
Workgroup: CoRE Working Group

Internet-Draft:

draft-fossati-core-coap-problem-01

Published: 3 March 2020

Intended Status: Standards Track

Expires: 4 September 2020

Authors: T. Fossati

ARM

J. Jiménez

Ericsson

Problem Details For CoAP APIs

Abstract

This document defines a "problem detail" as a way to carry machine-

readable details of errors in a CoAP response to avoid the need to

define new error response formats for CoAP APIs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

2. CoAP Problem Details Definition

2.1. CDDL

3. Extensibility

3.1. Defining New Problem Types

3.2. Defining New Problem Attributes

4. Security Considerations

5. IANA Considerations

5.1. Registration of a Content-Format identifier for application/

coap-problem+cbor

5.2. New Registries

5.2.1. CoAP Problem Details Registry

5.2.2. CoAP Problem Namespace Registry

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Examples

A.1. Minimalist

A.2. Full-Fledged

A.3. Full-Fledged with Extensions

Appendix B. Doing it with CoRAL

B.1. Examples

B.1.1. Minimalist

B.1.2. Full-Fledged

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

B.1.3. Full-Fledged with Extensions

Appendix C. Contributors

Acknowledgments

Authors' Addresses

1. Introduction

CoAP [RFC7252] response codes are sometimes not sufficient to convey

enough information about an error to be helpful.

This specification defines a simple and extensible CBOR [RFC7049]

format to suit this purpose. It is designed to be reused by CoAP

APIs, which can identify distinct "problem types" specific to their

needs.

Thus, API clients can be informed of both the high-level error class

(using the response code) and the finer-grained details of the

problem (using this format).

The format presented is largely inspired by the Problem Details for

HTTP APIs defined in [RFC7807].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. CoAP Problem Details Definition

A CoAP Problem Details is encoded as a CBOR map with the following

members:

"ns" (int) - A code-point that defines the namespace under which

the "type" field needs to be interpreted. This is a mandatory

field.

"type" (uint) - A code-point that identifies the problem type

within the namespace. This is a mandatory field.

"title" (text) - A short, human-readable summary of the problem

type. It SHOULD NOT change from occurrence to occurrence of the

problem.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

"response-code" (8-bit uint) - The CoAP response code ([RFC7252],

Section 5.9) generated by the origin server for this occurrence

of the problem.

"detail" (text) - A human-readable explanation specific to this

occurrence of the problem.

"instance" (uri) - A URI reference that identifies the specific

occurrence of the problem. It may or may not yield further

information if dereferenced.

Consumers MUST use "ns" and "type" as primary identifiers for the

problem type; the "title" string is advisory and included only for

consumers who are not aware of the semantics of the "ns" and "type"

values.

The "response-code" member, if present, is only advisory; it conveys

the CoAP response code used for the convenience of the consumer.

Generators MUST use the same response code in the actual CoAP

response, to assure that generic CoAP software that does not

understand this format still behaves correctly. Consumers can use

the response-code member to determine what the original response

code used by the generator was, in cases where it has been changed

(e.g., by an intermediary or cache), and when message payloads

persist without CoAP information (e.g., in an events log or

analytics database). Generic CoAP software will still use the CoAP

response code.

The "detail" member, if present, ought to focus on helping the

client correct the problem, rather than giving debugging

information. Consumers SHOULD NOT parse the "detail" member for

information; extensions (see Section 3.2) are more suitable and less

error-prone ways to obtain such information.

Note that "instance" accepts relative URIs; this means that it must

be resolved relative to the document's base URI, as per [RFC3986],

Section 5.

2.1. CDDL

The definition in CDDL format [RFC8610] of a Problem Details for

CoAP is provided in Figure 1.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Figure 1: CoAP Problem Details: CDDL Definition

3. Extensibility

The format presented can be extended at two separate points that

allow the definition of:

New problem type values (see Section 3.1); and

New problem attributes (see Section 3.2).

