
Public Notary Transparency Working Group B. Ford
Internet-Draft EPFL
Intended status: Experimental October 20, 2015
Expires: April 22, 2016

Collectively Witnessing Log Servers in CT
draft-ford-trans-witness-00

Abstract

 This document proposes a backward-compatible extension to CT enabling
 log servers to obtain compact collective signatures from any number
 of well-known "witness" servers, which clients can check without
 gossip to verify that log server records have been widely witnessed.
 Collective signatures proactively protect clients from man-in-the-
 middle attackers who may have stolen the private keys of one or more
 log servers, even if the attacker controls the client's network
 access, the client is unwilling to gossip for privacy reasons, or the
 client does not wish to incur the network bandwidth and/or latency
 costs of gossip.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Ford Expires April 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Collective Witnessing in CT October 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction and Rationale 2
1.1. The Challenge of Keeping Logs Honest 2
1.2. Proactive Witnessing of Logs 4

 1.3. Efficient Proactive Witnessing with Collective Signatures 5
2. STH Collective Signing Extension 5
2.1. Availability and Signing Thresholds 6
2.2. Identity of a Log Server's Witness Group 6
2.3. Evolution of Witness Groups 7

3. Security Considerations 8
4. References . 8
4.1. Normative References 8
4.2. Informative References 8

 Author's Address . 8

1. Introduction and Rationale

 Certificate Transparency's main security benefit fundamentally relies
 on public logging of certificates, allowing certificate owners and
 clients to cross-check and detect certificate misuse. The log
 servers responsible for this public logging unfortunately represent a
 new potential class of Single Point of Failure (SPOF), whose private
 keys may become a new potentially attractive hacking target. For
 example, if a hacker or powerful adversary were to obtain both a CA's
 private key and a log server's private key, then the combination of
 those two keys can potentially be used in Man-In-The-Middle (MITM)
 attacks against unwitting clients by creating not only falsified
 certificates but falsified logs (including fake SCTs and STHs) solely
 for the consumption of the victim.

1.1. The Challenge of Keeping Logs Honest

 While CT includes a gossip protocol to help "keep logs honest" and
 enable nodes to cross-check their worldviews, gossip can protect only
 well-connected hosts that are able to, willing to, and can devote the
 time to communicate regularly with multiple independent monitor and
 auditor servers on the Internet in order to cross-check the structure
 and consistency of observed logs. This well-connectedness assumption
 can fail to hold - or fail to be useful - in a variety of scenarios:

Ford Expires April 22, 2016 [Page 2]

Internet-Draft Collective Witnessing in CT October 2015

 o If the client is located in a repressive country in which
 essentially all available network access is controlled by a
 government-imposed firewall that persistently MITM-attacks one or
 more clients and blocks access to independent auditors and
 monitors outside the country, then the attacker can separate the
 victim clients from the well-connected Internet and prevent
 detection for a potentially extended period of time (e.g., until
 one of the targeted clients leaves the country).

 o If the attacked client is a non-mobile device (e.g., a desktop PC)
 always connected via the same attacker-compromised network access
 path, then an attacker can similarly keep the victim persistently
 oblivious to the difference between its CT worldview and the well-
 connected world's.

 o Even when feasible, unrestricted gossip can compromised privacy,
 forcing on clients an unfortunate choice between greater security
 and worse privacy (by using one or more trusted auditors that
 effectively learn the client's browsing behavior) or greater
 privacy and worse security (by declining the use of a trusted
 auditor and hence being unable to cross-check SCTs that may have
 been signed by compromised log-server keys).

 o Even when feasible, gossip takes time and consumes network
 bandwidth, making it impractical for most applications (e.g., web
 browsers) to delay the acceptance and use of a certificate until
 gossip-based cross-checking of the certificate has been performed.
 This inherently leaves a window of vulnerability between exploit
 and detection, which a savvy attacker can use to obtain the "keys
 to the kingdom" within even a short window (e.g., a critical
 password communicated via SSL).

 o It has been proposed to use CT to help increase the security of
 software distributions as it does for certificates - but if an
 attacker can use a stolen pair of CA and log-server keys "even
 once" to convince a victim to accept a falsified software update,
 then that software update can simply disable CT or more subtly
 modify its configuration to ensure that future gossip by the
 victim will not notice anything amiss or raise an alarm.

 o If the client is a stateless mobile device - such as a laptop
 running the Tor-based Tails software distribution used for
 anonymous communication by journalists, whistleblowers, and
 dissidents - then the mobile device might be MITM-attacked while
 the victim is at a compromised Wifi cafe, and fail to detect any
 inconsistency in CT's worldview when it is next booted at a
 different network access point due to the (deliberate) loss of
 state.

