
Workgroup: TLS

Internet-Draft:

draft-fossati-tls-attestation-01

Published: 26 August 2022

Intended Status: Standards Track

Expires: 27 February 2023

Authors: H. Tschofenig

Arm Limited

T. Fossati

Arm Limited

P. Howard

Arm Limited

I. Mihalcea

Arm Limited

Y. Deshpande

Arm Limited

Using Attestation in Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS)

Abstract

Various attestation technologies have been developed and formats

have been standardized. Examples include the Entity Attestation

Token (EAT) and Trusted Platform Modules (TPMs). Once attestation

information has been produced on a device it needs to be

communicated to a relying party. This information exchange may

happen at different layers in the protocol stack.

This specification provides a generic way of passing attestation

information in the TLS handshake.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. Overview

3.1. Attestation within the Passport Model

3.2. Attestation within the Background Check Model

4. TLS Attestation Type Extension

5. TLS Client and Server Handshake Behavior

5.1. Client Hello

5.2. Server Hello

6. TPM Attestation

6.1. Platform Attestation

6.1.1. TPM Platform Attestation Statement Format

6.1.2. Signing Procedure

6.1.3. Verification Procedure

6.2. Key Attestation

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. History

Appendix B. Working Group Information

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Attestation is the process by which an entity produces evidence

about itself that another party can use to evaluate the

trustworthiness of that entity. One format of encoding evidence is

standardized with the Entity Attestation Token (EAT) [I-D.ietf-rats-

eat] but there are other formats, such as attestation produced by

Trusted Platform Modules (TPMs) [TPM1.2] [TPM2.0].

This specification defines how to convey attestation information in

the TLS handshake with different encodings being supported. This

specification standardizes two attestation formats - EAT and TPM-

based attestation.

Note: This initial version of the specification focuses on EAT-based

attestation. Future versions will also define TPM-based attestation.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

RFC 2119 [RFC2119].

The following terms are used in this document:

Root of Trust (RoT): A set of software and/or hardware components

that need to be trusted to act as a security foundation required

for accomplishing the security goals. In our case, the RoT is

expected to offer the functionality for attesting to the state of

the platform.

Attestation Key (AK): Cryptographic key belonging to the RoT that

is only used to sign attestation tokens.

Platform Attestation Key (PAK): An AK used specifically for

signing attestation tokens relating to the state of the platform.

Key Attestation Key (KAK): An AK used specifically for signing

KATs. In some systems only a single AK is used. In that case the

AK is used as a PAK and a KAK.

TLS Identity Key (TIK): The KIK consists of a private and a

public key. The private key is used in the CertificateVerify

message during the TLS handshake. The public key is included in

the Key Attestation Token.

Attestation Token (AT): A collection of claims that a RoT

assembles (and signs) with the purpose of informing - in a

verifiable way - Relying Parties about the identity and state of

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

the platform. Essentially a type of "Evidence" as per the RATS

architecture terminology.

Platform Attestation Token (PAT): An AT containing claims

relating to the state of the software running on the platform.

The process of generating a PAT typically involves gathering data

during measured boot.

Key Attestation Token (KAT): An AT containing a claim with a

proof-of-possession (PoP) key. The KAT may also contain other

claims, such as those indicating its validity. The KAT is signed

by the KAK. The attestation service part of the RoT conceptually

acts as a local certification authority since the KAT behaves

like a certificate.

Combined Attestation Bundle (CAB): A structure used to bundle a

KAT and a PAT together for transport in the TLS handshake. If the

KAT already includes a PAT, in form of a nested token, then it

already corresponds to a CAB.

3. Overview

The Remote Attestation Procedures (RATS) architecture [I-D.ietf-

rats-architecture] defines two types of interaction models for

attestation, namely the passport model and the background-check

model. The subsections below explain the difference in their

interactions.

To simplify the description in this section we focus on the use case

where the client is the attester and the server is the relying

party. Hence, only the client_attestation_type extension is

discussed. The verifier is not shown in the diagrams. The described

mechanism allows the roles to be reversed.

