
TCPM working group M. Fox
Internet Draft C. Kassimis
Intended Status: Informational J. Stevens
Expires: 10/1/2015 IBM
 April 1, 2015

Shared Memory Communications over RDMA
draft-fox-tcpm-shared-memory-rdma-06.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 1, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Fox, et. Al. Expires October 1, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Shared Memory Communications over RDMA April 2015

Abstract

 This document describes the Shared Memory Communications over RDMA
 (SMC-R) protocol. This protocol provides RDMA communications to TCP
 endpoints in a manner that is transparent to socket applications. It
 further provides for dynamic discovery of partner RDMA capabilities
 and dynamic setup of RDMA connections, transparent high availability
 and load balancing when redundant RDMA network paths are available,
 and it maintains many of the traditional TCP/IP qualities of service
 such as filtering that enterprise users demand, as well as TCP socket
 semantics such as urgent data.

Table of Contents

1. Introduction...5
1.1. Summary of changes in this draft..........................6
1.2. Protocol overview...6

1.2.1. Hardware requirements................................8
1.3. Definition of common terms................................8

2. Link Architecture...10
2.1. Remote Memory Buffers (RMBs).............................12
2.2. SMC-R Link groups..16

2.2.1. Link group types....................................17
2.2.2. Maximum number of links in link group...............20
2.2.3. Forming and managing link groups....................21
2.2.4. SMC-R link identifiers..............................22

2.3. SMC-R resilience and load balancing......................23
3. SMC-R Rendezvous architecture.................................25

3.1. TCP options..25
3.2. Connection Layer Control (CLC) messages..................26
3.3. LLC messages...26
3.4. CDC Messages...28
3.5. Rendezvous flows...28

3.5.1. First contact.......................................28
3.5.1.1. TCP Options pre-negotiation....................28
3.5.1.2. Client Proposal................................29
3.5.1.3. Server acceptance..............................30
3.5.1.4. Client confirmation............................31
3.5.1.5. Link (QP) confirmation.........................31
3.5.1.6. Second SMC-R link setup........................34

 3.5.1.6.1. Client processing of "Add Link" LLC message
 from server..34
 3.5.1.6.2. Server processing of "Add Link" reply LLC
 message from the client..............................35

Fox, et. al. Expires October 1, 2015 [Page 2]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.5.1.6.3. Exchange of Rkeys on second SMC-R link....37
3.5.1.6.4. Aborting SMC-R and falling back to IP.....37

3.5.2. Subsequent contact..................................37
3.5.2.1. SMC-R proposal.................................38
3.5.2.2. SMC-R acceptance...............................39
3.5.2.3. SMC-R confirmation.............................40

 3.5.2.4. TCP data flow race with SMC Confirm CLC message40
3.5.3. First contact variation: creating a parallel link group

 ...41
3.5.4. Normal SMC-R link termination.......................42
3.5.5. Link group management flows.........................43

 3.5.5.1. Adding and deleting links in an SMC-R link group43
3.5.5.1.1. Server initiated Add Link processing......43
3.5.5.1.2. Client initiated Add Link processing......44
3.5.5.1.3. Server initiated Delete Link Processing...44
3.5.5.1.4. Client initiated Delete Link request......46

 3.5.5.2. Managing multiple Rkeys over multiple SMC-R links
 in a link group...48

3.5.5.2.1. Adding a new RMB to an SMC-R link group...49
3.5.5.2.2. Deleting an RMB from an SMC-R link group..52

 3.5.5.2.3. Adding a new SMC-R link to a link group with
 multiple RMBs..53
 3.5.5.3. Serialization of LLC exchanges, and collisions.54
 3.5.5.3.1. Collisions with ADD LINK / CONFIRM LINK
 exchange...56

3.5.5.3.2. Collisions during DELETE LINK exchange....57
3.5.5.3.3. Collisions during CONFIRM_RKEY exchange...57

4. SMC-R memory sharing architecture.............................59
4.1. RMB element allocation considerations....................59
4.2. RMB and RMBE format......................................59
4.3. RMBE control information.................................59
4.4. Use of RMBEs...60

4.4.1. Initializing and accessing RMBEs....................60
4.4.2. RMB element reuse and conflict resolution...........61

4.5. SMC-R protocol considerations............................62
4.5.1. SMC-R protocol optimized window size updates........62
4.5.2. Small data sends....................................63
4.5.3. TCP Keepalive processing............................63

4.6. TCP connection failover between SMC-R links..............66
4.6.1. Validating data integrity...........................66
4.6.2. Resuming the TCP connection on a new SMCR link......67

4.7. RMB data flows...67
4.7.1. Scenario 1: Send flow, window size unconstrained....68

 4.7.2. Scenario 2: Send/Receive flow, window unconstrained.70
4.7.3. Scenario 3: Send Flow, window constrained...........71

 4.7.4. Scenario 4: Large send, flow control, full window size
 writes...73

Fox, et. al. Expires October 1, 2015 [Page 3]

Internet-Draft Shared Memory Communications over RDMA April 2015

 4.7.5. Scenario 5: Send flow, urgent data, window size
 unconstrained..76
 4.7.6. Scenario 6: Send flow, urgent data, window size closed78

4.8. Connection termination...................................80
4.8.1. Normal SMC-R connection termination flows...........80

4.8.1.1. Abnormal SMC-R connection termination flows....85
4.8.1.2. Other SMC-R connection termination conditions..87

5. Security considerations.......................................88
5.1. VLAN considerations......................................88
5.2. Firewall considerations..................................88
5.3. Host-based IP Filters....................................89
5.4. Intrusion Detection Services.............................89
5.5. IP Security (IPSec)......................................89
5.6. TLS/SSL..89

6. IANA considerations...89
7. References..90

7.1. Normative References.....................................90
7.2. Informative References...................................90

8. Acknowledgments...90
9. Conventions used in this document.............................90
Appendix A. Formats..91

A.1. TCP option...91
A.2. CLC messages...91

A.2.1. Peer ID format......................................91
A.2.2. SMC Proposal CLC message format.....................93
A.2.3. SMC Accept CLC message format.......................96
A.2.4. SMC Confirm CLC message format......................99
A.2.5. SMC Decline CLC message format.....................102

A.3. LLC messages..103
A.3.1. CONFIRM LINK LLC message format....................104
A.3.2. ADD LINK LLC message format........................106
A.3.3. ADD LINK CONTINUATION LLC message format...........108
A.3.4. DELETE LINK LLC message format.....................111
A.3.5. CONFIRM RKEY LLC message format....................113
A.3.6. CONFIRM RKEY CONTINUATION LLC message format.......116
A.3.7. DELETE RKEY LLC message format.....................118
A.3.8. TEST LINK LLC message format.......................120

Appendix B. Socket API considerations...........................126
Appendix C. Rendezvous Error scenarios..........................128

C.1. SMC Decline during CLC negotiation......................128
C.2. SMC Decline during LLC negotiation......................128
C.3. The SMC Decline window..................................130
C.4. Out of synch conditions during SMC-R negotiation........130
C.5. Timeouts during CLC negotiation.........................131
C.6. Protocol errors during CLC negotiation..................131
C.7. Timeouts during LLC negotiation.........................132

C.7.1. Recovery actions for LLC timeouts and failures.....133

Fox, et. al. Expires October 1, 2015 [Page 4]

Internet-Draft Shared Memory Communications over RDMA April 2015

C.8. Failure to add second SMC-R link to a link group........140

1. Introduction

 This document is a specification of the Shared Memory Communications
 over RDMA (SMC-R) protocol. SMC-R is a protocol for Remote Direct
 Memory Access (RDMA) communication between TCP socket endpoints. SMC-
 R runs over networks that support RDMA over Converged Ethernet
 (RoCE). It is designed to permit existing TCP applications to
 benefit from RDMA without requiring modifications to the applications
 or predefinition of RDMA partners.

 SMC-R provides dynamic discovery of the RDMA capabilities of TCP
 peers and automatic setup of RDMA connections that those peers can
 use. SMC-R also provides transparent high availability and load
 balancing capabilities that are demanded by enterprise installations
 but are missing from current RDMA protocols. If redundant RoCE
 capable hardware such as RDMA NICs (RNICs)and RoCE capable switches
 is present, SMC-R can load balance over that redundant hardware and
 can also non-disruptively move TCP traffic from failed paths to
 surviving paths, all seamlessly to the application and the sockets
 layer. Because SMC-R preserves socket semantics and the TCP three-way
 handshake, many TCP qualities of service such as filtering, load
 balancing, and SSL encryption are preserved, as are TCP features such
 as urgent data.

 Because of the dynamic discovery and setup of SMC-R connectivity
 between peers, no RDMA connection manager (RDMA-CM) is required. This
 also means that support for UD queue pairs is also not required.

 It is recommended that the SMC-R services be implemented in kernel
 space, which enables optimizations such as resource sharing between
 connections across multiple processes and also permits applications
 using SMC-R to spawn multiple processes (e.g. fork) without losing
 SMC-R functionality. A user space implementation is compatible with
 this architecture, but it may not support spawned processes (i.e.
 fork) which limits sharing and resource optimization to TCP
 connections that originate from the same process. This might be an
 appropriate design choice if the use case is a system that hosts a
 large single process application that creates many TCP connections to
 a peer host, or in implementations where a kernel space
 implementation is not possible or introduces excessive overhead for
 kernel space to user space context switches.

Fox, et. al. Expires October 1, 2015 [Page 5]

Internet-Draft Shared Memory Communications over RDMA April 2015

1.1. Summary of changes in this draft

 No changes since last draft. Refreshing to prevent expiration.

1.2. Protocol overview

 SMC-R defines the concept of the SMC-R Link, which is a logical
 point-to-point link using reliably connected queue pairs between
 TCP/IP stack peers over a RoCE fabric. An SMC-R link is bound to a
 specific hardware path, meaning a specific RNIC on each peer. SMC-R
 links are created and maintained by an SMC-R layer, which may reside
 in kernel or user space depending upon operating system and
 implementation requirements. The SMC-R layer resides below the
 sockets layer and directs data traffic for TCP connections between
 connected peers over the RoCE fabric using RDMA rather than over a
 TCP connection. The TCP/IP stack with its fragmentation,
 packetization, etc. requirements is bypassed and the application data
 is moved between peers using RDMA.

 Multiple SMC-R links between the same two TCP/IP stack peers are also
 supported. A set of SMC-R links called a link group can be logically
 bonded together to provide redundant connectivity. If there is
 redundant hardware, for example two RNICs on each peer, separate SMC-
 R links are created between the peers to exploit that redundant
 hardware. The link group architecture with redundant links provide
 load balancing, increased bandwidth as well as seamless failover.

 Each SMC-R link group is associated with an area of memory called
 Remote Memory Buffers (RMBs), which are areas of memory that are
 available for SMC-R peers to write into using RDMA writes. Multiple
 TCP connections between peers may be multiplexed over a single SMC-R
 link, in which case the SMC-R layer manages the partitioning of the
 RMBs between the TCP connections. This multiplexing reduces the RDMA
 resources such as queue pairs and RMBs that are required to support
 multiple connections between peers, and also reduces the processing
 and delays related to setting up queue pairs, pinning memory, and
 other RDMA setup tasks when new TCP connections are created. In a
 kernel space SMC-R implementation in which the RMBs reside in kernel
 storage, this sharing and optimization works across multiple
 processes executing on the same host. In a user space SMC-R
 implementation in which the RMBs reside in user space, this sharing

Fox, et. al. Expires October 1, 2015 [Page 6]

Internet-Draft Shared Memory Communications over RDMA April 2015

 and optimization is limited to multiple TCP connections created by a
 single process, as separate RMBs and QPs will be required for each
 process.

 SMC-R also introduces a rendezvous protocol that is used to
 dynamically discover the RDMA capabilities of TCP connection partners
 and exchange credentials necessary to exploit that capability if
 present. TCP connections are set up using the normal TCP 3-way
 handshake, with the addition of a new TCP option that indicates SMC-R
 capability. If both partners indicate SMC-R capability then at the
 completion of the 3-way TCP handshake the SMC-R layers in each peer
 take control of the TCP connection and use it to exchange additional
 connection level control (CLC) messages to negotiate SMC-R
 credentials such as queue pair (QP) information, addressability over
 the RoCE fabric, RMB buffer sizes, keys and addresses for accessing
 RMBs over RDMA, etc. If at any time during this negotiation a
 failure or decline occurs, the TCP connection falls back to using the
 IP fabric.

 If the SMC-R negotiation succeeds and either a new SMC-R link is set
 up or an existing SMC-R link is chosen for the TCP connection, then
 the SMC-R layers open the sockets to the applications and the
 applications use the sockets as normal. The SMC-R layer intercepts
 the socket reads and writes and moves the TCP connection data over
 the SMC-R link, "out of band" to the TCP connection which remains
 open and idle over the IP fabric, except for termination flows and
 possible keepalive flows. Regular TCP sequence numbering methods are
 used for the TCP flows that do occur; data flowing over RDMA does not
 use or affect TCP sequence numbers.

 This architecture does not support fallback of active SMC-R
 connections to IP. Once connection data has completed the switch to
 RDMA, a TCP connection cannot be switched back to IP and will reset
 if RDMA becomes unusable.

 The SMC-R protocol defines the format of the Remote Memory Buffers
 that are used to receive TCP connection data written over RDMA, as
 well as the semantics for managing and writing to these buffers using
 Connection Data Control (CDC) messages.