Ford Expires April 22, 2016 [Page 3]

Internet-Draft Collective Witnessing in CT October 2015

 One existing way to raise the bar to the attacker is to require CT
 certificates to contain SCTs from multiple independent, well-known
 log servers. Indeed, Google Chrome already requires three SCTs for
 EV certificates. However, it is not clear that hacking or otherwise
 obtaining even three log server keys is necessarily out of the reach
 of some powerful but realistic attackers. Furthermore, if any
 version of any CT-enabled client accepts (perhaps non-EV)
 certificates with a single SCT, then a MITM attacker holding even a
 single log-server key can form a "downgrade attack", impersonating a
 site whose proper certificates normally have multiple SCTs but
 presenting the victim with a fake (non-EV) certificate with only one
 SCT.

1.2. Proactive Witnessing of Logs

 To strengthen CT and address scenarios such as those above, we would
 prefer that clients (as potential attack victims) be able to check
 proactively, rather than only retroactively via gossip, whether an
 SCT or the log tree it resides in has been "widely witnessed" in
 public, e.g., by the well-connected cloud of audit servers that CT
 already assumes will exist to check each log server for misbehavior
 or equivocation. This would ensure that even a MITM attacker holding
 a CA key and one or a few log-server keys could not make a client
 accept a fake log without also compromising a (likely significantly
 larger) number of each log's cloud of auditors as well.

 As a first straw-man solution, we might demand that log servers not
 only sign SCTs themselves but, while generating an SCT, communicate
 with a threshold number of servers among some well-known group of
 "co-signing auditors" which we will call "witnesses", and include
 those witnesses' signatures in the SCT along with the log-server's
 own signature. This would multiply the size of each SCT by a
 potentially substantial factor, however, and similarly multiply the
 computational cost on clients to check these signatures (which may
 result in a non-trivial power cost on mobile devices). Furthermore,
 the log-server would need to delay the signing of each SCT to allow
 for active, online communication with its witnesses, which may add
 unacceptable delays to SCT creation and may create scalability and
 performance challenges if the log-server needs to create and log new
 SCTs at a high rate.

 A second straw-man solution addresses the last problem above by
 expecting log servers to obtain a number of co-signatures from
 witnesses only on STHs, rather than on individual SCTs. This keeps
 SCT creation quick and lightweight, imposing online communication
 costs on only the relatively infrequent and delay-insensitive STH
 generation operation, which needs to be done only once every few
 minutes to log an arbitrarily large batch of new SCTs. Obtaining co-

Ford Expires April 22, 2016 [Page 4]

Internet-Draft Collective Witnessing in CT October 2015

 signatures on STHs in this way will protect clients from the types of
 MITM attacks discussed above provided a mechanism is also added to CT
 by which clients can request from web sites and check inclusion
 proofs to verify the relationship between a (singly-signed) SCT and a
 (multiply co-signed) STH. However, while this is a step forward, it
 still multiplies the number of expensive signature-checks clients
 must perform when receiving such an STH from a server.

1.3. Efficient Proactive Witnessing with Collective Signatures

 To make proactive witnessing practical and efficient at larger
 numbers of witnesses - and hence higher security levels - we would
 like to "compress" all of an STH's (potentially many) witness
 signatures into one. Multisignatures, theoretically well-understood
 variations of standard signing schemes, already provide this
 capability in principle [MULTISIG]. These schemes do not generally
 scale beyond small signing groups, providing a limited advantage over
 simply attaching multiple separate signatures as discussed above.

 However, methods are now available to scale multisignature generation
 efficiently to hundreds or thousands of participants, through the use
 of communication trees and other optimizations [COSI]. In this
 approach, a log server coordinates with a potentially large number of
 participating witness servers to form and attach a single collective
 witness signature to each STH. Clients verifying the STH (or an SCT
 with an inclusion proof rooted in the STH) need normally perform only
 two expensive public-key operations: one to check the STH's
 conventional individual log-server signature, the other to check the
 collective signature of the witnesses. The log-server's individual
 signature could in principle be rolled into the collective signature
 as well, but keeping them separate simplifies backward compatibility.

2. STH Collective Signing Extension

 To support collective signing of STHs, we specify a new
 SthExtensionType (value TBD), whose content is a collective signature
 generated by one round of the CoSi colllective signing protocol
 [COSI] initiated by the log-server but run with the cooperation of
 the log-server's well-known group of public witnesses.

 CT's current mechanism for STH extensions presents a minor challenge
 in that all extensions are defined as being covered by the log
 server's conventional digital signature (see the definition of
 SignedTreeHead). This implies that to include a collective witness
 signature as an SthExtension, the log-server must form the collective
 witness signature before computing its own individual signature over
 the full STH content including the witness signature. This in turn
 implies that the log-server must invoke the CoSi protocol to sign a

Ford Expires April 22, 2016 [Page 5]

Internet-Draft Collective Witnessing in CT October 2015

 slightly different version of the SignedTreeHead content, with the
 collective witness signature extension omitted (necessarily since it
 hasn't been computed yet).

 A potentially cleaner way to address this issue would be to divide
 the SthExtensionType namespace into designated ranges denoting
 "signed" versus "unsigned" extensions, the latter being explicitly
 excluded from the message on which either individual signatures or
 collective signatures are computed. This would allow the STH's
 individual and collective signature to be computed more consistently
 on the "same" SignedTreeHead content.