3.1. Defining New Problem Types

The mechanism for defining new problem types is designed to allow

private use, for example by organisations or projects, while at the

same time supporting the use of this error format in public

protocols and APIs, as well as ease of transition between the two -

for example if an API is first developed internally to an

organisation and then open-sourced. Another critical design

objective is to enable delegating the administration of the code-

points space to entities (and experts) that are "closer" to the

actual usage and intended meaning of the code-points. In fact, an

explicit desiderata is to avoid having experts looking over a very

big and diverse semantic space.

To meet these goal, new problem types are always defined (and have a

meaning) within a namespace. The namespace range is itself

partitioned in three separate sub-ranges: a completely private

space, one devoted to private organisations and projects, and a

third one used for public APIs and protocols. The rules for

registering a new namespace are outlined in Section 5.2.2.

coap-problem-details = {

 ns => int,

 type => uint,

 ? title => text,

 ? response-code => uint .size 1,

 ? detail => text,

 ? instance => uri,

 * $$coap-problem-details-extension,

}

ns = 0

type = 1

title = 2

response-code = 3

detail = 4

instance = 5

¶

* ¶

* ¶

¶

¶

The registration procedures for new problem types are not defined in

this document. At a minimum, though, new problem type definitions

SHOULD document:

A parent namespace;

Their own code-point;

A title that appropriately describes the problem type (think

short); and

The CoAP response-code for it to be used with.

A problem type definition may specify additional attributes on the

problem details map (see Section 3.2).

(Note on renumbering: moving a set of error types from the private

to the public space needs only changing the namespace identifier

while leaving all error types the same.)

3.2. Defining New Problem Attributes

Problem type definitions MAY extend the problem details object with

additional attributes to convey additional, problem-specific

information.

Clients consuming problem details MUST ignore any such extensions

that they do not recognize; this allows problem types to evolve and

include additional information in the future.

CoAP Problem Details can be extended via the coap-problem-details-

extension CDDL socket (see Section 3.9 of [RFC8610]).

4. Security Considerations

The security and privacy considerations outlined in Section 5 of

[RFC7807] apply in full.

5. IANA Considerations

5.1. Registration of a Content-Format identifier for application/coap-

problem+cbor

This document requests that IANA registers the following Content-

Format to the "CoAP Content-Formats" sub-registry, within the

"Constrained RESTful Environments (CoRE) Parameters" registry, from

the Expert Review space (0..255):

Media Type Encoding ID Reference

application/coap-problem+cbor -- TBD1 RFCthis

¶

1. ¶

2. ¶

3.

¶

4. ¶

¶

¶

¶

¶

¶

¶

¶

Table 1

5.2. New Registries

This document requests that IANA create the following new

registries:

CoAP Problem Namespaces (Section 5.2.2);

CoAP Problem Details (Section 5.2.1).

5.2.1. CoAP Problem Details Registry

The "CoAP Problem Details" registry keeps track of the allocation of

the integer values used as index values in the coap-problem-details

CBOR map.

Future registrations for this registry are to be made based on

[RFC8126] as described in Table 2.

Range Registration Procedures

0...N Standards Action

N+1...4294967295 Specification Required

Table 2: CoAP Problem Details Registration

Procedures

All negative values are reserved for Private Use.

Initial registrations for the "CoAP Problem Details" registry are

provided in Table 3. Assignments consist of an integer index value,

the item name, and a reference to the defining specification.

Index Index Name Specification

0 ns RFCthis

1 type RFCthis

2 title RFCthis

3 response-code RFCthis

4 detail RFCthis

5 instance RFCthis

Table 3: CoAP Problem Details Initial

Registrations

5.2.2. CoAP Problem Namespace Registry

The "CoAP Problem Namespace" registry keeps track of the problem

namespace values.

¶

* ¶

* ¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3986]

[RFC7049]

[RFC7252]

[RFC8126]

Future registrations for this registry are to be made based on

[RFC8126] as described in Table 4.

