
Workgroup: TLS

Internet-Draft:

draft-fossati-tls-attestation-02

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: H. Tschofenig

Arm Limited

T. Fossati

Arm Limited

P. Howard

Arm Limited

I. Mihalcea

Arm Limited

Y. Deshpande

Arm Limited

Using Attestation in Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS)

Abstract

Attestation is the process by which an entity produces evidence

about itself that another party can use to evaluate the

trustworthiness of that entity.

In use cases that require the use of remote attestation, such as

confidential computing or device onboarding, an attester has to

convey evidence or attestation results to a relying party. This

information exchange may happen at different layers in the protocol

stack.

This specification provides a generic way of passing evidence and

attestation results in the TLS handshake. Functionality-wise this is

accomplished with the help of key attestation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. Overview

4. Use of Evidence with the Background Check Model

4.1. TLS Client as Attester

4.2. TLS Server as Attester

5. Evidence Extension (Background Check Model)

6. TLS Client and Server Handshake Behavior

6.1. Client Hello

6.2. Server Hello

7. Background-Check Model Examples

7.1. Cloud Confidential Computing

7.2. IoT Device Onboarding

8. Security Considerations

9. IANA Considerations

9.1. TLS Extensions

9.2. TLS Alerts

9.3. TLS Certificate Types

10. References

10.1. Normative References

10.2. Informative References

Appendix A. History

A.1. draft-fossati-tls-attestation-02

A.2. draft-fossati-tls-attestation-01

A.3. draft-fossati-tls-attestation-00

Appendix B. Working Group Information

Authors' Addresses

1. Introduction

The Remote ATtestation ProcedureS (RATS) architecture defines two

basic types of topological patterns to communicate between an

¶

¶

https://trustee.ietf.org/license-info

attester, a relying party, and a verifier, namely the background-

check model and the passport model. These two models are

fundamentally different and require a different treatment when

incorporated into the TLS handshake. For better readability to use

different extensions for these two models.

The two models can be summarized as follows:

In the background check model, the attester conveys evidence to

the relying party, which then forwards the evidence to the

verifier for appraisal; the verifier computes the attestation

result and sends it back to the relying party.

In the passport model, the attester transmits evidence to the

verifier directly and receives attestation results, which are

then relayed to the relying party. This specification supports

both patterns.

Several formats for encoding evidence are available, such as - the

Entity Attestation Token (EAT) [I-D.ietf-rats-eat], - the Trusted

Platform Modules (TPMs) [TPM1.2] [TPM2.0], - the Android Key

Attestation, and - Apple Key Attestation.

Like-wise, there are different encodings available for attestation

results. One such encoding, AR4SI [I-D.ietf-rats-ar4si] is being

standardized by the RATS working group.

This version of the specification defines how to support the

background check model in the TLS handshake, such that the details

about the attestation technology are agnostic to the TLS handshake

itself. Later versions of the specification will support the

passport model as well.

To give the peer information that the handshake signing key is

properly secured, the associated evidence has to be verified by that

peer. Hence, attestation evidence about the security state of the

signing key is needed, which is typically associated with evidence

about the overall platform state. The platform attestation service

ensures that the key attestation service has not been tampered with.

The platform attestation service issues the Platform Attestation

Token (PAT) and the key attestation service issues the Key

Attestation Token (KAT). The security of the protocol critically

depends on the verifiable binding between these two logically

separate units of evidence.

This document does not define how different attestation technologies

are encoded. This has either already been done is done accomplished

by companion specifications.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

RFC 2119 [RFC2119].

3. Overview

The Remote Attestation Procedures (RATS) architecture

[I-D.ietf-rats-architecture] defines two types of interaction models

for attestation, namely the passport model and the background check

model. The subsections below explain the difference in their

interactions.

As typical with new features in TLS, the client indicates support

for the new extension in the ClientHello. The newly introduced

extensions allow evidence and nonces to be exchanged. The nonces are

used for guaranteeing freshness of the exchanged evidence.