2.1. Availability and Signing Thresholds

 A natural operational risk is that a log-server might at a given time
 find that one or more of its well-known witness servers is offline.
 The CoSi protocol incorporates availability protection mechanisms
 ensuring that the initiator (the log server in this case) can produce
 a valid collective signature regardless of which or how many witness
 nodes are only, but the produced signature will contain metadata
 documenting which witness nodes were offline at STH-signing time and
 enabling clients to verify the signature without those witnesses'
 signature contributions.

 A benefit of this availability protection mechanism is that the log
 server can protect its own progress from unreliability and even DoS
 attacks on or by witnesses, in principle even if many, most, or all
 witnesses go offline. It is then ultimately up to client security
 policy to determine how many witnesses may have been offline (or must
 have been online) during signing in order for the client to trust the
 STH.

 A cost of this availability protection mechanism, however, is that
 the size and verification cost of the collective signature is
 proportaional to the number of witnesses that were missing at signing
 time. For this reason, log-server operators are expected to choose
 reliable witness servers run by competent, respected operators who
 can be expected to keep their witness servers online consistently.
 Provided almost all witness servers are online at any given time, the
 produced STH collective signature is barely larger than a single
 individual signature.

2.2. Identity of a Log Server's Witness Group

 A log-server's group of witnesses cannot be a "wide-open" group,
 since an attacker who can add any number of bad witnesses to the
 group could perform a Sybil attack by adding a threshold number of
 malicious witnesses that collude to produce collective signatures

Ford Expires April 22, 2016 [Page 6]

Internet-Draft Collective Witnessing in CT October 2015

 that clients will accept. Thus, the operational expectation is that
 log-servers specify a public, relatively stable, reputable, and
 transparent set of witness servers for the log server to use.

 In order for clients to check the log's collective witness
 signatures, the clients must of course "know" the group of witnesses
 with which the log server collectively signs its STHs. For this
 purpose, clients that support collectively-signed STHs must include
 in their roots of trust, alongside the log-server's public key, a
 collective public key representing the aggregate of all the log-
 server's witnesses. Like collective signatures, this collective
 public is small and independent of the number of witnesses, amounting
 to a single elliptic-curve point and a single cryptographic hash.
 (The hash represents the root of a Merkle tree containing all witness
 servers' individual public keys plus additional data needed in the
 availability protection mechanism [COSI]).

2.3. Evolution of Witness Groups

 A log server's set of witnesses must also of course change
 occasionally, perhaps once per year in the long-term, or somewhat
 more frequently during initial development and testing. Just as
 conventional CA and log-server keypairs are typically valid for
 overlapping multi-year windows, a log-server's collective public key
 may be refreshed and gradually rolled over in similar fashion, via
 the usual process of updating the relevant client software (e.g., web
 browser) containing the log server in its root of trust.

 Collective signing presents a potentially more attractive
 alternative, however. When it comes time to evolve a log server's
 witness group, the log server operator first produces and announces
 the public key for the new witness group. This new collective
 witness key can and perhaps should be based on new individual public
 keys freshly generated by the individual witness servers. Then, as
 the final collective signature produced in the old group, the log
 server initiates the collective signing of a collective "forward-
 pointer" attesting that the new collective public key is the one and
 only valid successor to the old group's public key. Finally, once
 this collectively signed forward-pointer is announced, all witness
 nodes in the new and old group securely erase the private keys
 representing their portions of the old collective public key.

 Through these collectively signed forward-pointers, clients with old
 software (containing old roots of trust) can "chain forward" from the
 last collective witness group they know to the latest one by
 retrieving and following a few such links. Provided witness groups
 do not change too often (e.g., once a year), clients will not need
 not follow too many such forward-pointers unless they are so out-of-

Ford Expires April 22, 2016 [Page 7]

Internet-Draft Collective Witnessing in CT October 2015

 date that the security of their software and crypto is likely suspect
 anyway.

3. Security Considerations

 This draft contains nothing but security considerations.

4. References

4.1. Normative References

 [COSI] Syta, E., Tamas, I., Visher, D., Wolinsky, D., and B.
 Ford, "Decentralizing Authorities into Scalable Strongest-
 Link Cothorities", March 2015,
 <http://arxiv.org/abs/1503.08768>.

4.2. Informative References

 [MULTISIG]
 Micali, S., Ohta, K., and L. Reyzin, "Accountable-Subgroup
 Multisignatures", ACM Conference on Computer and
 Communications Security 2001, August 2001,
 <http://cs-www.bu.edu/~reyzin/papers/multisig.pdf>.

Author's Address

 Bryan Ford
 EPFL
 BC 210, Station 14
 Lausanne CH-1015
 Switzerland

 Phone: +41 21 693 28 73
 Email: bryan.ford@epfl.ch

http://arxiv.org/abs/1503.08768
http://cs-www.bu.edu/~reyzin/papers/multisig.pdf

Ford Expires April 22, 2016 [Page 8]

