
Workgroup: TLS

Internet-Draft:

draft-fossati-tls-attestation-03

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: H. Tschofenig Y. Sheffer

Intuit

P. Howard

Arm Limited

I. Mihalcea

Arm Limited

Y. Deshpande

Arm Limited

Using Attestation in Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS)

Abstract

Attestation is the process by which an entity produces evidence

about itself that another party can use to evaluate the

trustworthiness of that entity.

In use cases that require the use of remote attestation, such as

confidential computing or device onboarding, an attester has to

convey evidence or attestation results to a relying party. This

information exchange may happen at different layers in the protocol

stack.

This specification provides a generic way of passing evidence and

attestation results in the TLS handshake. Functionality-wise this is

accomplished with the help of key attestation.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-fossati-tls-attestation/.

Source for this draft and an issue tracker can be found at https://

github.com/yaronf/draft-tls-attestation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/
https://github.com/yaronf/draft-tls-attestation
https://github.com/yaronf/draft-tls-attestation
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. Overview

4. Use of Evidence with the Background Check Model

4.1. TLS Client as Attester

4.2. TLS Server as Attester

5. Evidence Extensions (Background Check Model)

5.1. Attestation-only

5.2. Attestation alongside X.509 certificates

6. TLS Client and Server Handshake Behavior

6.1. Client Hello

6.2. Server Hello

7. Background-Check Model Examples

7.1. Cloud Confidential Computing

7.2. IoT Device Onboarding

8. Security Considerations

9. IANA Considerations

9.1. TLS Extensions

9.2. TLS Alerts

9.3. TLS Certificate Types

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Design Rationale: X.509 and Attestation Usage Variants

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Appendix B. Cross-protocol binding mechanism

B.1. Binding mechanism

B.2. Usage

Appendix C. History

C.1. draft-fossati-tls-attestation-02

C.2. draft-fossati-tls-attestation-01

C.3. draft-fossati-tls-attestation-00

Appendix D. Working Group Information

Authors' Addresses

1. Introduction

The Remote ATtestation ProcedureS (RATS) architecture defines two

basic types of topological patterns to communicate between an

attester, a relying party, and a verifier, namely the background-

check model and the passport model. These two models are

fundamentally different and require a different treatment when

incorporated into the TLS handshake. For better readability we

suggest to use different extensions for these two models.

The two models can be summarized as follows:

In the background check model, the attester conveys evidence to

the relying party, which then forwards the evidence to the

verifier for appraisal; the verifier computes the attestation

result and sends it back to the relying party.

In the passport model, the attester transmits evidence to the

verifier directly and receives attestation results, which are

then relayed to the relying party.

This specification supports both patterns.

Several formats for encoding evidence are available, such as: - the

Entity Attestation Token (EAT) [I-D.ietf-rats-eat], - the Trusted

Platform Modules (TPMs) [TPM1.2] [TPM2.0], - the Android Key

Attestation, and - Apple Key Attestation.

Likewise, there are different encodings available for attestation

results. One such encoding, AR4SI [I-D.ietf-rats-ar4si] is being

standardized by the RATS working group.

This version of the specification defines how to support the

background check model in the TLS handshake, such that the details

about the attestation technology are agnostic to the TLS handshake

itself. Later versions of the specification will support the

passport model as well.

To give the peer information that the handshake signing key is

properly secured, the associated evidence has to be verified by that

¶

¶

*

¶

*

¶

¶

¶

¶

¶

peer. Hence, attestation evidence about the security state of the

signing key is needed, which is typically associated with evidence

about the overall platform state. The platform attestation service

ensures that the key attestation service has not been tampered with.

The platform attestation service issues the Platform Attestation

Token (PAT) and the key attestation service issues the Key

Attestation Token (KAT). The security of the protocol critically

depends on the verifiable binding between these two logically

separate units of evidence.

This document does not define how different attestation technologies

are encoded. This is accomplished by companion specifications.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

RFC 2119 [RFC2119].

3. Overview

The Remote Attestation Procedures (RATS) architecture

[I-D.ietf-rats-architecture] defines two types of interaction models

for attestation, namely the passport model and the background check

model. The subsections below explain the difference in their

interactions.

As typical with new features in TLS, the client indicates support

for the new extension in the ClientHello message. The newly

introduced extensions allow evidence and nonces to be exchanged. The

nonces are used for guaranteeing freshness of the exchanged

evidence.