As typical with new features in TLS, the client indicates support

for the new extension in the ClientHello. The

client_attestation_type extension lists the supported attestation

formats. The server, if it supports the extension and one of the

attestation formats, it confirms the use of the feature.

Note: The newly introduced extension also allows nonces to be

exchanged. Those nonces are used for guaranteeing freshness of the

generated attestation tokens.

When the attestation extension is successfully negotiated, the

content of the Certificate message is replaced with attestation

information described in this document.

A peer has to demonstrate possession of the private key via the

CertificateVerify message. While attestation information is signed

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

by the attester, it typically does not contain a public key (for

example via a proof-of-possession key claim [RFC8747]).

The attestation service on a device, which creates the attestation

information, is unaware of the TLS exchange and the attestation

service does not directly sign externally provided data, as it would

be required to compute the CertificateVerify message.

Hence, the following steps happen:

The client generates the TIK, which are referred here as skT and

pkT, for example using the following API call:

The private key would be created and stored by the crypto hardware

supported by the device (rather than the TLS client in software).

Next, the attestation service needs to be triggered to create a

Platform Attestation Token (PAT) and the Key Attestation Token

(KAT). The Key Attestation Token (KAT) includes a claim containing

the public key of the TIK (pkT). The KAT is then signed with the Key

Attestation Key (KAK).

To ensure freshness of the PAT and the KAT a nonce is provided by

the relying party / verifier. Here is the symbolic API call to

request a KAT and a PAT, which are concatinated together as the CAB.

Once the Certificate message containing the CAB has been sent, the

CertificateVerify has to be created and it requires access to the

private key. The signature operation uses the private key of the TIK

(skT).

The recipient of the Certificate and the CertificateVerify messages

first extracts the PAT and the KAT from the Certificate message. The

PAT and the KAT need to be conveyed to the verification service,

whereby the following checks are made:

The signature protecting the PAT passes verification when using

available trust anchor(s).

The PAT has not been replayed, which can be checked by comparing

the nonce included in one of the claims and matching it against

the nonce provided to the attester.

The claims in the PAT are matched against stored reference

values.

¶

¶

¶

¶

key_id = GenerateKeyPair(alg_id)¶

¶

¶

¶

cab = createCAB(key_id, nonce)¶

¶

¶

*

¶

*

¶

*

¶

The signature protecting the KAT passes verification.

The claims in the KAT are validated, if needed.

Once all these steps are completed, the verifier produces the

attestation result and includes (if needed) the TIK public key.

In the subsections we will look at how the two message pattern fit

align with the TLS exchange.

3.1. Attestation within the Passport Model

The passport model is described in Section 5.1 of [I-D.ietf-rats-

architecture]. A key feature of this model is that the attester

interacts with the verification service before initiating the TLS

exchange. It sends evidence to the verification service, which then

returns the attestation result (including the TIK public key).

The example exchange in Figure 1 shows how a client provides

attestation to the server by utilizing EAT tokens [I-D.ietf-rats-

eat]. With the ClientHello the TLS client needs to indicate that it

supports the EAT-based attestation format. The TLS server

acknowledges support for this attestation type in the

EncryptedExtensions message.

In the Certificate message the TLS client transmits the attestation

result to the TLS server, in form a CAB (i.e. a concatinated PAT and

KAT).

The TLS client then creates the CertificateVerify message by asking

the crypto service to sign the TLS handshake message transcript with

the TIK private key. The TLS server then verifies this message by

utilizing the TIK public key.

* ¶

* ¶

¶

¶

¶

¶

¶

¶

Figure 1: Example Exchange with the Passport Model.

3.2. Attestation within the Background Check Model

The background check model is described in Section 5.2 of [I-D.ietf-

rats-architecture].

The message exchange of the background check model differs from the

passport model because the TLS server needs to provide a nonce in

the ServerHello to the TLS client so that the attestation service

can feed the nonce into the generation of the PAT. The TLS server,

when receiving the CAB, will have to contact the verification

service.