 Finally, SMC-R defines link level control (LLC) messages that are
 exchanged over the RoCE fabric between peer SMC-R layers to manage
 the SMC-R links and link groups. These include messages to test and
 confirm connectivity over an SMC-R link, add and delete SMC-R links
 to or from the link group, and exchange RMB addressability
 information.

Fox, et. al. Expires October 1, 2015 [Page 7]

Internet-Draft Shared Memory Communications over RDMA April 2015

1.2.1. Hardware requirements

 SMC-R does not require full Converged Enhanced Ethernet switch
 functionality. SMC-R functions over standard Ethernet fabrics
 provided endpoint RNICs are provided and IEEE 802.3x Global Pause
 Frame is supported and enabled in the switch fabric.

 While SMC-R as specified in this document is designed to operate over
 RoCE fabrics, adjustments to the rendezvous methods could enable it
 to run over other RDMA fabrics such as Infiniband and iWARP.

1.3. Definition of common terms

 This section provides definitions of terms that have a specific
 meaning to the SMC-R protocol and are used throughout this document.

 SMC-R link

 An SMC-R Link is a logical point to point connection over the
 RoCE fabric via specific physical adapters (MAC/GID). The Link
 is formed during the first contact sequence of the TCP/IP 3 way
 handshake sequence that occurs over the IP fabric. During this
 handshake an RDMA RC-QP connection is formed between the two peer
 SMC hosts and is defined as the SMC Link. The SMC Link can then
 support multiple TCP connections between the two peers. An SMC
 link is associated with a single LAN (or VLAN) segment and is not
 routable.

 SMC-R link group

 An SMC-R Link Group is a group of SMC-R Links typically each over
 unique RoCE adapters between the same two SMC-R peers. Each link
 in the link group has equal characteristics such as the same VLAN
 ID (if VLANs are in use), access to the same RMB(s) and the same
 TCP server / client

 SMC-R peer

 The SMC-R Peer is the peer software stack within the peer
 Operating System with respect the Shared Memory Communications
 (messaging) protocol.

 SMC-R Rendezvous

 The SMC-R Rendezvous is the SMC-R peer discovery and handshake
 sequence that occurs transparently over the IP (Ethernet) fabric
 during and immediately after the TCP connection 3 way handshake

Fox, et. al. Expires October 1, 2015 [Page 8]

Internet-Draft Shared Memory Communications over RDMA April 2015

 by exchanging the SMC capabilities and credentials using
 experimental TCP option and CLC messages.

 TCP Client

 The TCP socket-based peer that initiates a TCP connection

 TCP Server

 The TCP socket-based peer that accepts a TCP connection

 CLC messages

 The SMC-R protocol defines a set of Connection Layer Control
 Messages that flow over the TCP connection that are used to
 manage SMC link rendezvous at TCP connection setup time. This
 mechanism is analogous to SSL setup messages

 LLC Commands

 The SMC-R protocol defines a set of RoCE Link Layer Control
 Commands that flow over the RoCE fabric using RDMA sendmsg, that
 are used to manage SMC Links, SMC Link Groups and SMC Link Group
 RMB expansion and contraction.

 CDC message

 The SMC-R protocol defines a Connection Data Control message that
 flows over the RoCE fabric using RDMA sendmsg that is used to
 manage the SMC-R connection data. This message provides
 information about data being transferred over the out of band
 RDMA connection, such as data cursors, sequence numbers, and data
 flags (for example urgent data). The receipt of this message
 also provides an interrupt to inform the receiver that it has
 received RDMA data.

 RMB

 A Remote (RDMA) Memory Buffer is a fixed or pinned buffer
 allocated in each of the peer hosts for a TCP (via SMC-R)
 connection. The RMB is registered to the RNIC and allows remote
 access by the remote peer using RDMA semantics. Each host is
 passed the peer's RMB specific access information (RKey and RMB
 Element offset) during the SMC-R rendezvous process. The host
 stores socket application user data directly into the peer's RMB
 using RDMA over RoCE.

Fox, et. al. Expires October 1, 2015 [Page 9]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Rtoken

 The combination of an RMB's Rkey and RDMA virtual addressing, an
 Rtoken provides addressability to an RMB to an RDMA peer

 RMBE

 The Remote Memory Buffer Element is an area of an RMB that is
 allocated to a specific TCP connection. The RMBE contains data
 for the TCP connection. The RMBE represents the TCP receive
 buffer whereby the remote peer writes into the RMBE and the local
 peer reads from the local RMBE. The alert token resolves to a
 specific RMBE.

 Alert Token

 The SMC-R alert token is a four byte value that uniquely
 identifies the TCP connection over an SMC-R connection. The
 alert token allows the SMC peer to quickly identify the target
 TCP connection that now has new work. The format of the token is
 defined by the owning SMC-R end point and is considered opaque to
 the remote peer. However the token should not simply be an index
 to an RMBE element; it should reference a TCP connection and be
 able to be validated to avoid reading data from stale
 connections.

 RNIC

 The RDMA capable Network Interface Card (RNIC) is an Ethernet NIC
 that supports RDMA semantics and verbs using RoCE.

 First Contact

 Describes an SMC-R negotiation to set up the first link in a link
 group

 Subsequent Contact

 Describes an SMC-R negotiation between peers who are using an
 already existing SMC-R link group

2. Link Architecture

 An SMC-R link is based on reliably connected queue pairs (QPs) that
 form a "logical point to point link" between the two SMC-R peers over
 a RoCE fabric. An SMC-R link extends from SMC-R peer to SMC-R peer,

Fox, et. al. Expires October 1, 2015 [Page 10]

Internet-Draft Shared Memory Communications over RDMA April 2015

 where typically each peer would be a TCP/IP stack would reside on
 separate hosts.

 ,,.--..,_
 +----+ _-`` `-, +-----+
 |QP 8| - RoCE ', |QP 64|
 | | / VLAN M . | |
 +----+--------+/ \+-------+-----+
 | RNIC 1 | SMC-R Link | RNIC 2 |
 | |<--------------------->| |
 +------------+ , /+------------+
 MAC A (GID A) MAC B (GID B)
 . .`
 `', ,-`
 ``''--''``

 Figure 1 SMC-R Link Overview

 Figure 1 illustrates an overview of the basic concepts of SMC-R peer
 to peer connectivity which is called the SMC-R Link. The SMC-R Link
 forms a logical point to point connection between two SMC-R peers via
 RoCE. The SMC Link is defined and identified by the following
 attributes:

 SMC-R Link = RC QPs (source VMAC GID QP + target VMAC GID QP + VLAN
 ID)

 The SMC-R Link can optionally be associated with a VLAN ID. If VLANs
 are in use for the associated IP (LAN) connection then the VLAN
 attribute is carried over on the SMC-R link. When VLANs are in use
 each SMC-R link group is associated with a single and specific VLAN.
 The RoCE fabric is the same physical Ethernet LAN used for standard
 TCP/IP over Ethernet communications, with switches as described in
 1.2.1.

 An SMC-R Link is designed to support multiple TCP connections between
 the same two peers. An SMC Link is intended to be long lived while
 the underlying TCP connections can dynamically come and go. The
 associated RMBs can also be dynamically added and removed from the
 link as needed. The first TCP connection between the peers
 establishes the SMC-R link. Subsequent TCP connections then use the
 previously established link. When the last TCP connection terminates
 the link can then be terminated, typically after an implementation
 defined idle time-out period has elapsed. The TCP server is
 responsible for initiating and terminating the SMC Link.

Fox, et. al. Expires October 1, 2015 [Page 11]

Internet-Draft Shared Memory Communications over RDMA April 2015

2.1. Remote Memory Buffers (RMBs)

 Figure 2 shows the hosts X and Y and their associated RMBs within
 each host. With the SMC-R link and the associated RMB keys (Rkeys)and
 RDMA virtual addresses each SMC-R enabled TCP/IP stack can remotely
 access its peer's RMBs using RDMA. The RKeys and virtual addresses
 are exchanged during the rendezvous processing when the link is
 established. The combination of the Rkey and the virtual address is
 the Rtoken. Note that the SMC-R Link ends at the QP providing access
 to the RMB (via the Link + RToken).

 Host X Host Y
 +-------------------+ ,.--.,_ +-------------------+
 | | .'` '. | |
 | Protection | ,' `, | Protection |
 | Domain X | / \ | Domain Y |
 | +------+ / \ +------+ |
 | QP 8 |RNIC 1| | SMC-R Link | |RNIC 2| QP 64 | | |
 | | | |<-------------------->| | | |
 | | | || || | | |
 | | +------+| VLAN A |+------+ | |
 | | || || | |
 | | | | RoCE | | | |
 | |RTokenX) | \ / |RToken (Y)| |
 | | | \ / | | |
 | V | `. ,' | V |
 | +--------+ | '._ ,' | +--------+ |
 | | | | `''-'`` | | | |
 | | RMB | | | | RMB | |
 | | | | | | | |
 | +--------+ | | +--------+ |
 +-------------------+ +-------------------+
 Figure 2 SMC link and RMBs

 An SMC-R link can support multiple RMBs which are independently
 managed by each peer. The number of and the size of RMBs are managed
 by the peers based on host unique memory management requirements;
 however the maximum number of RMBs that can be associated to a link
 group on one peer is 255. The QP has a single protection domain, but
 each RMB has a unique RToken. All RTokens must be exchanged with the
 peer.

 Each peer manages the RMBs in its local memory for its remote SMC-R
 peer by sharing access to the RMBs via Rtokens with its peers. The
 remote peer writes into the RMBs via RDMA and the local peer (RMB
 owner) then reads from the RMBs.

Fox, et. al. Expires October 1, 2015 [Page 12]

Internet-Draft Shared Memory Communications over RDMA April 2015

 When two peers decide to use SMC-R for a given TCP connection, they
 each allocate a local RMB Element for the TCP connection and
 communicate the location of this local RMB Element during rendezvous
 processing. To that end, RMB elements are created in pairs, with one
 RMB element allocated locally on each peer of the SMC-R link.

 --- +-----------+----------------+
 /\ |Eyecatcher | |
 | +-----------+ |
 | | |
 RMB Element 1 | |
 | | Receive Buffer |
 | | |
 | | |
 \/ | |
 --- +-----------+----------------+
 /\ |Eyecatcher | |
 | +-----------+ |
 | | |
 RMB Element 2 | |
 | | Receive Buffer |
 | | |
 | | |
 \/ | |
 --- +----------------------------+
 | . |
 | . |
 | . |
 | . |
 | (up to 255 elements) |
 +----------------------------+
 Figure 3 RMB Format

 Figure 3 illustrates the basic format of an RMB. The RMB is a virtual
 memory buffer whose backing real memory is pinned, which can support
 up to 255 TCP connections to exactly one remote SMC-R peer. Each RMB
 is therefore associated with the SMC-R links within a link group for
 the two peers and a specific RoCE Protection Domain. Other than the 2
 peers identified by the SMC-R link no other SMC-R peers can have RDMA
 access to an RMB; this requires a unique Protection Domain for every
 SMC-R Link. This is critical to ensure integrity of SMC-R
 communications.

Fox, et. al. Expires October 1, 2015 [Page 13]

Internet-Draft Shared Memory Communications over RDMA April 2015

 RMBs are subdivided into multiple elements for efficiency, with each
 RMBE element (RMBE) is associated with a single TCP connection.
 Therefore multiple TCP connections across an SMC link group can share
 the same memory for RDMA purposes, reducing the overhead of having to
 register additional memory with the RNIC for every new TCP
 connection. The number of elements in an RMB and the size of each RMB
 Element is entirely governed by the owning peer subject to the SMC-R
 architecture rules, however, all RMB elements within a given RMB must
 be the same size. Each peer can decide the level of resource sharing
 that is desirable across TCP connections based on local constraints
 such as available system memory, etc. An RMB Element is identified to
 the remote SMC-R peer via an RMB Element Token which consists of the
 following:

 o RMB RToken: The combination of the Rkey and virtual address
 provided by the RNIC that identifies the start of the RMB for RDMA
 operations.

 o RMB Index: Identifies the RMB element index in the RMB. Used to
 locate a specific RMB element within an RMB. Valid value range is
 1-255.

 o RMB element length: The length of the RMB element's eyecatcher
 plus the length of receive buffer. This length is equal for all
 RMB elements in a given RMB. This length can be variable across
 different RMBs.

 Multiple RMBs can be associated to an SMC-R link group and each peer
 in an SMC-R link group manages allocation of its RMBs. RMB allocation
 can be asymmetric. For example, server X can allocate 2 RMBs to an
 SMC-R link group while server Y allocates 5. This provides maximum
 implementation flexibility to allow hosts optimize RMB management for
 their own local requirements. The maximum number of RMBs that can be
 allocated on one peer to a link group is 255. If more RMBs are
 required, the peer may fall back to IP for subsequent connections or,
 if the peer is the server, create a parallel link group.

 One use case for multiple RMBs is multiple receive buffer sizes.
 Since every element in an RMB must be the same size, multiple RMBs
 with different element sizes can be allocated if varying receive
 buffer sizes are required.

 Also since the maximum number of TCP connections whose receive
 buffers can be allocated to an RMB is 255, multiple RMBs may be
 required to provide capacity for large numbers of TCP connections
 between two peers.