When the evidence extension is successfully negotiated, the content

of the Certificate message contains a payload that is encoded based

on the wrapper defined in [I-D.ftbs-rats-msg-wrap].

In TLS a client has to demonstrate possession of the private key via

the CertificateVerify message, when client-based authentication is

requested. The attestation payload must contain a key attestation

token, which associates a private key with the attestation

information. An example of a key attestation token format utilizing

the EAT format can be found in [I-D.bft-rats-kat].

The recipient extracts evidence from the Certificate message and

relays it to the verifier to obtain attestation results.

Subsequently, the attested key is used to verify the

CertificateVerify message.

¶

¶

¶

¶

¶

¶

¶

¶

4. Use of Evidence with the Background Check Model

The background check model is described in Section 5.2 of

[I-D.ietf-rats-architecture] and allows the following modes of

operation when used with TLS, namely:

TLS client is the attester,

TLS server is the attester, and

TLS client and server mutually attest towards each other.

We will show the message exchanges of the three cases in sub-

sections below.

4.1. TLS Client as Attester

In this use case the TLS client, as the attester, is challenged by

the TLS server to provide evidence. The TLS client is the attester

and the the TLS server acts as a relying party. The TLS server needs

to provide a nonce in the EncryptedExtensions message to the TLS

client so that the attestation service can feed the nonce into the

generation of the evidence. The TLS server, when receiving the

evidence, will have to contact the verifier (which is not shown in

the diagram).

An example of this flow can be found in device onboarding where the

client initiates the communication with cloud infrastructure to get

credentials, firmware and other configuration data provisioned to

the device. For the server to consider the device genuine it needs

to present evidence.

¶

* ¶

* ¶

* ¶

¶

¶

¶

Figure 1: TLS Client Providing Evidence to TLS Server.

4.2. TLS Server as Attester

In this use case the TLS client challenges the TLS server to present

evidence. The TLS server acts as an attester while the TLS client is

the relying party. The TLS client, when receiving the evidence, will

have to contact the verifier (which is not shown in the diagram).

An example of this flow can be found in confidential computing where

a compute workload is only submitted to the server infrastructure

once the client/user is assured that the confidential computing

platform is genuine.

 Client Server

Key ^ ClientHello

Exch | + evidence_proposal

 | + key_share*

 | + signature_algorithms*

 v -------->

 ServerHello ^ Key

 + key_share* | Exch

 v

 {EncryptedExtensions} ^ Server

 + evidence_proposal | Params

 (nonce) |

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

Figure 2: TLS Client Providing Evidence to TLS Server.

5. Evidence Extensions (Background Check Model)

This document defines two new extensions, the evidence_request and

the evidence_proposal, for use with the background check model.

The EvidenceType structure encodes either a media type or as a

content format. The media type is a string-based identifier while

the content format uses a number. The former is more flexible and

does not necessarily require a registration through IANA while the

latter is more efficient over-the-wire.

The EvidenceType structure also contains an indicator for the type

of credential expected in the Certificate message. The credential

can either contain attestation evidence alone, or an X.509

certificate alongside attestation evidence.

 Client Server

Key ^ ClientHello

Exch | + evidence_request

 | (nonce)

 | + key_share*

 | + signature_algorithms*

 v -------->

 ServerHello ^ Key

 + key_share* | Exch

 v

 {EncryptedExtensions} ^ Server

 + evidence_request | Params

 |

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

Figure 3: TLS Structure for Evidence.

5.1. Attestation-only

When the chosen evidence type indicates the sole use of attestation

for authentication, the Certificate payload is used as a container

for attestation evidence, as shown in Figure 4, and follows the

model of [RFC8446].

 enum { NUMERIC(0), STRING(1) } encodingType;

 enum { ATTESTATION(0), CERT_ATTESTATION(1) } credentialType;

 struct {

 encodingType type;

 credentialType cred_type;

 select (encodingType) {

 case NUMERIC:

 uint16 content_format;

 case STRING:

 opaque media_type<0..2^16-1>;

 };

 } EvidenceType;

 struct {

 select(ClientOrServerExtension) {

 case client:

 EvidenceType supported_evidence_types<1..2^8-1>;

 opaque nonce<0..2^8-1>;

 case server:

 EvidenceType selected_evidence_type;

 }

 } evidenceRequestTypeExtension;

 struct {

 select(ClientOrServerExtension) {

 case client:

 EvidenceType supported_evidence_types<1..2^8-1>;

 case server:

 EvidenceType selected_evidence_type;

 opaque nonce<0..2^8-1>;

 }

 } evidenceProposalTypeExtension;

¶

Figure 4: Certificate Message when using only attestation.