When the evidence extension is successfully negotiated, the content

of the Certificate message contains a payload that is encoded based

on the wrapper defined in [I-D.ftbs-rats-msg-wrap].

In TLS a client has to demonstrate possession of the private key via

the CertificateVerify message, when client-based authentication is

requested. The attestation payload must contain a key attestation

token, which associates a private key with the attestation

information. An example of a key attestation token format utilizing

the EAT-format can be found in [I-D.bft-rats-kat].

The recipient extracts evidence from the Certificate message and

relays it to the verifier to obtain attestation results.

Subsequently, the attested key is used to verify the

CertificateVerify message.

4. Use of Evidence with the Background Check Model

The background check model is described in Section 5.2 of

[I-D.ietf-rats-architecture] and allows the following modes of

operation when used with TLS, namely

TLS client is the attester,

TLS server is the attester, and

TLS client and server mutually attest each other.

We will show the message exchanges of the three cases in sub-

sections below.

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

4.1. TLS Client as Attester

In this use case the TLS client, as the attester, is challenged by

the TLS server to provide evidence. The TLS client is the attester

and the the TLS server acts as a relying party. The TLS server needs

to provide a nonce in the EncryptedExtensions to the TLS client so

that the attestation service can feed the nonce into the generation

of the evidence. The TLS server, when receiving the evidence, will

have to contact the verifier (which is not shown in the diagram).

An example of this flow can be found in device onboarding where the

client initiates the communication with cloud infrastructure to get

credentials, firmware and other configuration data provisioned to

the device. For the server to consider the device genuine it needs

to present evidence.

Figure 1: TLS Client Providing Evidence to TLS Server.

4.2. TLS Server as Attester

In this use case the TLS client challenges the TLS server to present

evidence. The TLS server acts as an attester while the TLS client is

the relying party. The TLS client, when receiving the evidence, will

have to contact the verifier (which is not shown in the diagram).

¶

¶

 Client Server

Key ^ ClientHello

Exch | + evidence_proposal

 | + key_share*

 | + signature_algorithms*

 v -------->

 ServerHello ^ Key

 + key_share* | Exch

 v

 {EncryptedExtensions} ^ Server

 + evidence_proposal | Params

 (nonce) |

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

An example of this flow can be found in confidential computing where

a compute workload is only submitted to the server infrastructure

once the client/user is ensured that the confidential computing

platform is genuine.

Figure 2: TLS Client Providing Evidence to TLS Server.

5. Evidence Extension (Background Check Model)

This document defines two new extensions, the evidence_request and

the evidence_proposal, for use with the background check model.

The EvidenceType structure encodes either a media type or as a

content format. The media type is a string-based identifier while

the content format uses a number. The former is more flexible and

does not necessarily require a registration through IANA while the

latter is more efficient over-the-wire.

¶

 Client Server

Key ^ ClientHello

Exch | + evidence_request

 | (nonce)

 | + key_share*

 | + signature_algorithms*

 v -------->

 ServerHello ^ Key

 + key_share* | Exch

 v

 {EncryptedExtensions} ^ Server

 + evidence_request | Params

 |

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

Figure 3: TLS Structure for Evidence.

The Certificate payload is used as a container, as shown in

Figure 4, and follows the model of [RFC8446].

 enum { NUMERIC(0), STRING(1) } encodingType;

 struct {

 encodingType type;

 select (encodingType) {

 case NUMERIC:

 uint16 content_format;

 case STRING:

 opaque media_type<0..2^16-1>;

 };

 } EvidenceType;

 struct {

 select(ClientOrServerExtension) {

 case client:

 EvidenceType supported_evidence_types<1..2^8-1>;

 opaque nonce<0..2^8-1>;

 case server:

 EvidenceType selected_evidence_type;

 }

 } evidenceRequestTypeExtension;

 struct {

 select(ClientOrServerExtension) {

 case client:

 EvidenceType supported_evidence_types<1..2^8-1>;

 case server:

 EvidenceType selected_evidence_type;

 opaque nonce<0..2^8-1>;

 }

 } evidenceProposalTypeExtension;

¶

Figure 4: Certificate Message.

