includes the subflow sequence
number instead of using the sequence number in the segment. In
this way, the mapping is independent of the packets that carry
it.

*Firewalls: might perform sequence number randomization on
outgoing connections. MPTCP uses relative sequence numbers in
data sequence mapping to cope with this.

7. Interfaces TOC

TBD

Interface with applications, interface with TCP, interface with lower
layers...

Discussion of interaction with applications (both in terms of how MPTCP
will affect an application's assumptions of the transport layer, and
what API extensions an application may wish to use with MPTCP) are
discussed in [5] (Scharf, M. and A. Ford, “MPTCP Application Interface
Considerations,” October 2009.).

8. Open Issues TOC

This specification is a work-in-progress, and as such there are many
issues that are still to be resolved. This section lists many of the
key open issues within this specification; these are discussed in more
detail in the appropriate sections throughout this document.

*Best handshake mechanisms (Section 4.1 (Connection Initiation)).
This document contains a proposed scheme by which connections and
subflows can be set up. It is felt that, although this is "no
worse than regular TCP", there could be opportunities for
significant improvements in security that could be included
(potentially optionally) within this protocol.

*Issues around simultaneous opens, where both ends attempt to
create a new subflow simultaneously, need to be investigated and
behaviour specified.

*Appropriate mechanisms for controlling policy/priority of subflow
usage (specifically regarding controlling incoming traffic,
Section 4.4.6 (Subflow Policy)). The ECN signal is currently
proposed but other alternatives, including per subflow receive
windows or options indicating path properties, could be employed
instead.

*How much control do we want over subflows from other subflows
(e.g. closing when interface has failed)? Do we want to
differentiate between subflows and addresses (Section 4.2
(Starting a New Subflow))?

*Do we want a connection identifier in every packet? E.g. would it
make the implementation of an IDS easier?

*Should we do signaling in the TCP payload, rather than options as
proposed in this draft? We discuss this alternative in the
appendix.

*Should we explicitly support SYN cookies? With the current
design, MPTCP would be downgraded to basic TCP if SYN cookies
were used. Is it worth designing the protocol to allow stateless
server handshake?

*Instead of an Address ID in JOIN, are there any cases where a
Subflow ID (i.e. unique to the subflow) would be useful instead?
For example, two addresses which become NATted to the same
address?

9. Acknowledgements TOC

The authors are supported by Trilogy (http://www.trilogy-project.org),
a research project (ICT-216372) partially funded by the European
Community under its Seventh Framework Program. The views expressed here
are those of the author(s) only. The European Commission is not liable
for any use that may be made of the information in this document.

The authors gratefully acknowledge significant input into this document
from many members of the Trilogy project, notably Iljitsch van Beijnum,
Lars Eggert, Marcelo Bagnulo Braun, Robert Hancock, Pasi Sarolahti,
Olivier Bonaventure, Toby Moncaster, Philip Eardley, Andrew McDonald
and Sergio Lembo.

10. TIANA Considerations TOC

This document will make a request to IANA to allocate new values for
TCP Option identifiers, as follows:

Symbol Name Ref Value
. Section 4.1 (Connection
OPT_MPCAP Multipath Capable (. . (tbc)
Initiation)
Section 4.3.1 (Address
OPT_ADDR Add Address . ((tbc)
Advertisement)
OPT_REMADR Remove Address Section 4.3.2 (Remove Address) (tbhc)
OPT_JOIN Join Connection Section 4.2 (Starting a New (thc)
- Subflow)
Data Sequence Section 4.4 (General MPTCP
OPT_DSN . . (thc)
Mapping Operation)
Section 4.4 (General MPTCP
OPT_DACK DATA_ACK . (tbc)
Operation)
OPT_DFIN DATA_FIN Section 4.5 (Closing a Connection) (thc)

Table 1: TCP Options for MPTCP

T0C

11. References

11.1. Normative References

[1]

TOC
Bradner, S., “Key words for use in RFCs to Indicate Requirement

Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).