The encoding of the evidence structure is defined in

[I-D.ftbs-rats-msg-wrap].

5.2. Attestation alongside X.509 certificates

When the chosen evidence type indicates usage of both attestation

and PKIX, the X.509 certificate will serve as the main payload in

the Certificate message, while the attestation evidence will be

carried in the CertificateEntry extension, as shown in Figure 5.

 struct {

 select (certificate_type) {

 case RawPublicKey:

 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 /* payload used to convey evidence */

 case attestation:

 opaque evidence<1..2^24-1>;

 case X509:

 opaque cert_data<1..2^24-1>;

 };

 Extension extensions<0..2^16-1>;

 } CertificateEntry;

 struct {

 opaque certificate_request_context<0..2^8-1>;

 CertificateEntry certificate_list<0..2^24-1>;

 } Certificate;

¶

¶

Figure 5: Certificate Message when using PKIX and attestation.

The encoding of the evidence structure is defined in

[I-D.ftbs-rats-msg-wrap].

As described in Appendix A, this authentication mechanism is meant

primarily for carrying platform attestation evidence to provide more

context to the relying party. This evidence must be

cryptographically bound to the TLS handshake to prevent relay

attacks. An Attestation Channel Binder as described in Appendix B is

therefore used when the attestation scheme does not allow the

binding data to be part of the token. The structure of the binder is

given in Figure 6.

 struct {

 select (certificate_type) {

 case RawPublicKey:

 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 /* X.509 certificate conveyed as usual */

 case X509:

 opaque cert_data<1..2^24-1>;

 };

 /* attestation evidence conveyed as an extension, see below */

 Extension extensions<0..2^16-1>;

 } CertificateEntry;

 struct {

 opaque certificate_request_context<0..2^8-1>;

 CertificateEntry certificate_list<0..2^24-1>;

 } Certificate;

 struct {

 ExtensionType extension_type;

 /* payload used to convey evidence */

 opaque extension_data<0..2^16-1>;

 } Extension;

 enum {

 /* other extension types defined in the IANA TLS

 ExtensionType Value registry */

 /* variant used to identify attestation evidence */

 attestation_evidence(60),

 (65535)

 } ExtensionType;

¶

¶

Figure 6: Format of TLS channel binder.

Nonce is the value provided as a challenge by the relying party.

The identity key public fingerprint (ik_pub_fingerprint) is a

hash of the Subject Public Key Info from the leaf X.509

certificate transmitted in the handshake.

The channel binder (channel_binder) is a partial transcript of

the TLS handshake, up to (but not including) the Certificate

message.

A hash of the binder must be included in the attestation evidence.

Previous to hashing, the binder must be encoded as described in

Appendix B.

The hash algorithm negotiatied within the handshake must be used

wherever hashing is required for the binder.

6. TLS Client and Server Handshake Behavior

The high-level message exchange in Figure 7 shows the

evidence_proposal and evidence_request extensions added to the

ClientHello and the EncryptedExtensions messages.

attestation_channel_binder = {

 &(nonce: 1) => bstr .size (8..64)

 &(ik_pub_fingerprint: 2) => bstr .size (16..64)

 &(channel_binder: 3) => bstr .size (16..64)

}

* ¶

*

¶

*

¶

¶

¶

¶

Figure 7: Attestation Message Overview.

6.1. Client Hello

To indicate the support for passing evidence in TLS following the

background check model, clients include the evidence_proposal and/or

the evidence_request extensions in the ClientHello.

The evidence_proposal extension in the ClientHello message indicates

the evidence types the client is able to provide to the server, when

requested using a CertificateRequest message.

The evidence_request extension in the ClientHello message indicates

the evidence types the client challenges the server to provide in a

subsequent Certificate payload.

The evidence_proposal and evidence_request extensions sent in the

ClientHello each carry a list of supported evidence types, sorted by

preference. When the client supports only one evidence type, it is a

list containing a single element.