 Client Server

Key ^ ClientHello

Exch | + client_attestation_type(eat)

 |

 |

 v -------->

 ServerHello ^ KeyExch

 {EncryptedExtensions} ^ Server

 + client_attestation_type(eat) |

 {CertificateRequest} v Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

Figure 2: Example Exchange with the Background Check Model.

4. TLS Attestation Type Extension

This document defines a new extension to carry the attestation

types. The extension is conceptually similiar to the

'server_certificate_type' and the 'server_certificate_type' defined

by [RFC7250].

 Client Server

Key ^ ClientHello

Exch | + client_attestation_type(eat)

 |

 |

 v -------->

 ServerHello ^ Key

 client_attestation_type(eat) | Exch

 + nonce v

 {EncryptedExtensions} ^ Server

 {CertificateRequest} v Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

Figure 3: AttestationTypeExtension Structure.

The Certificate payload is used as a container, as shown in Figure

4. The shown Certificate structure is an adaptation of [RFC8446].

 struct {

 select(ClientOrServerExtension) {

 case client:

 CertificateType client_attestation_types<1..2^8-1>;

 opaque nonce<0..2^16-1>;

 case server:

 CertificateType client_attestation_type;

 opaque nonce<0..2^16-1>;

 }

 } ClientAttestationTypeExtension;

 struct {

 select(ClientOrServerExtension) {

 case client:

 CertificateType server_attestation_types<1..2^8-1>;

 opaque nonce<0..2^16-1>;

 case server:

 CertificateType server_attestation_type;

 opaque nonce<0..2^16-1>;

 }

 } ServerAttestationTypeExtension;

¶

Figure 4: Certificate Message.

To simplify parsing of an EAT-based attestation payload, the PAT and

the KAT are typed.

5. TLS Client and Server Handshake Behavior

This specification extends the ClientHello and the

EncryptedExtensions messages, according to [RFC8446].

The high-level message exchange in Figure 5 shows the

client_attestation_type and server_attestation_type extensions added

to the ClientHello and the EncryptedExtensions messages.

 struct {

 select (certificate_type) {

 case RawPublicKey:

 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 /* attestation type defined in this document */

 case EAT:

 opaque cab<1..2^24-1>;

 /* attestation type defined in this document */

 case TPM:

 opaque tpmStmtFormat<1..2^24-1>;

 case X509:

 opaque cert_data<1..2^24-1>;

 };

 Extension extensions<0..2^16-1>;

 } CertificateEntry;

 struct {

 opaque certificate_request_context<0..2^8-1>;

 CertificateEntry certificate_list<0..2^24-1>;

 } Certificate;

¶

¶

¶

Figure 5: Attestation Message Overview.

5.1. Client Hello

In order to indicate the support of attestation types, clients

include the client_attestation_type and/or the

server_attestation_type extensions in the ClientHello.

The client_attestation_type extension in the ClientHello indicates

the attestation types the client is able to provide to the server,

when requested using a CertificateRequest message.

The server_attestation_type extension in the ClientHello indicates

the types of attestation types the client is able to process when

provided by the server in a subsequent Certificate payload.

The client_attestation_type and server_attestation_type extensions

sent in the ClientHello each carry a list of supported attestation

types, sorted by client preference. When the client supports only

one attestation type, it is a list containing a single element.

The TLS client MUST omit attestation types from the

client_attestation_type extension in the ClientHello if it is not

equipped with the corresponding attestation functionality, or if it

 Client Server

Key ^ ClientHello

Exch | + key_share*

 | + signature_algorithms*

 | + psk_key_exchange_modes*

 | + pre_shared_key*

 | + client_attestation_type

 v + server_attestation_type

 -------->

 ServerHello ^ Key

 + key_share* | Exch

 + pre_shared_key* v

 {EncryptedExtensions} ^ Server

 + client_attestation_type |

 + server_attestation_type

 {CertificateRequest*} v Params

 {Certificate*} ^

 {CertificateVerify*} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate*}

Auth | {CertificateVerify*}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

is not configured to use it with the given TLS server. If the client

has no attestation types to send in the ClientHello it MUST omit the

client_attestation_type extension in the ClientHello.