Fox, et. al. Expires October 1, 2015 [Page 14]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Separately from the RMB, the TCP/IP stack that owns each RMB
 maintains control data for each RMB element within its local control
 structures. The control data contains flags for maintaining the
 state of the TCP data (for example, urgent indicator) and most
 importantly, two cursors which are illustrated in Figure 4:

 o The peer producer cursor: This is a wrapping offset into the RMB
 element's receive buffer that points to the next byte of data to
 be written by the remote peer. This cursor is provided by the
 remote peer in a Connection Data Control (CDC message), which is
 sent using RDMA sendmsg processing, and tells the local peer how
 far it can consume data in the RMBE buffer.

 o The peer consumer cursor: This is a wrapping offset into the
 remote peer's RMB element's receive buffer that points to the next
 byte of data to be consumed by the remote peer in its own RMBE.
 The local cannot write into the remote peer's RMBE beyond this
 point without causing data loss. This cursor is also provided by
 the peer using a Connection Data Control message.

 Each TCP connection peer maintains its cursors for a TCP connection's
 RMBE in its local control structures. In other words, the peer who
 writes into a remote peer's RMBE provides its producer cursor to the
 peer whose RMBE it has written into. The peer who reads from its
 RMBE provides its consumer cursor to the writing peer. In this
 manner the reads and writes between peers are kept coordinated.

 For example, referring to Figure 4, peer B writes the hashed data
 into the receive buffer of peer A's RMBE. After that write
 completes, peer B uses a CDC message to update its producer cursor to
 peer A, to indicate to peer A how much data is available for peer A
 to consume. The CDC message that peer B sends to peer A wakes up
 peer A and notifies it that there is data to be consumed.

 Similarly, when peer A consumes data written by peer B, it uses a CDC
 message to update its consumer cursor to peer B to let peer B know
 how much data it has consumed, so peer B knows how much space is
 available for further writes. If peer B were to write enough data to
 peer A that it would wrap the RMBE receive buffer and exceed the
 consumer cursor, data loss would result.

 Note that this is a simplistic description of the control flows and
 they are optimized to minimize the number of CDC messages required,
 as described in 4.7. RMB data flows.

Fox, et. al. Expires October 1, 2015 [Page 15]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Peer A's RMBE Control Info Peer B's RMBE Control Info
 +--------------------------+ +--------------------------+
 | | | |
 /----Peer producer cursor | +-----+-Peer consumer cursor |
 /| | | | |
 | +--------------------------+ | +--------------------------+
 | Peer A's RMBE |
 | +--------------------------+ |
 | | +------------------+
	\/	
	+------------	
	-------------+///////////	
	//RMA data written by ///	
	/// peer B that is //////	
	/available to be consumed/	
	/////////////////////////	
	///////// +---------------	
	----------+/\	
 \| | |
 \ / |
 |\---------/ |
 | |
 | |
 Figure 4 RMBE cursors

 Additional flags and indicators are communicated between peers. In
 all cases, these flags and indicators are updated by the peer using
 CDC messages with the control information contained in inline data.
 More details on these additional flags and indicators are described
 in . 4.3. RMBE control information.

2.2. SMC-R Link groups

 SMC-R links are logically grouped together to form an SMC-R Link
 Group. The purpose of the Link Group is for supporting multiple links
 between the same two peers to provide for:

 o Resilience: Provides transparent and dynamic switching of the link
 used by existing TCP connections during link failures, typically
 hardware related. TCP traffic using the failing link can be
 switched to an active link within the link group avoiding
 disruptions to application workloads.

Fox, et. al. Expires October 1, 2015 [Page 16]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Link utilization: Provides an active/active link usage model
 allowing TCP traffic to be balanced across the links, which
 increases bandwidth and avoids hardware imbalances and
 bottlenecks. Note that both adapter and switch utilization can
 become potential resource constraint issues

 SMC-R Link Group support is required. Resilience is not optional.
 However, the user can elect to provision a single RNIC (on one or
 both hosts).

 Multiple links that are formed between the same two peers fall into
 two distinct categories:

 1. Equal Links: Links providing equal access to the same RMB(s) at
 both endpoints whereby all TCP connections associated with the
 links must have the same VLAN ID and have the same TCP server
 and TCP client roles or relationship.

 2. Unequal Links: Links providing access to unique, unrelated and
 isolated RMB(s) (i.e. for unique VLANs or unique and isolated
 application workloads, etc.) or have unique TCP server or client
 roles.

 Links that are logically grouped together forming an SMC Link Group
 must be equal links.

2.2.1. Link group types

 Equal links within a link group also have another "Link Group Type"
 attribute based on the link's associated underlying physical path.
 The following SMC-R link types are defined:

 1. Single Link: the only active link within a link group

 2. Parallel Link: not allowed - SMC Links having the same physical
 RNIC at both hosts

 3. Asymmetric Link: links that have unique RNIC adapters at one
 host but share a single adapter at the peer host

 4. Symmetric Link: links that have unique RNIC adapters at both
 hosts

 These link group types are further explained in the following figures
 and descriptions.

Fox, et. al. Expires October 1, 2015 [Page 17]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Figure 2 above shows the single link case. The single link
 illustrated in Figure 2 also establishes the SMC-R Link Group. Link
 groups are supposed to have multiple links, but when only one RNIC is
 available at both hosts then only a single link can be created. This
 is expected to be a transient case.

 Figure 5 shows the symmetric link case. Both hosts have unique and
 redundant RNIC adapters. This configuration meets the objectives for
 providing full RoCE redundancy required to provide the level of
 resilience required for high availability for SMC-R. While this
 configuration is not required, it is a strongly recommended "best
 practice" for the exploitation of SMC-R. Single and asymmetric links
 must be supported but are intended to provide for short term
 transient conditions, for example during a temporary outage or
 recycle of a RNIC.

 Host X Host Y
 +-------------------+ +-------------------+
 | | | |
 | Protection | | Protection |
 | Domain X | | Domain Y |
 | +------+ +------+ |
 | QP 8 |RNIC 1| SMC-R Link 1 |RNIC 2| QP 64 | | |
 |RToken X| | |<-------------------->| | | |
 | | | | | | |RToken Y|
 | \/ +------+ +------+ \/ |
 |+--------+ | | +--------+ | | | | |
 || | | | | | |
 || RMB | | | | RMB | |
 || | | | | | |
 |+--------+ | | +--------+ |
 | /\ +------+ +------+ /\ |
 |RToken Z| | | SMC-R Link 2 | | |RToken W|
 | | |RNIC 3|<-------------------->|RNIC 4| | |
 | QP 9 | | | | QP 65 |
 | +------+ +------+ |
 +-------------------+ +-------------------+
 Figure 5 Symmetric SMC-R links

Fox, et. al. Expires October 1, 2015 [Page 18]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X Host Y
 +-------------------+ +-------------------+
 | | | |
 | Protection | | Protection |
 | Domain X | | Domain Y |
 | +------+ +------+ |
 | QP 8 |RNIC 1| SMC-R Link 1 |RNIC 2| QP 64 | | |
 |RToken X| | |<-------------------->| | | |
 | | | | .->| | |RToken Y|
 | \/ +------+ .` +------+ \/ |
 |+--------+ | .` | +--------+ | | | | |
 || | | .` | | | |
 || RMB | | .` | | RMB | |
 || | | .`SMC-R | | | |
 |+--------+ | .` Link 2 | +--------+ |
 | /\ +------+ .` +------+ |
 |Rtoken Z| | | .` | |down or |
 | | |RNIC 3|<-` |RNIC 4|unavailable |
 | QP 9 | | | | |
 | +------+ +------+ |
 +-------------------+ +-------------------+
 Figure 6 Asymmetric SMC-R links

 In the example provided by Figure 6, host X has two RNICs but Host Y
 only has one RNIC. This configuration allows for the creation of an
 asymmetric link. While an asymmetric link will provide some
 resilience (i.e. when RNIC 1 fails) ideally each host should provide
 two redundant RNICs. This should be a transient case, and when RNIC
 4 becomes available, this configuration must transition to a
 symmetric link configuration. This transition is accomplished by
 first creating the new symmetric link, then deleting the asymmetric
 link with reason code "Asymmetric link no longer needed" specified in
 the DELETE LINK LLC message.

Fox, et. al. Expires October 1, 2015 [Page 19]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X Host Y
 +-------------------+ +-------------------+
 | | | |
 | Protection | | Protection |
 | Domain X | | Domain Y |
 | +------+ SMC-R link 1 +------+ |
 | QP 8 |RNIC 1|<-------------------->|RNIC 2| QP 64 | | |
 |RToken X| | | | | | |
 | | | |<-------------------->| | |Rtoken Y|
 | \/ +------+ SMC-R link 2 +------+ \/ |
 |+--------+ QP 9 | | QP 65 +--------+ | | | | | | |
 || | | | | | | | |
 || RMB |<-- + | | +---->| RMB | |
 || | | | | | |
 |+--------+ | | +--------+ |
 | +------+ +------+ |
 | down or| | | |down or |
 | unavailale|RNIC 3| |RNIC 4|unavailable |
 | | | | | |
 | +------+ +------+ |
 +-------------------+ +-------------------+
 Figure 7 SMC-R parallel links (not supported)

 Figure 7 shows parallel links, which are two links in the link group
 that use the same hardware. This configuration is not permitted.
 Because SMC-R multiplexes multiple TCP connections over an SMC-R link
 and both links are using the exact same hardware, there is no
 additional redundancy or capacity benefit obtained from this
 configuration. However this configuration does add unnecessary
 overhead of additional queue pairs, generation of additional Rkeys,
 etc.

2.2.2. Maximum number of links in link group

 The SMC-R protocol defines a maximum of 8 symmetric SMC-R links
 within a single SMC-R link group. This allows for support for up to
 8 unique physical paths between peer hosts. However, in terms of
 meeting the basic requirements for redundancy support for at least 2
 symmetric links must be implemented. Supporting greater than 2
 links also simplifies implementation for practical matters relating
 to dynamically adding and removing links, for example starting a
 third SMC-R link prior to taking down one of the two existing links.
 Recall that all links within a link group must have equal access to
 all associated RMBs.

Fox, et. al. Expires October 1, 2015 [Page 20]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The SMC-R protocol allows an implementation to implement an
 implementation specific and appropriate value for maximum symmetric
 links. The implementation value must not exceed the architecture
 limit of 8 and the implementation must not be lower than 2, because
 the SMC-R protocol requires redundancy. This does not mean that two
 RNICs are physically required to enable SMC-R connectivity, but at
 least two RNICs for redundancy are strongly recommended.

 The SMC-R peers exchange their implementation maximum link values
 during the link group establishment using the defined maximum link
 value in the CONFIRM LINK LLC command. Once the initial exchange
 completes the value is set for the life of the link group. The
 maximum link value can be provided by both the server and client. The
 server must supply a value, whereas the client maximum link value is
 optional. When the client does not supply a value, it indicates that
 the client accepts the server supplied maximum value. If the client
 provides a value it can not exceed the server maximum value. If the
 client passes a lower value then this lower value then becomes the
 final negotiated maximum number of symmetric links for this link
 group. Again, the minimum value is 2.

 During run time the client must never request that the server add a
 symmetric link to a link group that would exceed the negotiated
 maximum link value. Likewise the server must never attempt to add a
 symmetric link to a link group that would exceed the negotiated
 maximum value.

 In terms of counting the active link count within a link group, the
 initial link (or the only / last) link is always counted as 1. Then
 as additional links are added they are either symmetric or asymmetric
 links.

 With regards to enforcing the maximum link rules, asymmetric links
 are an exception having a unique set of rules:

 o Asymmetric links are always limited to one asymmetric link allowed
 per link group

 o Asymmetric links must not be counted in the maximum symmetric link
 count calculation. When tracking the current count or enforcing
 the negotiated maximum number of links, an asymmetric link is not
 to be counted

2.2.3. Forming and managing link groups

 SMC-R link groups are self-defining. The first SMC-R link in a link
 group is created using TCP option flows on the TCP three-way

Fox, et. al. Expires October 1, 2015 [Page 21]

Internet-Draft Shared Memory Communications over RDMA April 2015

 handshake followed by CLC message flows over the TCP connection.
 Subsequent SMC-R links in the link group are created by sending LLC
 messages over an SMC-R link that already exists in the link group.
 Once an SMC-R link group is created, no additional SMC-R links in
 that group are created using TCP and CLC negotiation. Because
 subsequent SMC-R links are created exclusively by sending LLC
 messages over an existing SMC-R link in a link group, the membership
 of SMC-R links to a link group is self-defining.

 This architecture does not define a specific identifier for an SMC-R
 link group. This identification may be useful for network management
 and may be assigned in a platform specific manner, or in an extension
 to this architecture.

 In each SMC-R link group, one peer is the server for all TCP
 connections and the other peer is the client. If there are
 additional TCP connections between the peers that use SMC-R and have
 the client and server roles reversed, another SMC-R link group is set
 up between them with the opposite client-server relationship.

 This is required because there are specific responsibilities divided
 between the client and server in the management of an SMC-R link
 group.

 In this architecture, the decision of whether or not to use an
 existing SMC-R link group or create a new SMC-R link group for a TCP
 connection is made exclusively by the server.

 Management of the links in an SMC-R link group is also a server
 responsibility. The server is responsible for adding and deleting
 links in a link group. The client may request that the server take
 certain actions but the final responsibility is the server's.