The client MUST omit evidence types from the evidence_proposal

extension in the ClientHello if it cannot respond to a request from

the server to present a proposed evidence type, or if the client is

 Client Server

Key ^ ClientHello

Exch | + key_share*

 | + signature_algorithms*

 | + psk_key_exchange_modes*

 | + pre_shared_key*

 | + evidence_proposal

 v + evidence_request

 -------->

 ServerHello ^ Key

 + key_share* | Exch

 + pre_shared_key* v

 {EncryptedExtensions} ^ Server

 + evidence_proposal |

 + evidence_request |

 {CertificateRequest*} v Params

 {Certificate*} ^

 {CertificateVerify*} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate*}

Auth | {CertificateVerify*}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

not configured to use the proposed evidence type with the given

server. If the client has no evidence types to send in the

ClientHello it MUST omit the evidence_proposal extension in the

ClientHello.

The client MUST omit evidence types from the evidence_request

extension in the ClientHello if it is not able to pass the indicated

verification type to a verifier. If the client does not act as a

relying party with regards to evidence processing (as defined in the

RATS architecture) then the client MUST omit the evidence_request

extension from the ClientHello.

6.2. Server Hello

If the server receives a ClientHello that contains the

evidence_proposal extension and/or the evidence_request extension,

then three outcomes are possible:

The server does not support the extensions defined in this

document. In this case, the server returns the

EncryptedExtensions without the extensions defined in this

document.

The server supports the extensions defined in this document, but

it does not have any evidence type in common with the client.

Then, the server terminates the session with a fatal alert of

type "unsupported_evidence".

The server supports the extensions defined in this document and

has at least one evidence type in common with the client. In this

case, the processing rules described below are followed.

The evidence_proposal extension in the ClientHello indicates the

evidence types the client is able to provide to the server, when

challenged using a certificate_request message. If the server wants

to request evidence from the client, it MUST include the

client_attestation_type extension in the EncryptedExtensions. This

evidence_proposal extension in the EncryptedExtensions then

indicates what evidence format the client is requested to provide in

a subsequent Certificate message. The value conveyed in the

evidence_proposal extension by the server MUST be selected from one

of the values provided in the evidence_proposal extension sent in

the ClientHello. The server MUST also send a certificate_request

message.

If the server does not send a certificate_request message or none of

the evidence types supported by the client (as indicated in the

evidence_proposal extension in the ClientHello) match the server-

supported evidence types, then the evidence_proposal extension in

the ServerHello MUST be omitted.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

The evidence_request extension in the ClientHello indicates what

types of evidence the client can challenge the server to return in a

subsequent Certificate message. With the evidence_request extension

in the EncryptedExtensions, the server indicates the evidence type

carried in the Certificate message sent by the server. The evidence

type in the evidence_request extension MUST contain a single value

selected from the evidence_request extension in the ClientHello.

7. Background-Check Model Examples

7.1. Cloud Confidential Computing

In this example, a confidential workload is executed on

computational resources hosted at a cloud service provider. This is

a typical scenario for secure, privacy-preserving multiparty

computation, including anti-money laundering, drug development in

healthcare, contact tracing in pandemic times, etc.

In such scenarios, the users (e.g., the party providing the data

input for the computation, the consumer of the computed results, the

party providing a proprietary ML model used in the computation) have

two goals:

Identifying the workload they are interacting with,

Making sure that the platform on which the workload executes is a

Trusted Execution Environment (TEE) with the expected features.

A convenient arrangement is to verify that the two requirements are

met at the same time that the secure channel is established.

The protocol flow, alongside all the involved actors, is captured in

Figure 8 where the TLS client is the user (the relying party) while

the TLS server is co-located with the TEE-hosted confidential

workload (the attester).

The flow starts with the client initiating a verification session

with a trusted verifier. The verifier returns the kinds of evidence

it understands and a nonce that will be used to challenge the

attester.

The client starts the TLS handshake with the server by supplying the

attestation-related parameters it has obtained from the verifier. If

the server supports one of the offered evidence types, it will echo

it in the specular extension and proceed by invoking the local API

to request the attestation. The returned evidence binds the identity

key with the platform identity and security state. The server then

signs the handshake transcript with the (attested) identity key, and

sends the attestation evidence together with the signature over to

the client.