11.2. Informative References

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[16]

[11]

[12]

[13]

TOC
Postel, J., “Transmission Control Protocol,” STD 7, RFC 793,
September 1981 (TXT).
Ford, A., Raiciu, C., Barre, S., and J. Iyengar,
“Architectural Guidelines for Multipath TCP Development,”
draft-ietf-mptcp-architecture-00 (work in progress),
March 2010 (TXT).
Raiciu, C., Handley, M., and D. Wischik, “Coupled Multipath-
Aware Congestion Control,” draft-raiciu-mptcp-congestion-00
(work in progress), October 2009 (TXT).
Scharf, M. and A. Ford, “MPTCP Application Interface
Considerations,” draft-scharf-mptcp-api-00 (work in progress),
October 2009 (TXT).
Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, October 1996
(TXT, HTML, XML).
Ramakrishnan, K., Floyd, S., and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” RFC 3168,
September 2001 (TXT).
Bagnulo, M., “Threat Analysis for Multi-addressed/Multi-path
TCP,"” draft-ietf-mptcp-threat-00 (work in progress),
February 2010 (TXT).
Srisuresh, P. and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” RFC 3022, January 2001 (TXT).
Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
Shelby, “Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations,” RFC 3135, June 2001 (TXT).
Freed, N., “Behavior of and Requirements for Internet
Firewalls,” RFC 2979, October 2000 (TXT).
Handley, M., Paxson, V., and C. Kreibich, “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics,” Usenix Security 2001, 2001.
Eddy, W. and A. Langley, “Extending the Space Available for
TCP Options,” draft-eddy-tcp-lo0-04 (work in progress),
July 2008 (TXT).

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc793
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.ietf.org/internet-drafts/draft-ietf-mptcp-architecture-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-mptcp-architecture-00.txt
http://www.ietf.org/internet-drafts/draft-raiciu-mptcp-congestion-00.txt
http://www.ietf.org/internet-drafts/draft-raiciu-mptcp-congestion-00.txt
http://www.ietf.org/internet-drafts/draft-raiciu-mptcp-congestion-00.txt
http://www.ietf.org/internet-drafts/draft-scharf-mptcp-api-00.txt
http://www.ietf.org/internet-drafts/draft-scharf-mptcp-api-00.txt
http://www.ietf.org/internet-drafts/draft-scharf-mptcp-api-00.txt
mailto:mathis@psc.edu
mailto:mahdavi@psc.edu
mailto:floyd@ee.lbl.gov
mailto:allyn@eng.sun.com
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc2018
http://www.rfc-editor.org/rfc/rfc2018.txt
http://xml.resource.org/public/rfc/html/rfc2018.html
http://xml.resource.org/public/rfc/xml/rfc2018.xml
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.ietf.org/internet-drafts/draft-ietf-mptcp-threat-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-mptcp-threat-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-mptcp-threat-00.txt
http://tools.ietf.org/html/rfc3022
http://tools.ietf.org/html/rfc3022
http://www.rfc-editor.org/rfc/rfc3022.txt
http://tools.ietf.org/html/rfc3135
http://tools.ietf.org/html/rfc3135
http://www.rfc-editor.org/rfc/rfc3135.txt
http://tools.ietf.org/html/rfc2979
http://tools.ietf.org/html/rfc2979
http://www.rfc-editor.org/rfc/rfc2979.txt
http://www.usenix.org/events/sec01/full_papers/handley/handley.pdf
http://www.usenix.org/events/sec01/full_papers/handley/handley.pdf
http://www.usenix.org/events/sec01/full_papers/handley/handley.pdf
http://www.ietf.org/internet-drafts/draft-eddy-tcp-loo-04.txt
http://www.ietf.org/internet-drafts/draft-eddy-tcp-loo-04.txt
http://www.ietf.org/internet-drafts/draft-eddy-tcp-loo-04.txt

Appendix A. Notes on use of TCP Options TOC

The TCP option space is limited due to the length of the Data Offset
field in the TCP header (4 bits), which defines the TCP header length
in 32-bit words. With the standard TCP header being 20 bytes, this
leaves a maximum of 40 bytes for options, and many of these may already
be used by options such as timestamp and SACK.