The TLS client MUST omit attestation types from the

server_attestation_type extension in the ClientHello if it is not

equipped with the attestation verification functionality. If the

client has no attestation types to send in the ClientHello it MUST

omit the entire server_attestation_type extension from the

ClientHello.

5.2. Server Hello

If the server receives a ClientHello that contains the

client_attestation_type extension and/or the server_attestation_type

extension, then three outcomes are possible:

The server does not support the extension defined in this

document. In this case, the server returns the

EncryptedExtensions without the extensions defined in this

document.

The server supports the extension defined in this document, but

it does not have any attestation type in common with the client.

Then, the server terminates the session with a fatal alert of

type "unsupported_certificate".

The server supports the extensions defined in this document and

has at least one attestation type in common with the client. In

this case, the processing rules described below are followed.

The client_attestation_type extension in the ClientHello indicates

the attestation types the client is able to provide to the server,

when requested using a certificate_request message. If the TLS

server wants to request a certificate from the client (via the

certificate_request message), it MUST include the

client_attestation_type extension in the EncryptedExtensions. This

client_attestation_type extension in the EncryptedExtensions then

indicates the content the client is requested to provide in a

subsequent Certificate payload. The value conveyed in the

client_attestation_type extension MUST be selected from one of the

values provided in the client_attestation_type extension sent in the

client hello. The server MUST also include a certificate_request

payload in the EncryptedExtensions message.

If the server does not send a certificate_request payload (for

example, because client authentication happens at the application

layer or no client authentication is required) or none of the

attestation types supported by the client (as indicated in the

client_attestation_type extension in the ClientHello) match the

¶

¶

¶

*

¶

*

¶

*

¶

¶

server-supported attestation types, then the client_attestation_type

payload in the ServerHello MUST be omitted.

The server_attestation_type extension in the ClientHello indicates

the types of attestation types the client is able to process when

provided by the server in a subsequent Certificate message. With the

server_attestation_type extension in the EncryptedExtensions, the

TLS server indicates the attestation type carried in the Certificate

payload. Note that only a single value is permitted in the

server_attestation_type extension when carried in the

EncryptedExtensions message.

6. TPM Attestation

The Trusted Platform Module (TPM) [TPM2.0] is one type of hardware

RoT. TPMs offer the ability to produce both key and platform

attestation tokens.

6.1. Platform Attestation

Platform Configuration Registers (PCRs) represent the core mechanism

in TPMs for measuring and conveying information about the platform

state via remote attestation. While specifications exist for

assigning individual PCRs to specific software components, the

choice of which combination of PCRs to include for any attestation

procedure (and which hashing algorithm to use) is left to the

parties involved. The agreement over and the configuration of the

PCR selection falls outside the scope of this specification and is

thus expected to occur out-of-band.

The attestation evidence is produced through the TPM2_Quote

operation. The evidence along with all other relevant metadata is

transmitted in a format derived from the [WebAuthn] Attestation

Statements. This format and the workflows around it are defined

below.

6.1.1. TPM Platform Attestation Statement Format

The TPM Platform Attestation Statement is a modified version of the

TPM Attestation Statement Format, which covers key attestation

tokens.

¶

¶

¶

¶

¶

¶

Figure 6: TPM Platform Attestation Statement Format

ver: The version of the TPM specification to which the signature

conforms.

alg: A COSEAlgorithmIdentifier containing the identifier of the

algorithm used to generate the attestation signature.

x5c: A certificate for the PAK, followed by its certificate

chain. The contents of the array SHOULD follow the same

requirements as the x5chain header parameter defined in Section 2

of [I-D.ietf-cose-x509], with the sole difference that a CBOR

array is also used when only pakCert is present.

pakCert: The PAK certificate used for the attestation.

sig: The attestation signature, in the form of a TPMT_SIGNATURE

structure as specified in Part 2, Section 11.3.4 of [TPM2.0].

attestInfo: The TPMS_ATTEST structure over which the above

signature was computed, as specified in Part 2, Section 10.12.8

of [TPM2.0].