¶

¶

¶

* ¶

*

¶

¶

¶

¶

¶

The client forwards the attestation evidence to the verifier using

the previously established session, obtains the attestation result

and checks whether it is acceptable according to its local policy.

If so, it proceeds and verifies the handshake signature using the

corresponding public key (for example, using the PoP key in the KAT

evidence [I-D.bft-rats-kat]).

The attestation evidence verification combined with the verification

of the CertificateVerify signature provide confirmation that the

presented cryptographic identity is bound to the workload and

platform identity, and that the workload and platform are

trustworthy. Therefore, after the handshake is finalized, the client

can trust the workload on the other side of the established secure

channel to provide the required confidential computing properties.

¶

¶

Server Attestation
Verifier Client Service

POST /newSession

201 Created
Location: /76839A9
Body: {

nonce,
supp-media-types

}

TLS handshake

ClientHello
{...}
evidence_request(
nonce
types(a,b,c)

)

ServerHello
{...}
EncryptedExtensions
{...}
evidence_request(
type(a)

)

attest_key(
nonce,
TIK

)

CAB(KAT, PAT)

sign(TIK,hs)

sig

Certificate(KAT,PAT)
CertificateVerify(sig)
Finished

POST /76839A9E
Body: {

type(a),
CAB

}

Body: {
att-result: AR{}

}

verify AR{}

verify sig

Finished

application data

¶

Figure 8: Example Exchange with Server as Attester.

7.2. IoT Device Onboarding

In this example, an IoT is onboarded to a cloud service provider (or

to a network operator). In this scenario there is typically no a

priori relationship between the device and the cloud service

provider that will remotely manage the device.

In such scenario, the cloud service provider wants to make sure that

the device runs the correct version of firmware, has not been

rooted, is not emulated or cloned.

The protocol flow is shown in Figure 9 where the client is the

attester while the server is the relying party.

The flow starts with the client initiating a TLS exchange with the

TLS server operated by the cloud service provider. The client

indicates what evidence types it supports.

The server obtains a nonce from the verifier, in real-time or from a

reserved nonce range, and returns it to the client alongside the

selected evidence type. Since the evidence will be returned in the

Certificate message the server has to request mutual authentication

via the CertificateRequest message.

The client, when receiving the EncryptedExtension with the

evidence_proposal, will proceed by invoking a local API to request

the attestation. The returned evidence binds the identity key with

the workload and platform identity and security state. The client

then signs the handshake transcript with the (attested) identity

key, and sends the evidence together with the signature over to the

server.

The server forwards the attestation evidence to the verifier,

obtains the attestation result and checks that it is acceptable

according to its local policy. The evidence verification combined

with the verification of the CertificateVerify signature provide

confirmation that the presented cryptographic identity is bound to

the platform identity, and that the platform is trustworthy.

If successful, the server proceeds with the application layer

protocol exchange. If, for some reason, the attestation result is

not satisfactory the TLS server will terminate the exchange.

¶

¶

¶

¶

¶

¶

¶

¶

Attestation Client
Service Server Verifier

TLS handshake

ClientHello
{...}
evidence_proposal(
types(a,b,c)

)

ServerHello POST /newSession
{...}

201 Created
Location: /76839
Body: {

nonce
EncryptedExtensions types(a,b,c)
{...} }
evidence_proposal(
nonce,
type(a)

)
CertificateRequest
Certificate

attest_key(CertificateVerify
nonce, Finished
TIK

)

CAB(KAT, PAT)

sign(TIK,hs)

sig
Certificate(KAT,PAT)
CertificateVerify(sig)
Finished

POST /76839A9E
Body: {

type(a),
CAB

}

Body: {
att-result: AR{}

}

verify AR{}

verify sig

application data

¶

[I-D.bft-rats-kat]

Figure 9: Example Exchange with Client as Attester.

8. Security Considerations

TBD.

9. IANA Considerations

9.1. TLS Extensions

IANA is asked to allocate two new TLS extensions, evidence_request

and evidence_proposal, from the "TLS ExtensionType Values"

subregistry of the "Transport Layer Security (TLS) Extensions"

registry [TLS-Ext-Registry]. These extensions are used in the

ClientHello and the EncryptedExtensions messages. The values carried

in these extensions are taken from TBD.