We have performed a brief study on the commonly used TCP options in
both SYN, data packets and pure ACK packets, and found that there is
enough room to fit all the options we propose using in this draft.

SYN packets typically include MSS, window scale, sack permitted and
timestamp options. Together these sum to 19B. The multipath capable
(MPC) option requires a max of 16B, and the Join option requires 8B, so
they both fit the existing space.

TCP data packets typically carry timestamp options in every packet,
taking 10B. That leaves 30B which are enough to encode the data
sequence mapping (max 16B) and the DATA_ACK if the flow is
bidirectional (max 10B).

Pure ACKs in TCP typically contain only timestamps (10B). Here,
multipath TCP typically needs to encode the DATA_ACK (max 10B).
Ocasionally acks will contain SACK information. Depending on the number
of lost packets, SACK may utilize the entire option space. We propose
reducing the number of SACK blocks by one to accomodate the DATA_ACK.
Encoding Add/Remove address options uses at most 10B (for IPv6
addresses). These will fit in data packets if the DATA_ACK is not
present. Otherwise, the endpoint can insert pure ACKs that contain the
add address option. Finally, if SACK information is included in the
data packets, one further block can be removed to accomodate the add
address option.

All the new options fit in the space available yet there is little room
for adding new options. We note that if 8B data sequence numbers are
used, PAWS is no longer needed. Hence the use for timestamps is limited
to providing RTT measurements for retransmitted packets. As loss rates
are typically low, we believe we can just stop using timestamps,
claiming 10B of options space on all packets.

Alternatively, we could use a TCP option to increase the option space,
such as that proposed in [13] (Eddy, W. and A. Langley, “Extending the
Space Available for TCP Options,” July 2008.). The proposal extends the
4 bit header to 16 bits. Such an option could only be used between
nodes that support it, however, and so long options could not be used
until a handshake is complete.

Finally, there are issues with options reliability. As options can also
be sent on pure ACKs, these are not reliably sent. This is not an issue
for DATA_ACK due to their cumulative nature, but may be an issue for
add/remove address options. Here we favour redundant transmissions at
the sender (whether on multiple paths, or on the same path on a number

of ACKs). The cases where options are stripped by middleboxes are
discussed in Section 6 (Interactions with Middleboxes).

Appendix B. Signaling Control Information in the Payload TOC

Appendix C. Resync Packet TOC

In earlier versions of this draft, we proposed the use of a "re-sync"
option that would be used in certain circumstances when a sender needs
to instruct the receiver to skip over certain subflow sequence numbers
(i.e. to treat the specified sequence space as having been received and
acknowledged).

The typical use of this option will be when packets are retransmitted
on different subflows, after failing to be acknowledged on the original
subflow. In such a case, it becomes necessary to move forward the
original subflow's sequence numbering so as not to later transmit
different data with a previously used sequence number (i.e. when more
data comes to be transmitted on the original subflow, it would be
different data, and so must not be sent with previously-used (but
unacknowledged) sequence numbering).

The rationale for needing to do this is two-fold: firstly, when ACKs
are received they are for the subflow only, and the sender infers from
this the data that was sent - if the same sequence space could be
occupied by different data, the sender won't know whether the intended
data was received. Secondly, certain classes of middleboxes may cache
data and not send the new data on a previously-seen sequence number.
This option was dropped, however, since some middleboxes may get
confused when they meet a hole in the sequence space, and do not
understand the resync option. It is therefore felt that the same data
must continue to be retransmitted on a subflow even if it is already
received after being retransmitted on another. There should not be a
significant performance hit from this since the amount of data involved
and needing to be retransmitted multiple times will be relatively
small.