The encoding of the evidence structure is defined in

[I-D.ftbs-rats-msg-wrap].

6. TLS Client and Server Handshake Behavior

The high-level message exchange in Figure 5 shows the

evidence_proposal and evidence_request extensions added to the

ClientHello and the EncryptedExtensions messages.

 struct {

 select (certificate_type) {

 case RawPublicKey:

 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 /* payload used to convey evidence */

 case attestation:

 opaque evidence<1..2^24-1>;

 case X509:

 opaque cert_data<1..2^24-1>;

 };

 Extension extensions<0..2^16-1>;

 } CertificateEntry;

 struct {

 opaque certificate_request_context<0..2^8-1>;

 CertificateEntry certificate_list<0..2^24-1>;

 } Certificate;

¶

¶

Figure 5: Attestation Message Overview.

6.1. Client Hello

To indicate the support for passing evidence in TLS following the

background check model, clients include the evidence_proposal and/or

the evidence_request extensions in the ClientHello.

The evidence_proposal extension in the ClientHello indicates the

evidence types the client is able to provide to the server, when

requested using a CertificateRequest message.

The evidence_request extension in the ClientHello indicates the

types of evidence types the client challenges the server to provide

in a subsequent Certificate payload.

The evidence_proposal and evidence_request extensions sent in the

ClientHello each carry a list of supported evidence types, sorted by

preference. When the client supports only one evidence type, it is a

list containing a single element.

The client MUST omit evidence types from the evidence_proposal

extension in the ClientHello if it cannot respond to a request from

the server to present a proposed evidence type, or if the cient is

 Client Server

Key ^ ClientHello

Exch | + key_share*

 | + signature_algorithms*

 | + psk_key_exchange_modes*

 | + pre_shared_key*

 | + evidence_proposal

 v + evidence_request

 -------->

 ServerHello ^ Key

 + key_share* | Exch

 + pre_shared_key* v

 {EncryptedExtensions} ^ Server

 + evidence_proposal |

 + evidence_request |

 {CertificateRequest*} v Params

 {Certificate*} ^

 {CertificateVerify*} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate*}

Auth | {CertificateVerify*}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

not configured to use the proposed evidence type with the given

server. If the client has no evidenence types to send in the

ClientHello it MUST omit the evidence_proposal extension in the

ClientHello.

The client MUST omit evidence types from the evidence_request

extension in the ClientHello if it is not able to pass the indicated

verification type to a verifier. If the client does not act as a

relying party with regards to evidence processing (as defined in the

RATS architecture) then the client MUST omit the evidence_request

extension from the ClientHello.

6.2. Server Hello

If the server receives a ClientHello that contains the

evidence_proposal extension and/or the evidence_request extension,

then three outcomes are possible:

The server does not support the extension defined in this

document. In this case, the server returns the

EncryptedExtensions without the extensions defined in this

document.

The server supports the extension defined in this document, but

it does not have any evidence type in common with the client.

Then, the server terminates the session with a fatal alert of

type "unsupported_evidence".

The server supports the extensions defined in this document and

has at least one evidence type in common with the client. In this

case, the processing rules described below are followed.

The evidence_proposal extension in the ClientHello indicates the

evidence types the client is able to provide to the server, when

challenged using a certificate_request message. If the server wants

to request evidence from the client, it MUST include the

client_attestation_type extension in the EncryptedExtensions. This

evidence_proposal extension in the EncryptedExtensions then

indicates what evidence format the client is requested to provide in

a subsequent Certificate message. The value conveyed in the

evidence_proposal extension by the server MUST be selected from one

of the values provided in the evidence_proposal extension sent in

the ClientHello. The server MUST also send a certificate_request

message.

If the server does not send a certificate_request message or none of

the evidence types supported by the client (as indicated in the

evidence_proposal extension in the ClientHello) match the server-

supported evidence types, then the evidence_proposal extension in

the ServerHello MUST be omitted.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

The evidence_request extension in the ClientHello indicates what

types of evidence the client can challenge the server to return. in

a subsequent Certificate message. With the evidence_request

extension in the EncryptedExtensions, the server indicates the

evidence type carried in the Certificate message sent by the server.