2.2.4. SMC-R link identifiers

 This architecture defines multiple identifiers to identify SMC-R
 links and peers.

 o Link number: This is a one-byte value that identifies an SMC-R
 link within a link group. Both the server and the client use this
 number to distinguish an SMC-R link from other links within the
 same link group. It is only unique within a link group. In order
 to prevent timing windows that may occur when a server creates a
 new link while the client is still cleaning up a previously
 existing link, link numbers cannot be reused until the entire link
 numbering space has been exhausted.

Fox, et. al. Expires October 1, 2015 [Page 22]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Link User ID: This is an architecturally opaque four byte value
 that a peer uses to uniquely define an SMC-R link within its own
 space. This means that a link user ID is unique within one peer
 only. Each peer defines its own link user ID for a link. The
 peers exchange this information once during link setup and it is
 never used architecturally again. The purpose of this identifier
 is for network management, display, and debugging purposes. For
 example an operator on a client could provide the operator on the
 server with the server's link user ID if he requires the server's
 operator to check on the operation of a link that the client is
 having trouble with.

 o Peer ID: The SMC-R peer ID uniquely identifies a specific instance
 of a specific TCP/IP stack. It is required because in clustered
 and load balancing environments, an IP address does not uniquely
 identify a TCP/IP stack. An RNIC's MAC/GID also doesn't uniquely
 or reliably identify a TCP/IP stack because RNICs can go up and
 down and even be redeployed to other TCP/IP stacks in a multiple
 partitioned or virtualized environment. The peer ID is not only
 unique per TCP/IP stack but is also unique per instance of a
 TCP/IP stack, meaning that if a TCP/IP stack is restarted, its
 peer ID changes.

2.3. SMC-R resilience and load balancing

 The SMC-R multi-link architecture provides resilience for network
 high availability via failover capability to an alternate RoCE
 adapter.

 The SMC-R multilink architecture does not define primary, secondary
 or alternate roles to the links. Instead there are multiple active
 links representing multiple redundant RoCE paths over the same LAN.

 Assignment of TCP connections to links is unidirectional and
 asymmetric. This means that the client and server may each choose a
 separate link for their RDMA writes associated with a specific TCP
 connection.

 If a hardware failure occurs or a QP failure associated with an
 individual link, then the TCP connections that were associated with
 the failing link are dynamically and transparently switched to use
 another available link. The server or the client can detect a

Fox, et. al. Expires October 1, 2015 [Page 23]

Internet-Draft Shared Memory Communications over RDMA April 2015

 failure and immediately move their TCP connections and then notify
 their peer via the DELETE LINK LLC command. While the client can
 notify the server of an apparent link failure with the DELETE LINK
 LLC command, the server performs the actual link deletion.

 The movement of TCP connections to another link can be accomplished
 with minimal coordination between the peers. The TCP connection
 movement is also transparent to and non disruptive to the TCP socket
 application workloads for most failure scenarios. After a failure,
 the surviving links and all associated hardware must handle the link
 group's workload.

 As each SMC-R peer begins to move active TCP connections to another
 link all current RDMA write operations must be allowed to complete.
 Then the moving peer sends a signal to verify receipt of the last
 successful write by its peer. If this verification fails, the TCP
 connection must be reset. Once this verification is complete, all
 writes that failed may then be retried, in order, over the new link.
 Any data writes or CDC messages for which the sender did not receive
 write completion must be replayed before any subsequent data or CDC
 write operations are sent. LLC messages are not retried over the new
 link because they are dependent on a known link configuration, which
 has just changed because of the failure. The initiator of an LLC
 message exchange that fails will be responsible for retrying once the
 link group configuration stabilizes.

 When a new link becomes available and is re-added to the link group
 then each peer is free to rebalance its current TCP connections as
 needed or only assign new TCP connections to the newly added link.
 Both the server and client are free to manage TCP connections across
 the link group as needed. TCP connection movement does not have to
 stimulated by a link failure.

 The SMC-R architecture also defines orderly vs. disorderly failover.
 The type is communicated in the LLC Delete Link command and is simply
 a means to indicate that the link has terminated (disorderly) or link
 termination is imminent (orderly). The orderly link deletion could
 be initiated via operator command or programmatically to bring down
 an idle link. For example an operator command could initiate orderly
 shut down of an adapter for service. Implementation of the two types
 is based on implementation requirements and is beyond the scope of
 the SMC-R architecture.

Fox, et. al. Expires October 1, 2015 [Page 24]

Internet-Draft Shared Memory Communications over RDMA April 2015

3. SMC-R Rendezvous architecture

 Rendezvous is the process that SMC-R capable peers use to dynamically
 discover each others' capabilities, negotiate SMC-R connections, set
 up SMC-R links and link groups, and manage those link groups. A key
 aspect of SMC-R rendezvous is that it occurs dynamically and
 automatically, without requiring SMC link configuration to be defined
 by an administrator.

 SMC-R Rendezvous starts with the TCP/IP three-way handshake during
 which connection peers use TCP options to announce their SMC-R
 capabilities. If both endpoints are SMC-R capable, then Connection
 Layer Control (CLC) messages are exchanged between the peers' SMC-R
 layers over the newly established TCP connection to negotiate SMC-R
 credentials. The CLC message mechanism is analogous to the messages
 exchanged by SSL for its handshake processing.

 If a new SMC-R link is being set up, Link Layer Control (LLC)
 messages are used to confirm RDMA connectivity. LLC messages are
 also used by the SMC-R layers at each peer to manage the links and
 link groups.

 Once an SMC-R link is set up or agreed to by the peers, the TCP
 sockets are passed to the peer applications which use them as normal.
 The SMC-R layer, which resides under the sockets layer, transmits the
 socket data between peers over RDMA using the SMC-R protocol,
 bypassing the TCP/IP stack.

3.1. TCP options

 During the TCP/IP three-way handshake, the client and server indicate
 their support for SMC-R by including experimental TCP option 254 on
 the three-way handshake flows, in accordance with RFC 6994 "Shared
 Use of Experimental TCP Options". The ExID value used is the string
 'SMCR' in EBCDIC (IBM-1047) encoding (0xE2D4C3D9). This ExID has
 been registered in the TCP ExIDs registry maintained by IANA.

 After completion of the 3-way TCP handshake each peer queries its
 peer's options. If both peers set the TCP option on the three-way
 handshake, inline SMC-R negotiation occurs using CLC messages. If
 neither peer or only one peer set the TCP option, SMC-R cannot be
 used for the TCP connection, and the TCP connection completes setup
 using the IP fabric.

https://datatracker.ietf.org/doc/html/rfc6994

Fox, et. al. Expires October 1, 2015 [Page 25]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.2. Connection Layer Control (CLC) messages

 CLC messages are sent as data payload over the IP network using the
 TCP connection between SMC-R layers at the peers. They are analogous
 to the messages used to exchange parameters for SSL.

 Use of CLC messages is detailed in the following sections. The
 following list provides a summary of the defined CLC messages and
 their purposes:

 o SMC PROPOSAL: Sent from the client to propose that this TCP
 connection is eligible to be moved to SMC-R. The client identifies
 itself and its subnet to the server and passes the SMC-R elements
 for a suggested RoCE path via the MAC and GID.

 o SMC ACCEPT: Sent from the server to accept the client's TCP
 connection SMC proposal. The server responds to the client's
 proposal by identifying itself to the client and passing the
 elements of a RoCE path that the client can use to to perform RDMA
 writes to the server. This consists of SMC-R ink elements such as
 RoCE MAC, GID, RMB information etc.

 o SMC CONFIRM: Sent from the client to confirm the server's
 acceptance of SMC connection. The client responds to the server's
 acceptance by passing the elements of a RoCE path that the server
 can use to to perform RDMA writes to the client. This consists of
 SMC-R ink elements such as RoCE MAC, GID, RMB information etc.

 o SMC DECLINE: Sent from either the server or the client to reject
 the SMC connection, indicating the reason the peer must decline
 the SMC proposal and allowing the TCP connection to revert back to
 IP connectivity.

3.3. LLC messages

 Link Layer Control (LLC) messages are sent between peer SMC-R layers
 over an SMC-R link to manage the link or the link group. LLC
 messages are sent using RoCE sendmsg with inline data and are 44
 bytes long. The 44 bytes size is based on what can fit into a RoCE
 Work Queue Element (WQE) without requiring the posting of receive
 buffers.

 LLC messages generally follow a request-reply semantic. Each message
 has a request flavor and a reply flavor, and each request must be
 confirmed with a reply, except where otherwise noted. Use of LLC
 messages is detailed in the following sections. The following list
 provides a summary of the defined LLC messages and their purposes:

Fox, et. al. Expires October 1, 2015 [Page 26]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o ADD LINK: Add a new link to a link group. Sent from the server to
 the client to initiate addition of a new link to the link group,
 or from the client to the server to request that the server
 initiate addition of a new link.

 o ADD LINK CONTINUATION: This is a continuation of ADD link that
 allows the ADD link to span multiple commands, because all the
 link information cannot be contained in a single ADD LINK message

 o CONFIRM LINK: Used to confirm that RoCE connectivity over a newly
 created SMC-R link is working correctly. Initiated by the server,
 and both this message and its reply must flow over the SMC-R link
 being confirmed.

 o DELETE LINK: When initiated by the server, deletes a specific link
 from the link group or deletes the entire link group. When
 initiated by the client, requests that the server delete a
 specific link or the entire link group.

 o CONFIRM RKEY: Informs the peer on the SMC-R link of the addition
 of an RMB to the link group.

 o CONFIRM RKEY CONTINUATION: This is a continuation of CONFIRM RKEY
 that allows the ADD link to span multiple commands, in the event
 that all of the information cannot be contained in a single
 CONFIRM RKEY message.

 o DELETE RKEY: Informs the peer on the SMC-R link of the deletion of
 one or more RMBs from the link group

 o TEST LINK: Verifies that an already-active SMC-R link is active
 and healthy

 o Optional LLC message: Any LLC message in which the two high order
 bits of the opcode are b'10' is an optional message and must be
 silently discarded by a receiving peer that does not support the
 opcode. No such messages are defined in this version of the
 architecture, however the concept is defined to allow for
 toleration of possible advanced, optional functions.

 CONFIRM LINK and TEST LINK are sensitive to which link they flow on
 and must flow on the link being confirmed or tested. The other flows
 may flow over any active link in the link group. When there are
 multiple links in a link group, a response to an LLC message must
 flow over the same link that the original message flowed over, with
 the following exceptions:

Fox, et. al. Expires October 1, 2015 [Page 27]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o ADD LINK request from a server in response to an ADD LINK from a
 client

 o DELETE LINK request from a server in response to a DELETE LINK
 from a client

3.4. CDC Messages

 Connection Data Control (CDC) messages are sent over the RoCE fabric
 between peers using RoCE sendmsg with inline data, and are 44 bytes
 long which is based on the size that can fit into a RoCE Work Queue
 Element (WQE) without requiring the posting of receive buffers. CDC
 messages are used to describe the socket application data passed via
 RDMA write operations, and TCP connection state information including
 producer and consumer cursors, RMBE state information, and failover
 data validation.

3.5. Rendezvous flows

 Rendezvous information for SMC-R is be exchanged as TCP options on
 the TCP 3-way handshake flows to indicate capability, followed by in-
 line TCP negotiation messages to actually do the SMC-R setup. Formats
 of all rendezvous options and messages discussed in this section are
 detailed in Appendix A.

3.5.1. First contact

 First contact between RoCE peers occurs when a new SMC-R link group
 is being set up. This could be because no SMC-R links already exist
 between the peers, or the server decides to create a new SMC-R link
 group in parallel with an existing one.

3.5.1.1. TCP Options pre-negotiation

 The client and server indicate their SMC-R capability to each other
 using TCP option 254 on the TCP 3-way handshake flows.

 A client who wishes to do SMC-R will include TCP option 254 using an
 ExID equal to the EBCDIC (codepage IBM-1047) encoding of "SMCR" on
 its SYN flow.

 A server that supports SMC-R will include TCP option 254 with the
 ExID value of EBCDIC "SMCR" on its SYN-ACK flow. Because the server
 is listening for connections and does not know where client
 connections will come from, the server implementation may choose to

Fox, et. al. Expires October 1, 2015 [Page 28]

Internet-Draft Shared Memory Communications over RDMA April 2015

 unconditionally include this TCP option if it supports SMC-R. This
 may be required for server implementations where extensions to the
 TCP stack are not practical. For server implementations which can
 add code to examine and react to packets during the three-way
 handshake, the server should only include the SMC-R TCP option on
 SYN-ACK if the client included it on its SYN packet.

 A client who supports SMC-R and meets the three conditions outlined
 above may optionally include the TCP option for SMC-R on its ACK
 flow, regardless of whether or not the server included it on its SYN-
 ACK flow. Some TCP/IP stacks may have to include it if the SMC-R
 layer cannot modify the options on the socket until the 3-way
 handshake completes. Proprietary servers should not include this
 option on the ACK flow, since including it on the SYN flow was
 sufficient to indicate the client's capabilities.

 Once the initial three-way TCP handshake is completed, each peer
 examines the socket options. SMC-R implementations may do this by
 examining what was actually provided on the SYN and SYN-ACK packets
 or by performing a getsockopt() operation to determine the options
 set by the peer. If neither peer, or only one peer, specified the TCP
 option for SMC-R, then SMC-R cannot be used on this connection and it
 proceeds using normal IP flows and processing.