6.1.2. Signing Procedure

Generate a signature using the operation specified in Part 3,

Section 18.4 of [TPM2.0], using the PAK as the signing key, the out-

of-band agreed-upon PCR selection. Freshness of the attestation is

given by the nonce provided by the relying party. The nonce is

included as qualified data to the TPM2_Quote operation, concatenated

with an identifier of the platform being attested, as shown below:

The platform identifier is a 16-bytes long UUID, with the remaining

data representing the nonce. The UUID is intended to help the

verifier link the platform with its expected reference values.

Set the attestInfo field to the quoted PCR selection produced by the

operation, and sig to the signature generated above.

 tpmPlatStmtFormat = {

 ver: "2.0",

 (

 alg: COSEAlgorithmIdentifier,

 x5c: [pakCert: bytes, * (caCert: bytes)]

)

 sig: bytes,

 attestInfo: bytes,

 }

*

¶

*

¶

*

¶

- ¶

*

¶

*

¶

¶

 extraData = _platformUuid_ || _relyingPartyNonce_¶

¶

¶

6.1.3. Verification Procedure

The inputs to the verification procedure are as follows:

an attestation statement in the format described above

the nonce sent to the attester

a database of reference values for various platforms

The steps for verifying the attestation:

Verify that the attestation token is a valid CBOR structure

conforming to the CTAP2 canonical CBOR encoding form defined in

Section 6 of [CTAP2], and perform CBOR decoding on it to extract

the contained fields.

Verify that alg describes a valid, accepted signing algorithm.

Verify that x5c is present and follows the requirements laid out

for x5chain in [I-D.ietf-cose-x509].

Verify the sig is a valid signature over attestInfo using the

attestation public key in pakCert with the algorithm specified in

alg.

Verify that pakCert meets the requirements in Section 8.3.1 of

[WebAuthn].

Verify that attestInfo is valid:

Verify that magic is set to TPM_GENERATED_VALUE.

Verify that type is set to TPM_ST_ATTEST_QUOTE.

Verify that attested contains a TPMS_QUOTE_INFO structure as

specified in Part 2, Section 10.12.4 of [TPM2.0].

Extract extraData and parse it assuming the format defined

above to obtain platform UUID and the nonce. Verify that the

nonce is correct.

Verify that the platform UUID obtained earlier is valid and

represents a platform found in the database.

Retrieve the reference values defined for this platform.

Compute the digest of the concatenation of all relevant PCRs

using the hash algorithm defined in alg. The PCRs are

concatenated as described in "Selecting Multiple PCR" (Part 1,

Section 17.5 of [TPM2.0]). Verify that this digest is equal

¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

- ¶

- ¶

-

¶

-

¶

-

¶

-

[RFC2119]

[RFC8446]

to pcrDigest in attested and that the hash algorithm defined

in pcrSelect is aligned with the one in alg.

Note that the remaining fields in the "Standard Attestation

Structure" (Part 1, Section 31.2 of [TPM2.0]), i.e.,

qualifiedSigner, clockInfo and firmwareVersion are ignored.

These fields MAY be used as an input to risk engines.

If successful, return implementation-specific values representing

attestation type AttCA and attestation trust path x5c.

6.2. Key Attestation

Attesting to the provenance and properties of a key is possible

through a TPM if the key resides on the TPM. The TPM 2.0 key

attestation mechanism used in this specification is TPM2_Certify.

The workflow for generating the evidence and assessing them, as well

as the format used to transport them, follows closely the TPM

Attestation Statement defined in Section 8.3 of [WebAuthn], with one

modification:

For both signing and verification, attToBeSigned is unnecessary

and therefore its hash is replaced with the nonce coming from the

relying party as the qualifying data when signing, and as the

expected extraData value during verification.