The evidence type in the evidence_request extension MUST contain a

single value selected from the evidence_request extension in the

ClientHello.

7. Background-Check Model Examples

7.1. Cloud Confidential Computing

In this example, a confidential workload is executed on

computational resources hosted at a cloud service provider. This is

a typical scenario for secure, privacy-preserving multiparty

computation, including anti-money laundering, drug development in

healthcare, contact tracing in pandemic times, etc.

In such scenarios, the users (e.g., the party providing the data

input for the computation, the consumer of the computed results, the

party providing a proprietary ML model used in the computation) have

two goals:

Identifying the workload they are interacting with,

Making sure that the platform on which the workload executes is a

Trusted Execution Environment (TEE) with the expected features.

A convenient arrangement is to verify that the two requirements are

met at the same time that the secure channel is established.

The protocol flow, alongside all the involved actors, is captured in

Figure 6 where the TLS client is the user (the relying party) while

the TLS server is co-located with the TEE-hosted confidential

workload (the attester).

The flow starts with the client initiating a verification session

with a trusted verifier. The verifier returns the kinds of evidence

it understands and a nonce that will be used to challenge the

attester.

The client starts the TLS handshake with the server by supplying the

attestation-related parameters it has obtained from the verifier. If

the server supports one of the offered evidence types, it will echo

it in the specular extension and proceed by invoking the local API

to request the attestation. The returned evidence binds the identity

key with the platform identity and security state. The server then

signs the handshake transcript with the (attested) identity key, and

¶

¶

¶

* ¶

*

¶

¶

¶

¶

sends the attestation evidence together with the signature over to

the client.

The client forwards the attestation evidence to the verifier using

the previously established session, obtains the attestation result

and checks it is acceptable according to its local policy. If so, it

proceeds and verifies the handshake signature using the

corresponding public key (for example, using the PoP key in the KAT

evidence [I-D.bft-rats-kat]).

The attestation evidence verification combined with the verification

of the CertificateVerify signature provide confirmation that the

presented cryptographic identity is bound to the workload and

platform identity, and that the workload and platform are

trustworthy. Therefore, after the handshake is finalized, the client

can trust the workload on the other side of the established secure

channel to provide the required confidential computing properties.

¶

¶

¶

Server Attestation
Verifier Client Service

POST /newSession

201 Created
Location: /76839A9
Body: {

nonce,
supp-media-types

}

TLS handshake

ClientHello
{...}
evidence_request(
nonce
types(a,b,c)

)

ServerHello
{...}
EncryptedExtensions
{...}
evidence_request(
type(a)

)

attest_key(
nonce,
TIK

)

CAB(KAT, PAT)

sign(TIK,hs)

sig

Certificate(KAT,PAT)
CertificateVerify(sig)

Finished

POST /76839A9E
Body: {

type(a),
CAB

}

Body: {
att-result: AR{}

}

verify AR{}

verify sig

Finished

application data

¶

Figure 6: Example Exchange with Server as Attester.

7.2. IoT Device Onboarding

In this example, an IoT is onboarded to a cloud service provider (or

to a network operator). In this scenario there is typically no a-

priori relationship between the device and the cloud service

provider that will remote manage the device.

In such scenario, the cloud service provider wants to make sure that

the device runs the correct version of firmware, has not been

rooted, is emulated, or cloned.

The protocol flow is shown in Figure 7 where the client is the

attester while the server is the relying party.

The flow starts with the client initiating a TLS exchange with the

TLS server operated by the cloud service provider. The client

indicates what evidence types it supports.

The server obtains a nonce from the verifier, in real-time or from a

reserved nonce range, and returns it to the client alongside the

selected evidence type. Since the evidence will be returned in the

Certificate message the server has to request mutual authentication

via the CertificateRequest message.