 If both peers specified the TCP option for SMC-R, then the TCP
 connection is not started yet and the peers proceed to SMC-R
 negotiation using inline data flows. The socket is not yet turned
 over to the applications; instead the respective SMC layers exchange
 CLC messages over the newly formed TCP connection.

3.5.1.2. Client Proposal

 If SMC-R is supported by both peers, the client sends an SMC Proposal
 CLC message to the server. On this flow from client to server it is
 not immediately apparent if this is a new or existing SMC-R link
 because in clustered environments a single IP address may represent
 multiple hosts. This type of cluster virtual IP address can be owned
 by a network based or host based layer 4 load balancer that
 distributes incoming TCP connections across a cluster of
 servers/hosts. Other clustered environments may also support the
 movement of a virtual IP address dynamically from one host in the
 cluster to another for high availability purposes. In summary, the
 client can not pre-determine that a connection is targeting the same
 host simply by matching the destination IP address for outgoing TCP
 connections. Therefore it cannot pre-determine the SMC-R link that
 will be used for a new TCP connection. This information will be

Fox, et. al. Expires October 1, 2015 [Page 29]

Internet-Draft Shared Memory Communications over RDMA April 2015

 dynamically learned and the appropriate actions will be taken as the
 SMC-R negotiation handshake unfolds.

 On the SMC-R proposal message, the initiator (client) proposes use of
 SMC-R by including its peer ID and GID and MAC addresses, as well as
 the IP subnet number of the outgoing interface (if IPv4) or the IP
 prefix list for the network that the proposal is sent over (if IPv6).
 At this point in the flow, the client makes no local commitments of
 resources for SMC-R.

 When the server receives the SMC Proposal CLC message, it uses the
 peer ID provided by the client plus subnet or prefix information
 provided by the client, to determine if it already has a usable SMC-R
 link with this SMC-R peer. If there is one or more existing SMC-R
 links with this SMC-R peer, the server then decides which SMC link it
 will use for this TCP connection. See subsequent sections for the
 cases of reusing an existing SMC-R link or creating a parallel SMC
 link group between SMC-R peers.

 If this is a first contact between SMC-R peers the server must
 validate that it is on the same LAN as the client before continuing.
 For IPv4, the server does this by verifying that it has an interface
 with an IP subnet number that matches the subnet number set by the
 client on the SMC Proposal. For IPv6 it does this by verifying that
 it is directly attached to at least one IP prefix that was listed by
 the client in its SMC Proposal message.

 If server agrees to use SMC-R, the server begins setup of a new SMC-R
 link by allocating local QP and RMB resources (setting its QP state
 to INIT) and providing its full SMC-R information in an SMC Accept
 CLC message to the client over the TCP connection, along with a flag
 set indicating that this is a first contact flow. While the SMC
 Accept message could flow over any route back to the client depending
 upon IP routing, the SMC-R credentials provided must be for the
 common subnet or prefix between the server and client, as determined
 above. If the server cannot or does not want to do SMC-R with the
 client it sends an SMC Decline CLC message to the client and the
 connection data may begin flowing using normal TCP/IP flows.

3.5.1.3. Server acceptance

 When the client receives the SMC Accept from the server, it uses the
 combination of the first contact flag, its GID/MAC and the GID/MAC
 returned by the server plus the LAN that the connection is setting up
 over and the QP number provided by the server to determine if this is
 a new or existing SMC-R link.

Fox, et. al. Expires October 1, 2015 [Page 30]

Internet-Draft Shared Memory Communications over RDMA April 2015

 If it is an existing SMC-R link, and the client agrees to use that
 link for the TCP connection, see 3.5.2. Subsequent contact below. If
 it is a new SMC-R link between peers that already have an SMC link,
 then the server is starting a new SMC link group.

 Assuming this is either a first contact between peers or the server
 is starting a new SMC link group, the client now allocates local QP
 and RMB resources for the SMC-R link (setting the QP state to RTR or
 "ready to receive"), associates them with the server QP as learned on
 the SMC Accept CLC message, and sends an SMC Confirm CLC message to
 the server over the TCP connection with its SMC-R link information
 included. The client also starts a timer to wait for the server to
 confirm the reliable connected QP as described below.

3.5.1.4. Client confirmation

 Upon receipt of the client's SMC Confirm CLC message, the server
 associates its QP for this SMC-R link with the client's QP as learned
 on the SMC Confirm CLC message and sets its QP state to RTS (ready to
 send). Now the client and the server have reliable connected QPs.

3.5.1.5. Link (QP) confirmation

 Since setting up the SMC-R link and its QPs did not require any
 network flows on the RoCE fabric, the client and server must now
 confirm connectivity over the RoCE fabric. To accomplish this, the
 server will send a "Confirm Link" Link Layer Control (LLC) message to
 the client over the RoCE fabric. The "Confirm Link" LLC message will
 provide the server's MAC, GID, and QP information for the connection,
 allow each partner to communicate the maximum number of links it can
 tolerate in this link group (the "link limit"), and will additionally
 provide two link IDs:

 o a one-byte server-assigned Link number that is used by both peers
 to identify the link within the link group and is only unique
 within a link group.

 o a four byte link user id. This opaque value is assigned by the
 server for the server's local use and is provided to the client
 for management purposes, for example to use in network management
 displays and products.

 When the server sends this message, it will set a timer for receiving
 confirmation from the client.

 When the client receives the server's confirmation "Confirm Link" LLC
 message it will cancel the confirmation timer it set when it sent the

Fox, et. al. Expires October 1, 2015 [Page 31]

Internet-Draft Shared Memory Communications over RDMA April 2015

 SMC Confirm message. It will also advance its QP state to RTS and
 respond over the RoCE fabric with a "Confirm Link" response LLC
 message, providing its MAC, GID, QP number, link limit, confirming
 the one byte link number sent by the server, and providing its own
 four byte link user id to the server.

Fox, et. al. Expires October 1, 2015 [Page 32]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X -- Server Host Y -- Client
 +-------------------+ +-------------------+
 | PeerID = PS1 | | PeerID = PC1 |
 | +------+ +------+ |
QP 8	RNIC 1		RNIC 2	QP 64		
RToken X		MAC MA		MAC MB		
		GID GA		GID GB		Rtoken Y
\/ +------+ (Subnet S1) +------+ \/						
+--------+		+--------+				
	RMB				RMB	
+--------+		+--------+				
+------+ +------+						
	RNIC 3		RNIC 4			
	MAC MC		MAC MD			
	GID GC		GID GD			
+------+ +------+						
 +-------------------+ +-------------------+

 SYN TCP options(254,"SMCR")
 <---

 SYN-ACK TCP options(254, "SMCR")
 --->

 ACK [TCP options(254, "SMCR")]
 <--

 SMC Proposal(PC1,MB,GB,S1)
 <--

 SMC Accept(PS1,first contact,MA,GA,MTU,QP8,RToken=X,RMB elem ndx)
 --->

 SMC Confirm(PC1,MB,GB,MTU,QP64,RToken=Y, RMB element index)
 <--

 Confirm Link (MA,GA,QP8, link lim, server's link userid, linknum)
 ...>

 Confirm Link Rsp(MB,GB,QP64, link lim, client link userid, linknum)
 <..

 Legend:
 ------------ TCP/IP and CLC flows
 RoCE (LLC) flows

 Figure 8 First contact rendezvous flows

Fox, et. al. Expires October 1, 2015 [Page 33]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Technically, the data for the TCP connection could now flow over the
 RoCE path. However if this is first contact, there is no alternate
 for this recently established RoCE path. Since in the current
 architecture there is no failover from RoCE to IP once connection
 data starts flowing, this means that a failure of this path would
 disrupt the TCP connection, meaning that the level of redundancy and
 failover is less than that provided by IP. If the network has
 alternate RoCE paths available, they would not be usable at this
 point, which is an unacceptable condition

3.5.1.6. Second SMC-R link setup

 Because of the unacceptable situation described above, TCP data will
 not be allowed to flow on the newly established SMC-R link until a
 second path has been set up, or at least attempted.

 If the server has a second RNIC available on the same LAN, it
 attempts to set up the second SMC-R link over that second RNIC. If
 it only has one RNIC available on the LAN, it will attempt to set up
 the second SMC-R link over that one RNIC. In the latter case, the
 server is attempting to set up an asymmetric link, in case the client
 does have a second RNIC on the LAN.

 In either case the server allocates a new QP over the RNIC it is
 attempting to use for the second link, assigns a link number to the
 new link and also creates an RToken for the RMB over this second QP
 (note that this means that the first and second QP each has its own
 RToken to represent the same RMB). The server provides this
 information, as well as the MAC and GID of the RNIC it is attempting
 set up the second link over in an "Add Link" LLC message which it
 sends to the client over the SMC-R link that is already set up.

3.5.1.6.1. Client processing of "Add Link" LLC message from server

 When the client receives the server's "Add Link" LLC message, it
 examines the GID and MAC provided by the server to determine if the
 server is attempting to use the same server-side RNIC as the existing
 SMC-R link, or a different one.

 If the server is attempting to use the same server-side RNIC as the
 existing SMC-R link, then the client verifies that it has a second
 RNIC on the same LAN. If it does not, the client rejects the "Add
 Link" request from the server, because the resulting link would be a
 parallel link which is not supported within a link group. If the
 client does have a second RNIC on the same LAN, it accepts the
 request and an asymmetric link will be set up.

Fox, et. al. Expires October 1, 2015 [Page 34]

Internet-Draft Shared Memory Communications over RDMA April 2015

 If the server is using a different server-side RNIC from the existing
 SMC-R link then the client will accept the request and a second SMC-R
 link will set up in this SMC-R link group. If the client has a
 second RNIC on the same LAN, that second RNIC will be used for the
 second SMC-R link, creating symmetric links. If the client does not
 have a second RNIC on the same LAN, it will use the same RNIC as was
 used for the initial SMC-R link, resulting in the setup of an
 asymmetric link in the SMC-R link group.

 In either case, when the client accepts the server's "Add Link"
 request, it allocates a new QP on the chosen RNIC and creates an Rkey
 over that new QP for the client-side RMB for the SMC link group, then
 sends an "Add Link" reply LLC message to the server providing that
 information as well as echoing the Link number that was set by the
 server.

 If the client rejects the server's "Add Link" request, it sends an
 "Add Link" reply LLC message to the server with the reason code for
 the rejection.

3.5.1.6.2. Server processing of "Add Link" reply LLC message from the
 client

 If the client sends a negative response to the server or no reply is
 received, the server frees the RoCE resources it had allocated for
 the new link. Having a single link in an SMC-R link group is
 undesirable and the server's recovery is detailed in C.8. Failure to
 add second SMC-R link to a link group.

 If the client sends a positive reply to the server with
 MAC/GID/QP/Rkey information, the server associates its QP for the new
 SMC-R link to the QP that the client provided. Now the new SMC-R
 link is in the same situation that the first was in after the client
 sent its ACK packet - there is a reliable connected QP over the new
 RoCE path, but there have been no RoCE flows to confirm that it's
 actually usable. So at this point the client and server will
 exchange "Confirm Link" LLC messages just like they did on the first
 SMC-R link.

 If either peer receives a failure during this second "Confirm Link"
 LLC exchange (either an immediate failure which implies that the
 message did not reach the partner, or a timeout), it sends a "Delete
 Link" LLC message to the partner over the first (and now only) link
 in the link group which must be acknowledged before data can flow on
 the single link in the link group.

Fox, et. al. Expires October 1, 2015 [Page 35]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X -- Server Host Y -- Client
 +-------------------+ +-------------------+
 | PeerID = PS1 | | PeerID = PC1 |
 | +------+ +------+ |
 | QP 8 |RNIC 1| |RNIC 2| QP 64 | | |
 |RToken X| |MAC MA| |MAC MB| | |
 | | |GID GA| |GID GB| |RToken Y|
 | \/ +------+ +------+ \/ |
 |+--------+ | | +--------+ | | | | |
 || | | | | | |
 || RMB | | | | RMB | |
 || | | | | | |
 |+--------+ | | +--------+ |
 | /\ +------+ +------+ /\ |
 | | |RNIC 3| |RNIC 4| | |
 |RToken Z| |MAC MC| |MAC MD| |RToken W|
 | QP 9 |GID GC| |GID GD| QP 65 |
 | +------+ +------+ |
 +-------------------+ +-------------------+

 First SMC-R link setup as shown in Figure 8
 <-.->

 ADD link request (QP9,MC,GC, link number=2)
 ..>

 ADD link response (QP65,MD,GD, link number=2)
 <..

 ADD link continuation request (RToken=Z)
 ..>

 ADD link continuation response(RToken=W)
 <..

 Confirm Link(MC,GC,QP9,link number=2, link userid)
 ...>

 Confirm Link response(MD,GD,QP65,link number=2, link userid)
 <...