Range Registration Procedures

-L...-1 First Come First Served

0...M Standards Action

M+1...4294967295 Specification Required

Table 4: CoAP Problem Types Registration

Procedures

All negative values less than L are reserved for Private Use.

The "CoAP Problem Namespace" registry has three columns as shown in

Table 5. Assignments consist of an integer index value, the item

description, and a reference to the defining specification.

Value Description Specification

empty empty empty

Table 5: CoAP Problem Namespace

Registry

The registry is initially empty.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

[RFC8174]

[RFC8610]

[I-D.ietf-core-coral]

[I-D.ietf-core-href]

[RFC7807]

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

6.2. Informative References

Hartke, K., "The Constrained RESTful

Application Language (CoRAL)", Work in Progress,

Internet-Draft, draft-ietf-core-coral-02, 8 January 2020,

<http://www.ietf.org/internet-drafts/draft-ietf-core-

coral-02.txt>.

Hartke, K., "Constrained Resource Identifiers", Work in

Progress, Internet-Draft, draft-ietf-core-href-02, 8

January 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-core-href-02.txt>.

Nottingham, M. and E. Wilde, "Problem Details for HTTP

APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,

<https://www.rfc-editor.org/info/rfc7807>.

Appendix A. Examples

This section presents a series of examples in CBOR diagnostic

notation [RFC7049]. The examples are fictitious. No identification

with actual products is intended or should be inferred. All examples

involve the same CoAP problem type (5, with pretend semantics

"unknown key id") defined in the private namespace "-33455".

A.1. Minimalist

The example in Figure 2 has the most compact representation. By

avoiding any non-mandatory field, the Problem encodes to seven bytes

in total. This is suitable for a constrained receiver that happens

to have precise knowledge of the semantics associated with the

namespace and type code-points.

¶

¶

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
http://www.ietf.org/internet-drafts/draft-ietf-core-coral-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-coral-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-href-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-href-02.txt
https://www.rfc-editor.org/info/rfc7807

Figure 2: Private Namespace: Minimal Payload

A.2. Full-Fledged

The example in Figure 3 has all the mandatory as well as the

optional fields populated. This format is appropriate for an

unconstrained receiver. For example, an edge gateway forwarding to a

log server that needs to gather as much contextual information as

possible, including details about the error condition, the

associated CoAP response code, and even the URL describing the

specific error instance.

Figure 3: Private Namespace: Full Payload

A.3. Full-Fledged with Extensions

The last example (Figure 4) makes use of the built-in extension

mechanism described in Section 3.2 to provide some context specific

information - in this made up scenario a list of possible key ids is

provided to the receiving end. This richer format might be enabled

for debug or tracing purposes, possibly on a per-transaction basis.

Note that the map index for key-ids key is minted from the private

(negative) space.

{

 / ns / 0: -33455, / a private namespace /

 / type / 1: 5 / "unknown key id" semantics /

}

¶

{

 / ns / 0: -33455,

 / type / 1: 5,

 / title / 2: "unknown key id",

 / response-code / 3: 132, / 4.04 Not Found /

 / detail / 4: "Key with id 0x01020304 not registered",

 / instance / 5: 32("https://private-api.example/errors/5")

}

¶

{

 / ns / 0: -33455,

 / type / 1: 5,

 / title / 2: "unknown key id",

 / response-code / 3: 132, / 4.04 Not Found /

 / detail / 4: "Key with id 0x01020304 not registered",

 / instance / 5: 32("https://private-api.example/errors/5"),

 / key-ids / -1: [0x01020300, 0x01020301, 0x01020302]

}

Figure 4: Private Namespace: Full Payload and Extension

Appendix B. Doing it with CoRAL

CoRAL [I-D.ietf-core-coral] provides a way to address the same

problem that is solved by the format described in this document.

(Refer to section 5.2.3 of [I-D.ietf-core-coral] for initial

discussion around CoRAL Error Responses.)