The client, when receiving the EncryptedExtension with the

evidence_proposal, will proceed by invoking a local API to request

the attestation. The returned evidence binds the identity key with

the workload and platform identity and security state. The client

then signs the handshake transcript with the (attested) identity

key, and sends the evidence together with the signature over to the

server.

The server forwards the attestation evidence to the verifier,

obtains the attestation result and checks it is acceptable according

to its local policy. The evidence verification combined with the

verification of the CertificateVerify signature provide confirmation

that the presented cryptographic identity is bound to the platform

identity, and that the platform is trustworthy.

If successful, the server proceeds with the application layer

protocol exchange. If, for some reason, the attestation result is

not satisfactory the TLS server will terminate the exchange.

¶

¶

¶

¶

¶

¶

¶

¶

Attestation Client
Service Server Verifier

TLS handshake

ClientHello
{...}
evidence_proposal(

types(a,b,c)
)

ServerHello POST /newSession
{...}

201 Created
Location: /76839
Body: {

nonce
EncryptedExtensions types(a,b,c)
{...} }
evidence_proposal(
nonce,
type(a)

)
CertificateRequest
Certificate

attest_key(CertificateVerify
nonce, Finished
TIK

)

CAB(KAT, PAT)

sign(TIK,hs)

sig
Certificate(KAT,PAT)
CertificateVerify(sig)

Finished

POST /76839A9E
Body: {

type(a),
CAB

}

Body: {
att-result: AR{}

}

verify AR{}

verify sig

application data

¶

[I-D.bft-rats-kat]

Figure 7: Example Exchange with Client as Attester.

8. Security Considerations

TBD.

9. IANA Considerations

9.1. TLS Extensions

IANA is asked to allocate two new TLS extensions, evidence_request

and evidence_proposal, from the "TLS ExtensionType Values"

subregistry of the "Transport Layer Security (TLS) Extensions"

registry [TLS-Ext-Registry]. These extensions are used in the

ClientHello and the EncryptedExtensions messages. The values carried

in these extensions are taken from TBD.

9.2. TLS Alerts

IANA is requested to allocate a value in the "TLS Alerts"

subregistry of the "Transport Layer Security (TLS) Parameters"

registry [TLS-Param-Registry] and populate it with the following

entry:

Value: TBD

Description: unsupported_evidence

DTLS-OK: Y

Reference: [This document]

Comment:

9.3. TLS Certificate Types

IANA is requested to allocate a new value in the "TLS Certificate

Types" subregistry of the "Transport Layer Security (TLS)

Extensions" registry [TLS-Ext-Registry], as follows:

Value: TBD2

Description: Attestation

Reference: [This document]

10. References

10.1. Normative References

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

[I-D.ftbs-rats-msg-wrap]

[RFC2119]

[RFC8446]

[I-D.ietf-rats-ar4si]

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-eat]

Brossard, M., Fossati, T., and H. Tschofenig, "An EAT-

based Key Attestation Token", Work in Progress, Internet-

Draft, draft-bft-rats-kat-00, 21 October 2022, <https://

www.ietf.org/archive/id/draft-bft-rats-kat-00.txt>.

Birkholz, H., Smith, N., Fossati, T., and

H. Tschofenig, "RATS Conceptual Messages Wrapper", Work

in Progress, Internet-Draft, draft-ftbs-rats-msg-wrap-01,

20 October 2022, <https://www.ietf.org/archive/id/draft-

ftbs-rats-msg-wrap-01.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

Voit, E., Birkholz, H., Hardjono, T., Fossati,

T., and V. Scarlata, "Attestation Results for Secure

Interactions", Work in Progress, Internet-Draft, draft-

ietf-rats-ar4si-03, 6 September 2022, <https://

www.ietf.org/archive/id/draft-ietf-rats-ar4si-03.txt>.

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-22, 28 September 2022, <https://

www.ietf.org/archive/id/draft-ietf-rats-

architecture-22.txt>.