The WebAuthn specification [WebAuthn] uses the term AIK to refer to

the signing key. In this specification we use the term KAK instead.

The credential (i.e., attested) key is in our case the TIK.

7. Security Considerations

TBD.

8. IANA Considerations

TBD: Create new registry for attestation types.

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

¶

-

¶

*

¶

¶

*

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8446

[CTAP2]

[I-D.ietf-cose-x509]

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-eat]

[RFC7250]

[RFC8747]

[TPM1.2]

[TPM2.0]

[WebAuthn]

9.2. Informative References

World Wide Web Consortium, "Client to Authenticator

Protocol", January 2019, <https://fidoalliance.org/specs/

fido-v2.0-ps-20190130/fido-client-to-authenticator-

protocol-v2.0-ps-20190130.html>.

Schaad, J., "CBOR Object Signing and Encryption

(COSE): Header parameters for carrying and referencing X.

509 certificates", Work in Progress, Internet-Draft,

draft-ietf-cose-x509-08, 14 December 2020, <https://

www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt>.

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-21, 16 August 2022, <https://

www.ietf.org/archive/id/draft-ietf-rats-

architecture-21.txt>.

Lundblade, L., Mandyam, G., and J. O'Donoghue,

"The Entity Attestation Token (EAT)", Work in Progress,

Internet-Draft, draft-ietf-rats-eat-14, 10 July 2022,

<https://www.ietf.org/archive/id/draft-ietf-rats-

eat-14.txt>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

Trusted Computing Group, "TPM Main Specification Level 2

Version 1.2, Revision 116", March 2011, <https://

trustedcomputinggroup.org/resource/tpm-main-

specification/>.

Trusted Computing Group, "Trusted Platform Module Library

Specification, Family "2.0", Level 00, Revision 01.59",

November 2019, <https://trustedcomputinggroup.org/

resource/tpm-library-specification/>.

World Wide Web Consortium, "Web Authentication: An API

for accessing Public Key Credentials, Level 2", April

2021, <https://www.w3.org/TR/webauthn/>.

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt
https://www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-21.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-21.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-21.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-14.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-14.txt
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc8747
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.w3.org/TR/webauthn/

Appendix A. History

RFC EDITOR: PLEASE REMOVE THE THIS SECTION

Initial version

Appendix B. Working Group Information

The discussion list for the IETF TLS working group is located at the

e-mail address tls@ietf.org. Information on the group and

information on how to subscribe to the list is at https://

www1.ietf.org/mailman/listinfo/tls

Archives of the list can be found at: https://www.ietf.org/mail-

archive/web/tls/current/index.html

Authors' Addresses

Hannes Tschofenig

Arm Limited

Email: hannes.tschofenig@arm.com

Thomas Fossati

Arm Limited

Email: Thomas.Fossati@arm.com

Paul Howard

Arm Limited

Email: Paul.Howard@arm.com

Ionut Mihalcea

Arm Limited

Email: Ionut.Mihalcea@arm.com

Yogesh Deshpande

Arm Limited

Email: Yogesh.Deshpande@arm.com

¶

* ¶

¶

¶

mailto:tls@ietf.org
https://www1.ietf.org/mailman/listinfo/tls
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html
mailto:hannes.tschofenig@arm.com
mailto:Thomas.Fossati@arm.com
mailto:Paul.Howard@arm.com
mailto:Ionut.Mihalcea@arm.com
mailto:Yogesh.Deshpande@arm.com

	Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Overview
	3.1. Attestation within the Passport Model
	3.2. Attestation within the Background Check Model

	4. TLS Attestation Type Extension
	5. TLS Client and Server Handshake Behavior
	5.1. Client Hello
	5.2. Server Hello

	6. TPM Attestation
	6.1. Platform Attestation
	6.1.1. TPM Platform Attestation Statement Format
	6.1.2. Signing Procedure
	6.1.3. Verification Procedure

	6.2. Key Attestation

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. History
	Appendix B. Working Group Information
	Authors' Addresses