9.2. TLS Alerts

IANA is requested to allocate a value in the "TLS Alerts"

subregistry of the "Transport Layer Security (TLS) Parameters"

registry [TLS-Param-Registry] and populate it with the following

entry:

Value: TBD1

Description: unsupported_evidence

DTLS-OK: Y

Reference: [This document]

Comment:

9.3. TLS Certificate Types

IANA is requested to allocate a new value in the "TLS Certificate

Types" subregistry of the "Transport Layer Security (TLS)

Extensions" registry [TLS-Ext-Registry], as follows:

Value: TBD2

Description: Attestation

Reference: [This document]

10. References

10.1. Normative References

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

[I-D.ftbs-rats-msg-wrap]

[RFC2119]

[RFC8446]

[RFC8949]

[DICE-Layering]

[I-D.acme-device-attest]

[I-D.ietf-rats-ar4si]

[I-D.ietf-rats-architecture]

Brossard, M., Fossati, T., and H. Tschofenig, "An EAT-

based Key Attestation Token", Work in Progress, Internet-

Draft, draft-bft-rats-kat-00, 21 October 2022, <https://

datatracker.ietf.org/doc/html/draft-bft-rats-kat-00>.

Birkholz, H., Smith, N., Fossati, T., and

H. Tschofenig, "RATS Conceptual Messages Wrapper", Work

in Progress, Internet-Draft, draft-ftbs-rats-msg-wrap-02,

7 March 2023, <https://datatracker.ietf.org/doc/html/

draft-ftbs-rats-msg-wrap-02>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

10.2. Informative References

Trusted Computing Group, "DICE Layering Architecture

Version 1.00 Revision 0.19", July 2020, <https://

trustedcomputinggroup.org/resource/dice-layering-

architecture/>.

Weeks, B., "Automated Certificate Management Environment

(ACME) Device Attestation Extension", Work in Progress,

Internet-Draft, draft-acme-device-attest-00, 12 December

2022, <https://datatracker.ietf.org/doc/html/draft-acme-

device-attest-00>.

Voit, E., Birkholz, H., Hardjono, T., Fossati,

T., and V. Scarlata, "Attestation Results for Secure

Interactions", Work in Progress, Internet-Draft, draft-

ietf-rats-ar4si-04, 2 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-04>.

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote ATtestation procedureS

(RATS) Architecture", Work in Progress, Internet-Draft,

draft-ietf-rats-architecture-22, 28 September 2022,

https://datatracker.ietf.org/doc/html/draft-bft-rats-kat-00
https://datatracker.ietf.org/doc/html/draft-bft-rats-kat-00
https://datatracker.ietf.org/doc/html/draft-ftbs-rats-msg-wrap-02
https://datatracker.ietf.org/doc/html/draft-ftbs-rats-msg-wrap-02
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://datatracker.ietf.org/doc/html/draft-acme-device-attest-00
https://datatracker.ietf.org/doc/html/draft-acme-device-attest-00
https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-04
https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-04

[I-D.ietf-rats-eat]

[RA-TLS]

[TLS-Ext-Registry]

[TLS-Param-Registry]

[TPM1.2]

[TPM2.0]

<https://datatracker.ietf.org/doc/html/draft-ietf-rats-

architecture-22>.

Lundblade, L., Mandyam, G., O'Donoghue, J., and

C. Wallace, "The Entity Attestation Token (EAT)", Work in

Progress, Internet-Draft, draft-ietf-rats-eat-19, 19

December 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-rats-eat-19>.

Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing,

C., and M. Vij, "Integrating Remote Attestation with

Transport Layer Security", January 2018, <https://

arxiv.org/abs/1801.05863>.

IANA, "Transport Layer Security (TLS)

Extensions", <https://www.iana.org/assignments/tls-

extensiontype-values>.

IANA, "Transport Layer Security (TLS)

Parameters", <https://www.iana.org/assignments/tls-

parameters>.

Trusted Computing Group, "TPM Main Specification Level 2

Version 1.2, Revision 116", March 2011, <https://

trustedcomputinggroup.org/resource/tpm-main-

specification/>.

Trusted Computing Group, "Trusted Platform Module Library

Specification, Family "2.0", Level 00, Revision 01.59",

November 2019, <https://trustedcomputinggroup.org/

resource/tpm-library-specification/>.