By abstracting the serialization aspects (CBOR, JSON, etc.), the

transport protocol (HTTP, CoAP, etc.) and its response codes, while

also providing compression of the involved resources, CoRAL can

potentially support a more general solution than the one discussed

here, in particular one that also supersedes [RFC7807].

B.1. Examples

In this section, the examples from Appendix A are converted to

CoRAL.

The main differences are:

CoRAL is using an array of alternating keys and values instead of

a map with array values to get a multi-dict;

CoRAL uses [I-D.ietf-core-href] as an alternative to URIs that is

optimized for constrained nodes;

CoRAL uses its own code-point allocation scheme.

B.1.1. Minimalist

Textual format:

CBOR serialisation:

B.1.2. Full-Fledged

Textual format:

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

#using <http://example.org/vocabulary/problem-details#>

#using ex = <http://vocabulary.private-api.example/#>

type ex:unknown-key-id

¶

* ¶

[

 / type / 1, 5 / "unknown key id" semantics /

]

¶

* ¶

CBOR serialisation:

B.1.3. Full-Fledged with Extensions

Textual format:

CBOR serialisation:

#using <http://example.org/vocabulary/problem-details#>

#using ex = <http://vocabulary.private-api.example/#>

type ex:unknown-key-id

title "unknown key id"

response-code 132

detail "Key with id 0x01020304 not registered"

instance <https://private-api.example/errors/5>

¶

* ¶

[

 / type / 1, 5,

 / title / 2, "unknown key id",

 / response-code / 3, 132, / 4.04 Not Found /

 / detail / 4, "Key with id 0x01020304 not registered",

 / instance / 5, [1, "https",

 2, "private-api.example",

 6, "errors",

 6, "5"]

]

¶

* ¶

#using <http://example.org/vocabulary/problem-details#>

#using ex = <http://vocabulary.private-api.example/#>

type 5

title "unknown key id"

response-code 132

detail "Key with id 0x01020304 not registered"

instance <https://private-api.example/errors/5>

ex:key-id 0x01020300

ex:key-id 0x01020301

ex:key-id 0x01020302

¶

* ¶

Appendix C. Contributors

Klaus Hartke provided the text in Appendix B.1.

Acknowledgments

Mark Nottingham and Erik Wilde, authors of RFC 7807. Carsten Bormann

and Klaus Hartke for discussion on the problem space and

extensibility requirements.

Authors' Addresses

Thomas Fossati

ARM

Email: thomas.fossati@arm.com

Jaime Jiménez

Ericsson

Email: jaime@iki.fi

[

 / type / 1, 5,

 / title / 2, "unknown key id",

 / response-code / 3, 132, / 4.04 Not Found /

 / detail / 4, "Key with id 0x01020304 not registered",

 / instance / 5, [1, "https",

 2, "private-api.example",

 6, "errors",

 6, "5"],

 / key-id / 100, 0x01020300,

 / key-id / 100, 0x01020301,

 / key-id / 100, 0x01020302

]

¶

¶

¶

mailto:thomas.fossati@arm.com
mailto:jaime@iki.fi

	Problem Details For CoAP APIs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. CoAP Problem Details Definition
	2.1. CDDL

	3. Extensibility
	3.1. Defining New Problem Types
	3.2. Defining New Problem Attributes

	4. Security Considerations
	5. IANA Considerations
	5.1. Registration of a Content-Format identifier for application/coap-problem+cbor
	5.2. New Registries
	5.2.1. CoAP Problem Details Registry
	5.2.2. CoAP Problem Namespace Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Examples
	A.1. Minimalist
	A.2. Full-Fledged
	A.3. Full-Fledged with Extensions
	Appendix B. Doing it with CoRAL
	B.1. Examples
	B.1.1. Minimalist
	B.1.2. Full-Fledged
	B.1.3. Full-Fledged with Extensions

	Appendix C. Contributors
	Acknowledgments
	Authors' Addresses