 Legend:
 ------------ TCP/IP and CLC flows
 RoCE (LLC) flows

 Figure 9 First contact, second link setup

Fox, et. al. Expires October 1, 2015 [Page 36]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.5.1.6.3. Exchange of Rkeys on second SMC-R link

 Note that in the scenario described here, first contact, there is
 only one RMB Rkey to exchange on the second SMC-R link and it is
 exchanged in the Add Link Continuation request and reply. In
 scenarios other than first contact, for example, adding a new SMC-R
 link to a longstanding link group with multiple RMBs, additional
 flows will be required to exchange additional RMB Rkeys. See
 3.5.5.2.3. Adding a new SMC-R link to a link group with multiple RMBs
 for more details on these flows

3.5.1.6.4. Aborting SMC-R and falling back to IP

 If both partners don't provide the SMC-R TCP option during the 3 way
 TCP handshake, the connection falls back to normal TCP/IP. During
 the SMC-R negotiation that occurs after the 3 way TCP handshake,
 either partner may break off SMC-R by sending an SMC Decline CLC
 message. The SMC Decline CLC message may be sent in place of any
 expected message, and may also be sent during the Confirm Link LLC
 exchange if there is a failure before any application data has flowed
 over the RoCE fabric. For more detail on exactly when an SMC Decline
 can flow during link group setup, see C.1. SMC Decline during CLC
 negotiation and C.2. SMC Decline during LLC negotiation

 If this fallback to IP happens while setting up a new SMC-R link
 group, the RoCE resources allocated for this SMC-R link group
 relationship are torn down and it will be retried as a new SMC-R link
 group next time a connection starts between these peers with SMC-R
 proposed. Note that if this happens because one side doesn't support
 SMC-R, there will be very little to tear down as the TCP option will
 have failed to flow either on the initial SYN or the SYN-ACK, before
 either side had reserved any local RoCE resources.

3.5.2. Subsequent contact

 "Subsequent contact" means setting up a new TCP connection between
 two peers that already have an SMC-R link group between them, and
 reusing the existing SMC-R link group. In this case it is not
 necessary to allocate new QPs. However it is possible that a new RMB
 has been allocated for this TCP connection, if the previous TCP
 connection used the last element available in the previously used
 RMB, or for any other implementation-dependent reason. For this
 reason, and for convenience and error checking, the same TCP option
 254 followed by inline negotiation method described for initial
 contact will be used for subsequent contact, but the processing
 differs in some ways. That processing is described below.

Fox, et. al. Expires October 1, 2015 [Page 37]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.5.2.1. SMC-R proposal

 When the client begins the inline negotiation with the server, it
 does not know if this is a first contact or a subsequent contact.
 The client cannot know this information until it sees the server's
 peer ID to determine whether or not it already has an SMC-R link with
 this peer that it can use. There are several reasons why it is not
 sufficient to use the partner IP address, subnet, VLAN or other IP
 information to make this determination. The most obvious reason is
 distributed systems: if the server IP address is actually a virtual
 IP address representing a distributed cluster, the actual host
 serving this TCP connection may not be the same as the host that
 served the last TCP connection to this same IP address.

 After the TCP three way handshake, assuming both partners indicate
 SMC-R capability, the client builds and sends the SMC Proposal CLC
 message to the server in exactly the same manner as it does in the
 first contact case, and in fact at this point doesn't know if it's
 first contact or subsequent contact. As in the first contact case,
 the client sends its Peer ID value, suggested RNIC GID/MAC, and IP
 subnet or prefix information.

 Upon receiving the client's proposal, the server looks up the peer ID
 provided to determine if it already has a usable SMC-R link group
 with this peer. If it does already have a usable SMC-R link group,
 the server then needs to decide if it will use the existing SMC-R
 link group, or create a new link group. For the new link group
 case, see 3.5.3. First contact variation: creating a parallel link
 group, below.

 For this discussion assume the server decides to use the existing
 SMC-R link group for the TCP connection, which is expected to be the
 most common case. The server is responsible for making this decision.
 Then the server needs to communicate that information to the client,
 but it is not necessary to allocate, associate, and confirm QPs for
 the chosen SMC-R link. All that remains to be done is to set up RMB
 space for this TCP connection.

 If one of the RMBs already in use for this SMC-R link group has an
 available element that uses the appropriate buffer size, the server
 merely chooses one for this TCP connection and then sends an SMC
 Accept CLC message, providing the full RoCE information for the
 chosen SMC-R link to the client, using the same format as the SMC
 Accept CLC message described in the initial contact section above.

 The server may choose to use the SMC-R link that matches the
 suggested MAC/GID provided by the client on the SMC Proposal for its

Fox, et. al. Expires October 1, 2015 [Page 38]

Internet-Draft Shared Memory Communications over RDMA April 2015

 RDMA writes but is not obligated to. The final decision on which
 specific SMC-R link to assign a TCP connection to is an independent
 server and client decision.

 It may be necessary for the server to allocate a new RMB for this
 connection. The reasons for this are implementation dependent and
 could include: no available space in existing RMB or RMBs, or desire
 to allocate a new RMB that uses a different buffer size from the ones
 already created, or any other implementation dependent reason. In
 this case the server will allocate the new RMB and then perform the
 flows described in 3.5.5.2.1. Adding a new RMB to an SMC-R link
 group. Once that processing is complete, the server then provides the
 full RoCE information, including the new Rkey, for this connection
 on an SMC Confirm CLC message to the client.

3.5.2.2. SMC-R acceptance

 Upon receiving the SMC Accept CLC message from the server, the client
 examines the RoCE information provided by the server to determine if
 this is a first contact for a new SMC link group, or subsequent
 contact for an existing SMC-R link group. It is subsequent contact
 if the server side peer ID, GID, MAC and QP number provided on the
 packet match a known SMC-R link, and the "first contact" flag is not
 set. If this is not the case, for example the GID and MAC match but
 the QP is new, then the server is creating a new, parallel SMC-R link
 group and this is treated as a first contact.

 A different RMB RToken does not indicate a first contact as the
 server may have allocated a new RMB, or be using several RMBs for
 this SMC-R link. The client needs the server's RMB information only
 for its RDMA writes to the server, and since there is no requirement
 for symmetric RMBs, this information is simply control information
 for the RDMA writes on this SMC-R link.

 The client must validate that the RMB element being provided by the
 server is not in use by another TCP connection on this SMC-R link
 group. This validation must validate the new <rtoken, index> across
 all known <rtoken, index> on this link group. See 4.4.2. RMB element
 reuse and conflict resolution for the case in which the server tries
 to use an RMB element that is already in use on this link group.

 Once the client has determined that this TCP connection is a
 subsequent contact over an existing SMC link, it performs a similar
 RMB allocation process as the server did: it either allocates an
 element from an RMB already associated with this SMC-R link, or it
 allocates a new RMB and associates it with this SMC-R link and then
 chooses an element out of it.

Fox, et. al. Expires October 1, 2015 [Page 39]

Internet-Draft Shared Memory Communications over RDMA April 2015

 If the client allocates a new RMB for this TCP connection, it
 performs the processing described in 3.5.5.2.1. Adding a new RMB to
 an SMC-R link group. Once that processing is complete, the client
 provides its full RoCE information for this TCP connection on an SMC
 Confirm CLC message.

 Because an SMC-R link with a verified connected QP already exists and
 is being reused, there is no need for verification or alternate QP
 selection flows or timers.

3.5.2.3. SMC-R confirmation

 When the server receives the client's SMC Confirm CLC message on a
 subsequent contact, it verifies the following:

 o the RMB element provided by the client is not already in use by
 another TCP connection on this SMC-R link group (see section

4.4.2. RMB element reuse and conflict resolution for the case in
 which it is).

 o The MAC/GID/QP info provided by the client matches an active link
 within the link group. The client is free to select any valid /
 active link. The client is not required to select the same link as
 the server.

 If this validation passes, the server stores the client's RMB
 information for this connection and the RoCE setup of the TCP
 connection is complete.

3.5.2.4. TCP data flow race with SMC Confirm CLC message

 On a subsequent contact TCP/IP connection, a peer may send data as
 soon as it has received the peer RMB information for the connection.
 There are no additional RoCE confirmation flows, since the QPs on the
 SMC link are already reliably connected and verified.

 In the majority of cases the first data will flow from the client to
 the server. The client must send the SMC Confirm CLC message before
 sending any connection data over the chosen SMC-R link, however the
 client need not wait for confirmation of this message, and in fact
 there will be no such confirmation. Since the server is required to
 have the RMB fully set up and ready to receive data from the client
 before sending SMC Accept CLC message, the client can begin sending
 data over the SMC-R link immediately upon completing the send of the
 SMC Confirm CLC message.

Fox, et. al. Expires October 1, 2015 [Page 40]

Internet-Draft Shared Memory Communications over RDMA April 2015

 It is possible that data from the client will arrive into the server
 side RMB before the SMC Confirm CLC message from the client has been
 processed. In this case the server must handle this race condition,
 and not provide the arrived TCP data to the socket application until
 the SMC Confirm CLC message has been received and fully processed,
 opening the socket.

 If the server has initial data to send to the client which is not a
 response to the client (this case should be rare), it can send the
 data immediately upon receiving and processing the SMC Confirm CLC
 message from the client. The client must have opened the TCP socket
 to the client application upon sending of SMC Confirm CLC message so
 the client will be ready to process data from the server.

3.5.3. First contact variation: creating a parallel link group

 Recall that parallel SMC-R links within an SMC-R link group are not
 supported. These are multiple SMC-R links within a link group that
 use the same network path. However, multiple SMC-R link groups
 between the same peers are supported. This means that if multiple
 SMC-R links over the same RoCE path are desired, it is necessary to
 use multiple SMC-R link groups. While not a recommended practice,
 this could be done for platform specific reasons, like QP separation
 of different workloads. Only the server can drive the creation of
 multiple SMC-R link groups between peers.

 At a high level, when the server decides to create an additional SMC-
 R link group with a client it already has an SMC-R link group with,
 the flows are basically the same as the normal "first contact" case
 described above. The following provides more detail and
 clarification of processing in this case.

 When the server receives the SMC Proposal CLC message from the client
 and using the GID/MAC info determines that it already has an SMC-R
 link group with this client, the server can either reuse the existing
 SMC-R link group (detailed in 3.5.2. Subsequent contact above) or it
 can create a new SMC-R link group in addition to the existing one.

 If the server decides to create a new SMC-R link group, it does the
 same processing it would have done for first contact: allocate QP and
 RMB resources as well as alternate QP resources, and communicate the
 QP and RMB information to the client on the SMC Accept CLC message
 with the "first contact" flag set.

 When the client receives the server's SMC Accept CLC message with the
 new QP information and the "first contact" flag, it knows the server
 is creating a new SMC-R link group even though it already has an SMC-

Fox, et. al. Expires October 1, 2015 [Page 41]

Internet-Draft Shared Memory Communications over RDMA April 2015

 R link group with the server. In this case the client will also
 allocate a new QP for this new SMC link and allocate an RMB for this
 link and generate an Rkey for it.

 Note that multiple SMC-R link groups between the same peers must
 access different RMB resources, so new RMBs will be required. Using
 the same RMBs that are in use in another SMC-R link group is not
 permitted.

 The client then associates its new QP with the server's new QP and
 sends its SMC Confirm CLC message back to the server providing the
 new QP/RMB information and sets its confirmation timer for the new
 SMC-R link.

 When the server receives the client's SMC Confirm CLC message it
 associates its QP with the client's QP as learned on the SMC Confirm
 CLC message and sends a confirmation LLC message. The rest of the
 flow, with the confirmation QP and setup of additional SMC-R links,
 unfolds just like the first contact case.

3.5.4. Normal SMC-R link termination

 The normal sockets API trigger points are used by the SMC-R layer to
 initiate SMC-R connection termination flows. The main design point
 for SMC-R normal connection flows is to use the SMC-R protocol to
 first shutdown the SMC-R connection and free up any SMC-R RDMA
 resources and then allow the normal TCP connection termination
 protocol (i.e. FIN processing) to drive cleanup of the TCP connection
 that exists on the IP fabric. This design point is very important in
 ensuring that RDMA resources such as the RMBEs are only freed and
 reused when both SMC-R end points are completely done with their RDMA
 Write operations to the partner's RMBE.

 When the last TCP connection over an SMC-R link group terminates, the
 link group can be terminated. Similar to creation of SMC-R links and
 link groups, the primary responsibility for determining that normal
 termination is needed and initiating it lies with the server.
 Implementations may opt to set timers to keep SMC-R link groups up
 for a specified time after the last TCP connection ends, to avoid
 churn in cases when TCP connections come and go regularly.

 The link or link group may also be terminated as a result of an
 operator initiated command. This command can be entered at either
 the client or the server. If entered at the client, the client
 requests that the server perform link or link group termination, and
 the responsibility for doing so ultimately lies with the server.

Fox, et. al. Expires October 1, 2015 [Page 42]

Internet-Draft Shared Memory Communications over RDMA April 2015

 When the server determines that the SMC-R link group is to be
 terminated, it sends a DELETE LINK LLC message to the client, with a
 flag set indicating that all links in the link group are to be
 terminated. After receiving confirmation from the adapter that the
 DELETE LINK LLC message has been sent, the server can clean up its
 end of the link group (QPs, RMBs, etc). Upon receipt of the DELETE
 LINK message from the server, the client must immediately comply and
 clean up its end of the link group. Any TCP connections that the
 client believes to be active on the link group must be immediately
 terminated.

 The client can request that the server delete the link group as well.
 The client does this by sending a DELETE LINK message to the server
 indicating that cleanup of all links is requested. The server must
 comply by sending a DELETE LINK to the client and processing as
 described above. If there are TCP connections active on the link
 group when the server receives this request, they are immediately
 terminated by sending a RST flow over the IP fabric.