Appendix A. Design Rationale: X.509 and Attestation Usage Variants

The inclusion of attestation results and evidence as part of the TLS

handshake offers the relying party information about the state of

the system and its cryptographic keys, but lacks the means to

specify a stable endpoint identifier. While it is possible to solve

this problem by including an identifier as part of the attestation

result, some use cases require the use of a public key

infrastructure (PKI). It is therefore important to consider the

possible approaches for conveying X.509 certificates and attestation

within a single handshake.

In general, the following combinations of X.509 and attestation

usage are possible:

X.509 certificates only: In this case no attestation is

exchanged in the TLS handshake. Authentication relies on PKI

alone, i.e. TLS with X.509 certificates.

¶

¶

1.

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-22
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-22
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-19
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-19
https://arxiv.org/abs/1801.05863
https://arxiv.org/abs/1801.05863
https://www.iana.org/assignments/tls-extensiontype-values
https://www.iana.org/assignments/tls-extensiontype-values
https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-parameters
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

X.509 certificates containing attestation extension: The X.509

certificates in the Certificate message carry attestation as

part of the X.509 certificate extensions. Several proposals

exist that enable this functionality:

Custom X.509 extension:

Attester-issued certificates (e.g., RA-TLS [RA-TLS]): The

attester acts as a certification authority (CA) and

includes the attestation evidence within an X.509

extension.

DICE defines extensions that include attestation

information in the "Embedded CA" certificates (See

Section 8.1.1.1 of [DICE-Layering]).

Third party CA-issued certificates (e.g., ACME Device

Attestation [I-D.acme-device-attest]): Remote attestation

is performed between the third party CA and the attester

prior to certificate issuance, after which the CA adds an

extension indicating that the certificate key has

fulfilled some verification policy.

Explicit signalling via existing methods, e.g. using a

policy OID in the end-entity certificate.

Implicit signalling, e.g. via the issuer name.

X.509 certificates alongside a PAT: This use case assumes that

a keypair with a corresponding certificate already exists and

that the owner wishes to continue using it. As a consequence,

there is no cryptographic linkage between the certificate and

the PAT. This approach is described in Section 5.2.

X.509 certificates alongside the PAT and KAT: The addition of

key attestation implies that the TLS identity key must have

been generated and stored securely by the attested platform.

Unlike in variant (3), the certificate, the KAT, and the PAT

must be cryptographically linked. This variant is currently not

addressed in this document.

Combined PAT/KAT: With this variant the attestation token

carries information pertaining to both platform and key. No X.

509 certificate is transmitted during the handshake. This

approach is currently not addressed in this document.

PAT alongside KAT: This variant is similar to (5) with the

exception that the key and the platform attestations are stored

in separate tokens, cryptographically linked together. This

2.

¶

* ¶

-

¶

-

¶

-

¶

*

¶

* ¶

3.

¶

4.

¶

5.

¶

6.

approach is covered by this document in Section 5.1. A possible

instantiation of the KAT is described in [I-D.bft-rats-kat].

Appendix B. Cross-protocol binding mechanism

Note: This section describes a protocol-agnostic mechanism which is

used in the context of TLS within the body of the draft. The

mechanism might, in the future, be spun out into its own document.

One of the issues that must be addressed when using remote

attestation as an authentication mechanism is the binding to the

outer protocol (i.e., the protocol requiring authentication). For

every instance of the combined protocol, the remote attestation

credentials must be verifiably linked to the outer protocol. The

main reason for this requirement is security: a lack of binding can

result in the attestation credentials being relayed.

If the attestation credentials can be enhanced freely and in a

verifiable way, the binding can be performed by inserting the

relevant data as new claims. If the ways of enhancing the

credentials are more restricted, ad-hoc solutions can be devised

which address the issue. For example, many roots of trust only allow

a small amount (32-64 bytes) of user-provided data which will be

included in the attestation token. If more data must be included, it

must therefore be compressed. In this case, the problem is

compounded by the need to also include a challenge value coming from

the relying party. The verification steps also become more complex,

as the binding data must be returned from the verifier and checked

by the relying party.

However, regardless of how the binding and verification are

performed, similar but distinct approaches need to be taken for

every protocol into which remote attestation is embedded, as the

type or semantics of the binding data could differ. A more

standardised way of tackling this issue would therefore be

beneficial. This appendix presents a solution to this problem, in

the context of attestation evidence.