Lundblade, L., Mandyam, G., O'Donoghue, J., and

C. Wallace, "The Entity Attestation Token (EAT)", Work in

Progress, Internet-Draft, draft-ietf-rats-eat-17, 22

https://www.ietf.org/archive/id/draft-bft-rats-kat-00.txt
https://www.ietf.org/archive/id/draft-bft-rats-kat-00.txt
https://www.ietf.org/archive/id/draft-ftbs-rats-msg-wrap-01.txt
https://www.ietf.org/archive/id/draft-ftbs-rats-msg-wrap-01.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8446
https://www.ietf.org/archive/id/draft-ietf-rats-ar4si-03.txt
https://www.ietf.org/archive/id/draft-ietf-rats-ar4si-03.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt

[TLS-Ext-Registry]

[TLS-Param-Registry]

[TPM1.2]

[TPM2.0]

October 2022, <https://www.ietf.org/archive/id/draft-

ietf-rats-eat-17.txt>.

IANA, "Transport Layer Security (TLS)

Extensions", 15 November 2005, <https://www.iana.org/

assignments/tls-extensiontype-values>.

IANA, "Transport Layer Security (TLS)

Parameters", 23 August 2005, <https://www.iana.org/

assignments/tls-parameters>.

Trusted Computing Group, "TPM Main Specification Level 2

Version 1.2, Revision 116", March 2011, <https://

trustedcomputinggroup.org/resource/tpm-main-

specification/>.

Trusted Computing Group, "Trusted Platform Module Library

Specification, Family "2.0", Level 00, Revision 01.59",

November 2019, <https://trustedcomputinggroup.org/

resource/tpm-library-specification/>.

Appendix A. History

RFC EDITOR: PLEASE REMOVE THE THIS SECTION

A.1. draft-fossati-tls-attestation-02

Focus on the background check model

Added examples

Updated introduction

Moved attestation format-specific content to related drafts.

A.2. draft-fossati-tls-attestation-01

Added details about TPM attestation

A.3. draft-fossati-tls-attestation-00

Initial version

Appendix B. Working Group Information

The discussion list for the IETF TLS working group is located at the

e-mail address tls@ietf.org. Information on the group and

information on how to subscribe to the list is at https://

www1.ietf.org/mailman/listinfo/tls

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

https://www.ietf.org/archive/id/draft-ietf-rats-eat-17.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-17.txt
https://www.iana.org/assignments/tls-extensiontype-values
https://www.iana.org/assignments/tls-extensiontype-values
https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-parameters
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
mailto:tls@ietf.org
https://www1.ietf.org/mailman/listinfo/tls
https://www1.ietf.org/mailman/listinfo/tls

Archives of the list can be found at: https://www.ietf.org/mail-

archive/web/tls/current/index.html

Authors' Addresses

Hannes Tschofenig

Arm Limited

Email: hannes.tschofenig@arm.com

Thomas Fossati

Arm Limited

Email: Thomas.Fossati@arm.com

Paul Howard

Arm Limited

Email: Paul.Howard@arm.com

Ionut Mihalcea

Arm Limited

Email: Ionut.Mihalcea@arm.com

Yogesh Deshpande

Arm Limited

Email: Yogesh.Deshpande@arm.com

¶

https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html
mailto:hannes.tschofenig@arm.com
mailto:Thomas.Fossati@arm.com
mailto:Paul.Howard@arm.com
mailto:Ionut.Mihalcea@arm.com
mailto:Yogesh.Deshpande@arm.com

	Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Overview
	4. Use of Evidence with the Background Check Model
	4.1. TLS Client as Attester
	4.2. TLS Server as Attester

	5. Evidence Extension (Background Check Model)
	6. TLS Client and Server Handshake Behavior
	6.1. Client Hello
	6.2. Server Hello

	7. Background-Check Model Examples
	7.1. Cloud Confidential Computing
	7.2. IoT Device Onboarding

	8. Security Considerations
	9. IANA Considerations
	9.1. TLS Extensions
	9.2. TLS Alerts
	9.3. TLS Certificate Types

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. History
	A.1. draft-fossati-tls-attestation-02
	A.2. draft-fossati-tls-attestation-01
	A.3. draft-fossati-tls-attestation-00

	Appendix B. Working Group Information
	Authors' Addresses