3.5.5. Link group management flows

3.5.5.1. Adding and deleting links in an SMC-R link group

 The server has the lead role in managing the composition of the link
 group. Links are added to link group by the server. The client may
 notify the server of new conditions that may result in the server
 adding a new link, but the server is ultimately responsible. In
 general links are deleted from the link group by the server, however
 in certain error cases the client may inform the server that a link
 must be deleted and treat it as deleted without waiting for action
 from the server. These flows are detailed in the following sections

3.5.5.1.1. Server initiated Add Link processing

 As described in previous sections, the server initiates an Add Link
 exchange to create redundancy in a newly created link group. Once a
 link group is established the server may also initiate Add Link for
 other reasons, including:

 o Availability of additional resources on the server host to support
 an additional SMC-R link. This may include the provisioning of an
 additional RNIC, more storage becoming available to support
 additional QP resources, operator command, or any other
 implementation dependent reason. Note that, to be available for
 an existing link group, a new RNIC must be attached to the same
 RoCE LAN that the link group is using.

Fox, et. al. Expires October 1, 2015 [Page 43]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Receipt of notification from the client that additional resources
 on the client are available to support an additional SMC-R link.
 See 3.5.5.1.2. Client initiated Add Link processing.

 Server initiated Add Link processing in an established SMC-R link
 group is the same as the Add Link processing described in 3.5.1.6.
 Second SMC-R link setup with the following changes:

 o If an asymmetric SMC-R link already exists in the link group a
 second asymmetric link will not be created. Only one asymmetric
 link is permitted in a link group.

 o TCP data flow on already existing link(s) in the link group is not
 halted or otherwise affected during the process of setting up the
 additional link.

 In no case will the server initiate Add Link processing if the link
 group already has the maximum number of links negotiated by the
 partners.

3.5.5.1.2. Client initiated Add Link processing

 If an additional RNIC becomes available for an existing SMC-R link
 group on the client's side, the client notifies the server by sending
 an Add Link request LLC message to the server. Unlike an Add Link
 request sent by the server to the client, this Add Link request
 merely informs the server that the client has a new RNIC. If the
 link group lacks redundancy, or has redundancy only on an asymmetric
 link with a single RNIC on the client side, the server must initiate
 an Add Link exchange in response to this message, to create or
 improve the link group's redundancy.

 If the link group already has symmetric link redundancy but has fewer
 than the negotiated maximum number of links, the server may respond
 by initiating an Add Link exchange to create a new link using the
 client's new resource but is not required to.

 If the link group already has the negotiated maximum number of links,
 the server must ignore the client's Add Link request LLC message.

 Because the server is not required to respond to the client's Add
 Link LLC message in all cases, the client must not wait for a
 response or throw an error if one does not come.

3.5.5.1.3. Server initiated Delete Link Processing

 Reasons that a server may delete a link include:

Fox, et. al. Expires October 1, 2015 [Page 44]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o The link has not been used for TCP connections for an
 implementation defined time interval, and deleting the link will
 not cause the link group to lack redundancy

 o An error in resources supporting the link. These may include but
 are not limited to: RNIC errors, QP errors, software errors

 o The RNIC supporting this SMC-R link is being taken down, either
 because of an error case or because of an operator or software
 command.

 If a link being deleted is supporting TCP connections, and there are
 one or more surviving links in the link group, the TCP connections
 are moved to the surviving links. For more information on this
 processing see 2.3. SMC-R resilience and load balancing.

 The server deletes a link from the link group by sending a Delete
 Link request LLC message to the client over any of the usable links
 in the link group. Because the Delete Link LLC message specifies
 which link is to be deleted, it may flow over any link in the link
 group. The server must not clean up its RoCE resources for the link
 until the client responds.

 The client responds to the server's Delete Link request LLC message
 by sending the server a Delete Link response LLC message. The client
 must respond positively; it cannot decline to delete the link. Once
 the server has received the client's Delete Link response, both sides
 may clean up their resources for the link.

 Positive write completion or other indication from the RNIC on the
 client's side is sufficient to indicate to the client that the server
 has received the Delete Link response.

Fox, et. al. Expires October 1, 2015 [Page 45]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X Host Y
 +-------------------+ +-------------------+
 | +------+ +------+ |
QP 8	RNIC 1	SMC-R Link 1	RNIC 2	QP 9	
RToken X		Failed	<--X----X----X----X-->		
\/ +------+ +------+					
+--------+					
	deleted				
	RMB				
+--------+					
/\ +------+ +------+					
RToken Z			SMC-R Link 2		
		RNIC 3	<-------------------->	RNIC 4	
QP 64				QP 65	
+------+ +------+					
 +-------------------+ +-------------------+

 DELETE LINK(Request, link number = 1,
 ..>
 reason code = RNIC failure)

 DELETE LINK(Response, link number = 1)
 <..

 (note, architecturally this exchange can flow over either
 SMC-R link but most likely flows over link 2 since
 the RNIC for link 1 has failed)

 Figure 10 Server initiated Delete Link flow

3.5.5.1.4. Client initiated Delete Link request

 The client may request that the server delete a link for the same
 reasons that the server may delete a link, except for inactivity
 timeout.

 Because the client depends on the server to delete links, there are
 two types of delete requests from client to server:

Fox, et. al. Expires October 1, 2015 [Page 46]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Orderly: the client is requesting that the server delete the link
 when able. This would result from an operator command to bring
 down the RNIC or some other nonfatal reason. In this case the
 server is required to delete the link, but may not do it right
 away.

 o Disorderly: the server must delete the link right away, because
 the client has experienced a fatal error with the link.

 In either case the server responds by initiating a Delete Link
 exchange with the client as described in the previous section. The
 difference between the two is whether the server must do so
 immediately or can delay for an opportunity to gracefully delete the
 link.

Fox, et. al. Expires October 1, 2015 [Page 47]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X Host Y
 +-------------------+ +-------------------+
 | +------+ +------+ |
QP 8	RNIC 1	SMC-R Link 1	RNIC 2	QP 9	
RToken X			<---X--X--X--X--X--X->	Failed	
\/ +------+ +------+					
+--------+					
	deleted				
	RMB				
+--------+					
/\ +------+ +------+					
RToken Z			SMC-R Link 2		
		RNIC 3	<-------------------->	RNIC 4	
QP 64				QP 65	
+------+ +------+					
 +-------------------+ +-------------------+

 DELETE LINK(Request, link number = 1, disorderly,
 <...
 reason code = RNIC failure)

 DELETE LINK(Request, link number = 1,
 ..>
 reason code = RNIC failure)

 DELETE LINK(Response, link number = 1)
 <..

 (note, architecturally this exchange can flow over either
 SMC-R link but most likely flows over link 2 since
 the RNIC for link 1 has failed)

 Figure 11 Client-initiated Delete Link

3.5.5.2. Managing multiple Rkeys over multiple SMC-R links in a link
 group

 After the initial contact sequence completes and the number of TCP
 connections increases it is possible that the SMC peers could add
 additional RMBs to the Link Group. Recall that each peer
 independently manages its RMBs. Also recall that an RMB's RToken is
 specific to a QP, which means that when there are multiple SMC-R
 links in a link group, each RMB accessed with the link group requires
 a separate RToken for each SMC-R link in the group.

Fox, et. al. Expires October 1, 2015 [Page 48]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Each RMB that is added to a link must be added to all links within
 the Link Group. The set of RMBs created for the Link is called the
 "RToken Set". The RTokens must be exchanged with the peer. As RMBs
 are added and deleted, the RToken Set must remain in sync.

3.5.5.2.1. Adding a new RMB to an SMC-R link group

 A new RMB can be added to an SMC-R link group on either the client or
 the server side. When an additional RMB is added to an existing SMC-
 R link group, that RMB must be associated with the QPs for each link
 in the link group. Therefore when an RMB is added to an SMC-R link
 group, its RMB RToken for each SMC-R link's QP must be communicated
 to the peer.

 The tokens for a new RMB added to an existing SMC-R link group are
 communicated using "Confirm Rkey" LLC messages, as shown in Figure
 12. The RToken set is specified as pairs: an SMC link number, paired
 with the new RMB's RToken over that SMC Link. To preserve failover
 capability, any TCP connection that uses a newly added RMB cannot go
 active until all RTokens for the RMB have been communicated for all
 the links in the link group.

Fox, et. al. Expires October 1, 2015 [Page 49]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X Host Y
 +-------------------+ +-------------------+
 | +------+ +------+ |
 | QP 8 |RNIC 1| SMC-R Link 1 |RNIC 2| QP 9 | |
 |RToken X| | |<-------------------->| | |
 | | | | | | |
 | \/ +------+ +------+ |
 |+--------+ | | | | |
 || new | | | |
 || RMB | | | |
 || | | | |
 |+--------+ | | |
 | /\ +------+ +------+ |
 |RToken Z| | | SMC-R Link 2 | | |
 | | |RNIC 3|<-------------------->|RNIC 4| |
 | QP 64| | | | QP 65 |
 | +------+ +------+ |
 +-------------------+ +-------------------+

 CONFIRM RKEY(Request, Add,
 ..>
 RToken set((Link 1,RToken X),(Link2,RToken Z)))

 CONFIRM RKEY(Response, Add,
 <..
 RToken set((Link 1,RToken X),(Link2,RToken Z)))

 (note, this exchange can flow over either SMC-R link)

 Figure 12 Add RMB to existing link group

 Implementations may choose to proactively add RMBs to link groups in
 anticipation of need. For example, an implementation may add a new
 RMB when all of its existing RMBs are over a certain threshold
 percentage used.

 A new RMB may also be added to an existing link group on an as needed
 basis. For example, when a new TCP connection is added to the link
 group but there are no available RMB elements. In this case the CLC
 exchange is paused while the peer that requires the new RMB adds it.
 An example of this is illustrated in figure 13.

Fox, et. al. Expires October 1, 2015 [Page 50]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X -- Server Host Y -- Client
 +-------------------+ +-------------------+
 | PeerID = PS1 | | PeerID = PC1 |
 | +------+ +------+ |
 | QP 8 |RNIC 1| SMC-R link 1 |RNIC 2| QP 64 | | |
 |RToken X| |MAC MA|<-------------------->|MAC MB| | |
 | | |GID GA| |GID GB| |RTokenY2|
 | \/ +------+ +------+ \/ |
 |+--------+ | | +--------+ | | | | |
 || | | SUBNET S1 | | New | |
 || RMB | | | | RMB | |
 |+--------+ | | +--------+ |
 | /\ +------+ +------+ /\ |
 | | |RNIC 3| SMC-R link 2 |RNIC 4| |RTokenW2|
 | | |MAC MC|<-------------------->|MAC MD| | |
 | QP 9 |GID GC| |GID GD| QP65 |
 | +------+ +------+ |
 +-------------------+ +-------------------+

 SYN / SYN-ACK / ACT TCP 3-way handshake with TCP option
 <--->

 SMC Proposal(PC1,MB,GB,S1)
 <--

 SMC Accept(PS1,not 1st contact,MA,GA,QP8,RToken=X,RMB elem index)
 --->

 Confirm Rkey(Request, Add,
 <..
 RToken set((Link1, RToken Y2),{Link2, RToken W2)))

 Confirm Rkey(Response, Add,
 ..>
 RToken set((Link1, RToken Y2),{Link2, RToken W2)))

 SMC Confirm(PC1,MB,GB,QP64,RToken=Y2, RMB element index)
 <--

 Legend:
 ------------ TCP/IP and CLC flows
 RoCE (LLC) flows

 Figure 13 Client adds RMB during TCP connection setup

Fox, et. al. Expires October 1, 2015 [Page 51]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.5.5.2.2. Deleting an RMB from an SMC-R link group

 Either peer can delete one or more of its RMBs as long as it is not
 being used for any TCP connections. Ideally an SMC-R peer would use
 a timer to avoid freeing an RMB immediately after the last TCP
 connection stops using it, to keep the RMB available for later TCP
 connections and avoid thrashing with addition and deletion of RMBs.
 Once an SMC-R peer decides to delete an RMB, it sends a DELETE RKEY
 LLC message to its peer. It can then free the RMB once it receives a
 response from the peer. Multiple RMBs can be deleted in a DELETE
 RKEY exchange.

 Note that in a DELETE RKEY message, it is not necessary to specify
 the full RToken for a deleted RMB. The RMB's Rkey over one link in
 the link group is sufficient to specify which RMB is being deleted.

 Host X Host Y
 +-------------------+ +-------------------+
 | +------+ +------+ |
QP 8	RNIC 1	SMC-R Link 1	RNIC 2	QP 9	
RToken X			<-------------------->		
\/ +------+ +------+					
+--------+					
	deleted				
	RMB				
+--------+					
/\ +------+ +------+					
RToken Z			SMC-R Link 2		
		RNIC 3	<-------------------->	RNIC 4	
QP 9					
+------+ +------+					
 +-------------------+ +-------------------+

 DELETE RKEY(Request, Rkey list(Rkey X))
 ..>

 DELETE RKEY(Response, Rkey list(Rkey X))
 <..