B.1. Binding mechanism

The core of the binding mechanism consists of a new token format -

the Attestation Channel Binder - that represents a set of binders as

a CBOR map. Binders are individual pieces of data with an

unambiguous definition. Each binder is a name/value pair, where the

name must be an integer and the value must be a byte string.

Each protocol using the Attestation Channel Binder to bind

attestation credentials must define its Attestation Channel Binder

using CDDL. The only mandated binder is the challenger nonce which

must use the value 1 as a name. Every other name/value pair must

¶

¶

¶

¶

¶

¶

come with a text description of its semantics. The byte strings

forming the values of binders can be size-restricted where this

value is known.

Attestation Channel Binders are encoded in CBOR, following the CBOR

core deterministic encoding requirements (Section 4.2.1 of

[RFC8949]).

An example Attestation Channel Binder is shown below.

Figure 10: Format of a possible TLS Attestation Channel Binder.

B.2. Usage

When a Attestation Channel Binder is used to compress data to fit

the space afforded by an attestation scheme, the encoded binder must

be hashed. Since the relying party has access to all the data

expected in the binder, the binder itself need not be conveyed. How

the hashing algorithm is chosen, used, and conveyed must be defined

per outer protocol. If the digest size does not match the user data

size mandated by the attestation scheme, the digest is truncated or

expanded appropriately.

The verifier must first hash the encoded token received from the

relying party and then compare the hashes. The challenge value

included in the binder can then be extracted and verified. If

verification is successful, binder correctness can also be assumed

by the relying party, as verification was done with the values it

expected.

Appendix C. History

RFC EDITOR: PLEASE REMOVE THIS SECTION

C.1. draft-fossati-tls-attestation-02

Focus on the background check model

Added examples

Updated introduction

Moved attestation format-specific content to related drafts.

¶

¶

¶

attestation_channel_binder = {

 &(nonce: 1) => bstr .size (8..64)

 &(ik_pub_fingerprint: 2) => bstr .size 32

 &(session_key_binder: 3) => bstr .size 32

}

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc8949#section-4.2.1

C.2. draft-fossati-tls-attestation-01

Added details about TPM attestation

C.3. draft-fossati-tls-attestation-00

Initial version

Appendix D. Working Group Information

The discussion list for the IETF TLS working group is located at the

e-mail address tls@ietf.org. Information on the group and

information on how to subscribe to the list is at https://

www1.ietf.org/mailman/listinfo/tls

Archives of the list can be found at: https://www.ietf.org/mail-

archive/web/tls/current/index.html

Authors' Addresses

Hannes Tschofenig

Email: hannes.tschofenig@gmx.net

Yaron Sheffer

Intuit

Email: yaronf.ietf@gmail.com

Paul Howard

Arm Limited

Email: Paul.Howard@arm.com

Ionut Mihalcea

Arm Limited

Email: Ionut.Mihalcea@arm.com

Yogesh Deshpande

Arm Limited

Email: Yogesh.Deshpande@arm.com

* ¶

* ¶

¶

¶

mailto:tls@ietf.org
https://www1.ietf.org/mailman/listinfo/tls
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html
mailto:hannes.tschofenig@gmx.net
mailto:yaronf.ietf@gmail.com
mailto:Paul.Howard@arm.com
mailto:Ionut.Mihalcea@arm.com
mailto:Yogesh.Deshpande@arm.com

	Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Overview
	4. Use of Evidence with the Background Check Model
	4.1. TLS Client as Attester
	4.2. TLS Server as Attester

	5. Evidence Extensions (Background Check Model)
	5.1. Attestation-only
	5.2. Attestation alongside X.509 certificates

	6. TLS Client and Server Handshake Behavior
	6.1. Client Hello
	6.2. Server Hello

	7. Background-Check Model Examples
	7.1. Cloud Confidential Computing
	7.2. IoT Device Onboarding

	8. Security Considerations
	9. IANA Considerations
	9.1. TLS Extensions
	9.2. TLS Alerts
	9.3. TLS Certificate Types

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Design Rationale: X.509 and Attestation Usage Variants
	Appendix B. Cross-protocol binding mechanism
	B.1. Binding mechanism
	B.2. Usage

	Appendix C. History
	C.1. draft-fossati-tls-attestation-02
	C.2. draft-fossati-tls-attestation-01
	C.3. draft-fossati-tls-attestation-00

	Appendix D. Working Group Information
	Authors' Addresses