Therefore, it is necessary to 're-sync' the expected sequence numbering
at the receiving end of a subflow, using the following TCP option. This
packet declares a sequence number space (inclusive) which the receiving
node should skip over, i.e. if the receiver's next expected sequence
number was previously within the range start_seq_num to end_seqg_num,
move it forward to end_seq_num + 1.

This option will be used on the first new packet on the subflow that
needs its sequence numbering re-synchronised. It will be continue to be
included on every packet sent on this subflow until a packet containing

this option has been acknowledged (i.e. if subflow acknowledgements
exist for packets beyond the end sequence number). If the end sequence
number is earlier than the current expected sequence number (i.e. if a
resync packet has already been received), this option should be
ignored.

1 2 3
012345678901234567890123456789601
[[oo oo o o oo +
| Kind=OPT_RESYNC| Length = 10 | Start Sequence Number
o m e e e e oo - o m e e e e oo - o m e e e e e e +
(4 octets) | End Sequence Number
B R B R s oo oo e oooo---- +
(4 octets) |
o m e e e e e e e e e m oo +

Figure 12: Resync option

Appendix D. Changelog TOC

This section maintains logs of significant changes made to this
document between versions.

D.1. Changes since draft-ford-mptcp-multiaddressed-02 TOC

*Remote Version and Address ID in MP_CAPABLE in Section 4.1
(Connection Initiation), and make ISN be 6 bytes.

*Data sequence numbers are now always 8 bytes. But in some cases
where it is unambiguous it is permissible to only send the lower
4 bytes if space is at a premium.

*Clarified behaviour of OPT_JOIN in Section 4.2 (Starting a New
Subflow).

*Added DATA_ACK to Section 4.4 (General MPTCP Operation).

*Clarified fallback to non-multipath once a non-MP-capable SYN is
sent.

Authors' Addresses
TOC

Alan Ford
Roke Manor Research
0l1ld Salisbury Lane
Romsey, Hampshire S051 0zZN
UK
Phone: +44 1794 833 465
Email: alan.ford@roke.co.uk

Costin Raiciu
University College London
Gower Street
London WC1E 6BT
UK
Email: c.raiciu@cs.ucl.ac.uk

Mark Handley
University College London
Gower Street
London WC1E 6BT
UK
Email: m.handley@cs.ucl.ac.uk

mailto:alan.ford@roke.co.uk
mailto:c.raiciu@cs.ucl.ac.uk
mailto:m.handley@cs.ucl.ac.uk

	TCP Extensions for Multipath Operation with Multiple Addressesdraft-ford-mptcp-multiaddressed-03
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Design Assumptions
	1.2. Layered Representation
	1.3. Operation Summary
	1.4. Requirements Language
	2. Terminology
	3. Semantic Issues
	4. MPTCP Protocol
	4.1. Connection Initiation
	4.2. Starting a New Subflow
	4.3. Address Knowledge Exchange (Path Management)
	4.3.1. Address Advertisement
	4.3.2. Remove Address
	4.4. General MPTCP Operation
	4.4.1. Data Sequence Numbering
	4.4.2. Data Acknowledgements
	4.4.3. Receiver Considerations
	4.4.4. Sender Considerations
	4.4.5. Congestion Control Considerations
	4.4.6. Subflow Policy
	4.5. Closing a Connection
	4.6. Error Handling
	5. Security Considerations
	6. Interactions with Middleboxes
	7. Interfaces
	8. Open Issues
	9. Acknowledgements
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References
	Appendix A. Notes on use of TCP Options
	Appendix B. Signaling Control Information in the Payload
	Appendix C. Resync Packet
	Appendix D. Changelog
	D.1. Changes since draft-ford-mptcp-multiaddressed-02
	Authors' Addresses