 (note, this exchange can flow over either SMC-R link)

 Figure 14 Delete RMB from SMC-R link group

Fox, et. al. Expires October 1, 2015 [Page 52]

Internet-Draft Shared Memory Communications over RDMA April 2015

3.5.5.2.3. Adding a new SMC-R link to a link group with multiple RMBs

 When a new SMC-R link is added to an existing link group, there could
 be multiple RMBs on each side already associated with the link group.
 There could also be a different number of RMBs on one side as on the
 other, because each peer manages its RMBs independently. Each of
 these RMBs will require a new RToken to be used on the new SMC-R
 link, and then those new RTokens must be communicated to the peer.
 This requires two-way communication as the server will have to
 communicate its RTokens to the client and vice versa.

 RTokens are communicated between peers in pairs. Each RToken pair
 consists of:

 o The RToken for the RMB, as is already known on an existing SMC-R
 link in the link group

 o The RToken for the same RMB, to be used on the new SMC-R link.

 These pairs are required to ensure that each peer knows which RTokens
 across QPs are equivalent.

 The "Add Link" request and response LLC messages do not have room to
 contain any RToken pairs. "Add Link continuation" LLC messages are
 used to communicate these pairs, as shown in Figure 15. The "Add
 Link Continuation" LLC messages are sent on the same SMC-R link that
 the "Add Link" LLC messages were sent over, and in both the "Add
 Link" and the "Add Link Continuation" LLC messages, the first RToken
 in each RToken pair will be the RToken for the RMB as known on the
 SMC-R link that the LLC message is being sent over.

Fox, et. al. Expires October 1, 2015 [Page 53]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X -- Server Host Y -- Client
 +-------------------+ +-------------------+
 | PeerID = PS1 | | PeerID = PC1 |
 | +------+ +------+ |
QP 8	RNIC 1		RNIC 2	QP 64		
Rkey Set		MAC MA		MAC MB		Rkey set
X,Y,Z		GID GA		GID GB		Q,R,S,T
\/ +------+ +------+ \/						
+--------+		+--------+				
	3 RMBs				4 RMBs	
+--------+		+--------+				
/\ +------+ +------+ /\						
Rkey set		RNIC 3		RNIC 4		Rkey set
U,V,W		MAC MC		MAC MD		L,M,N,P
QP 9	GID GC		GID GD	QP 65		
+------+ +------+						
 +-------------------+ +-------------------+

 ADD link request (QP9,MC,GC, link number=2)
 ..>

 ADD link response (QP65,MD,GD, link number=2)
 <..

 ADD link continuation req(RToken Pairs=((X,U),(Y,V),(Z,W)))
 ..>

 ADD link continuation rsp(RToken Pairs=((Q,L),(R,M),(S,N),(T,P)))
 <...

 Confirm Link Req/Rsp exchange on link 2
 <...>

 Legend:
 ------------ TCP/IP and CLC flows
 RoCE (LLC) flows
 Figure 15 Exchanging Rkeys when a new link is added to a link group

3.5.5.3. Serialization of LLC exchanges, and collisions

 LLC flows can be divided into two main groups for serializaion
 considerations.

 The first group is LLC messages that are independent and can flow at
 any time. These are one-time, unsolicited messages that either do

Fox, et. al. Expires October 1, 2015 [Page 54]

Internet-Draft Shared Memory Communications over RDMA April 2015

 not have a required response, or that have a simple response that
 does not interfere with the operations of another group of messages.
 These messages are:

 o TEST LINK from either the client or the server: This message
 requires a TEST LINK response to be returned, but does not affect
 the configuration of the link group or the Rkeys.

 o ADD LINK from the client to the server: This message is provided
 as an "FYI" to the server to let it know that the client has an
 additional RNIC available. The server is not required to act upon
 or respond to this message.

 o DELETE_LINK from the client to the server: This message informs
 the server that the client has either experienced an error or
 problem that requires a link or link group to be terminated, or
 that an operator has commanded that a link or link group be
 terminated. The server does not respond directly to the message,
 rather it initiates a DELETE LINK exchange as a result of
 receiving it.

 o DELETE LINK from the server to the client with the "delete entire
 link group" flag set: This message informs the client that the
 entire link group is being deleted.

 The second group is LLC messages that are part of an exchange of LLC
 messages that affects link group configuration that must complete
 before another exchange of LLC messages that affects link group
 configuration can be processed. When a peer knows that one of these
 exchanges is in progress, it must not start another exchange. These
 exchanges are:

 o ADD LINK / ADD LINK response / ADD LINK CONTINUATION / ADD LINK
 CONTINUATION response / CONFIRM LINK / CONFIRM LINK RESPONSE:
 This exchange, by adding a new link, changes the configuration of
 the link group.

 o DELETE LINK / DELETE LINK response initiated by the server: This
 exchange, by deleting a link, changes the configuration of the
 link group.

Fox, et. al. Expires October 1, 2015 [Page 55]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o CONFIRM RKEY / CONFIRM RKEY response or DELETE RKEY / DELETE RKEY
 response: This exchange changes the RMB configuration of the link
 group. RKeys can not change while links are being added or
 deleted (while ADD or DELETE LINK is in progress). However,
 CONFIRM RKEY and DELETE RKEY are unique in that both the client
 and server can independently manage (add or remove) their own
 RMBs. This allows each peer to concurrently change their RKeys
 and therefore concurrently send CONFIRM RKEY or DELETE RKEY
 requests. The concurrent CONFIRM RKEY or DELETE RKEY requests can
 be independently processed and do not represent a collision

 Because the server is in control of the configuration of the link
 group, many timing windows and collisions are avoided but there are
 still some that must be handled.

3.5.5.3.1. Collisions with ADD LINK / CONFIRM LINK exchange

 Colliding LLC message: TEST LINK

 Action to resolve: Send immediate TEST LINK reply

 Colliding LLC Message: ADD LINK from client to server

 Action to resolve: Server ignores the ADD LINK message. When
 client receives server's ADD LINK, client will consider that
 message to be in response to its ADD LINK message and the flow
 works. Since both client and server know not to start this
 exchange if an ADD LINK operation is already underway, this can
 only occur if the client sends this message before receiving the
 server's ADD LINK and this message crosses with the server's ADD
 LINK message, therefore the server's ADD LINK arrives at the
 client immediately after the client sent this message.

 Colliding LLC Message: DELETE LINK from client to server, specific
 link specified

 Action to resolve: Server queues the DELETE link message and
 processes after the ADD LINK exchange completes. If it is an
 orderly link termination, it can wait until after this exchange
 continues. If it is disorderly and the link affected is the one
 that the current exchange is using, the server will discover the
 outage when a message in this exchange fails.

 Colliding LLC Message: DELETE LINK from client to server, entire link
 group to be deleted

 Action to resolve: Immediately clean up the link group

Fox, et. al. Expires October 1, 2015 [Page 56]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Colliding LLC message: CONFIRM RKEY from the client

 Action to resolve: Send negative CONFIRM_RKEY response to the
 client. Once the current exchange finishes, client will have to
 recompute its Rkey set to include the new link, and start a new
 CONFIRM RKEY exchange.

3.5.5.3.2. Collisions during DELETE LINK exchange

 Colliding LLC Message: TEST LINK from either peer

 Action to resolve: Send immediate TEST LINK response

 Colliding LLC message: ADD LNK from client to server

 Action to resolve: Server queues the ADD LINK and processes it
 after the current exchange completes

 Colliding LLC message: DELETE LINK from client to server (specific
 link)

 Action to resolve: Server queues the DELETE link message and
 processes after the current exchange completes. If it is an
 orderly link termination, it can wait until after this exchange
 continues. If it is disorderly and the link affected is the one
 that the current exchange is using, the server will discover the
 outage when a message in this exchange fails

 Colliding LLC message: DELETE LINK from either client or server,
 deleting the entire link group

 Action to resolve: immediately clean up the link group

 Colliding LLC message: CONFIRM_RKEY from client to server

 Action to resolve: Send negative CONFIRM_RKEY response to the
 client. Once the current exchange finishes, client will have to
 recompute its Rkey set to include the new link, and start a new
 CONFIRM RKEY exchange

3.5.5.3.3. Collisions during CONFIRM_RKEY exchange

 Colliding LLC Message: TEST LINK

 Action to resolve: Send immediate TEST LINK reply

Fox, et. al. Expires October 1, 2015 [Page 57]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Colliding LLC message: ADD LINK from client to server

 Action to resolve: Queue the ADD LINK and process it after the
 current exchange completes

 Colliding LLC message: ADD LINK from server to client (CONFIRM RKEY
 exchange was initiated by the client and it crossed with the server
 initiating an ADD LINK exchange)

 Action to resolve: Process the ADD LINK. Client will receive a
 negative CONFIRM RKEY from the server and will have to redo this
 CONFIRM RKEY exchange after the ADD LINK exchange completes.

 Colliding LLC message: DELETE LINK from client to server, specific
 link to be deleted (CONFIRM RKEY exchange was initiated by the server
 and it crossed with the client's DELETE LINK request

 Action to resolve: Server queues the DELETE link message and
 processes after the ADD LINK exchange completes. If it is an
 orderly link termination, it can wait until after this exchange
 continues. If it is disorderly and the link affected is the one
 that the current exchange is using, the server will discover the
 outage when a message in this exchange fails.

 Colliding LLC message: DELETE LINK from server to client, specific
 link deleted (CONFIRM RKEY exchange was initiated by the client and
 it crossed with the server's DELETE LINK)

 Action to resolve: Process the DELETE LINK. Client will receive a
 negative CONFIRM RKEY from the server and will have to redo this
 CONFIRM RKEY exchange after the ADD LINK exchange completes.

 Colliding LLC message: DELETE LINK from either client or server,
 entire link group deleted

 Action to resolve: immediately clean up the link group

 Colliding LLC message: CONFIRM LINK from the peer that did not start
 the current CONFIRM LINK exchange

 Action to resolve: Queue the request and process it after the
 current exchange completes.

Fox, et. al. Expires October 1, 2015 [Page 58]

Internet-Draft Shared Memory Communications over RDMA April 2015

4. SMC-R memory sharing architecture

4.1. RMB element allocation considerations

 Each TCP connection using SMC-R must be allocated a RMBE by each SMC-
 R peer. This allocation is performed by each end point independently
 to allow each end point to select an RMBE that best matches the
 characteristics on its TCP socket end point. The RMBE associated with
 a TCP socket endpoint must have a Receive buffer that is at least as
 large as the TCP receive buffer size in effect for that connection.
 The receive buffer size can be determined by what is specified
 explicitly by the application using setsockopt() or implicitly via
 the system configured default value. This will allow sufficient data
 to be RDMA written by the SMC-R peer to fill an entire receive buffer
 size worth of data on a given data flow. Given that each RMB must
 have fixed length RMBEs this implies that an SMC-R end point may need
 to maintain multiple RMBs of various sizes for SMC-R connections on a
 given SMC link and can then select an RMBE that most closely fits a
 connection.

4.2. RMB and RMBE format

 An RMB is a virtual memory buffer whose backing real memory is
 pinned, which is divided into a whole number of equal sized RMB
 Elements (RMBEs). Each RMBE begins with a four byte eye catcher for
 diagnostic and service purposes, followed by the receive data buffer.
 The contents of this diagnostic eyecatcher are implementation
 dependent and should be used by the local SMC-R peer to check for
 overlay errors by verifying an intact eyecatcher with every RMBE
 access.

 The RMBE is a wrapping receive buffer for receiving RDMA writes from
 the peer. Cursors, as described below, are exchanged between peers
 to manage and track RDMA writes and local data reads from the RMBE
 for a TCP connection.

4.3. RMBE control information

 RMBE control information consists of consumer and producer cursors,
 wrap counts, CDC message sequence numbers, control flags such as
 urgent data and writer blocked indicators, and TCP connection

Fox, et. al. Expires October 1, 2015 [Page 59]

Internet-Draft Shared Memory Communications over RDMA April 2015

 information such as termination flags. This information is exchanged
 between SMC-R peers using CDC messages, which are passed using RDMA
 message passing with inline data, with the control information
 contained in the inline data. A TCP/IP stack implementing SMC-R must
 receive and store this information in its internal data structures as
 it is used to manage the RMBE and its data buffer.

 The format and contents of the CDC message is described in detail in
 4.3. RMBE control information. The following is a high level
 description of what this control information contains.

 o Connection state flags such as sending done, connection closed,
 failover data validation, and abnormal close

 o A sequence number that is managed by the sender. This sequence
 number starts at 1, is increased each send, and wraps to 0. This
 sequence number tracks the CDC message sent and is not related to
 the number of bytes sent. It is used for failover data
 validation.

 o Producer cursor: a wrapping offset into the receiver's RMBE data
 area. Set by the peer that is writing into the RMBE, it points to
 where the writing peer will write the next byte of data into an
 RMBE. This cursor is accompanied by a wrap sequence number to help
 the RMBE owner (the receiver) identify full window size wrapping
 writes. Note that this cursor must account for (i.e., skip over)
 the RMBE eyecatcher that is in the beginning of the data area.

 o Consumer cursor: a wrapping offset into the receiver's RMBE data
 area. Set by the owner of the RMBE (the peer that is reading from
 it), this cursor points to the offset of the next byte of data to
 be consumed by the peer in its own RMBE. The sender cannot write
 beyond this cursor into the receiver's RMBE without causing data
 loss. Like the producer cursor, this is accompanied by a wrap
 count to help the writer identify full window size wrapping reads.
 Note that this cursor must account for (i.e., skip over) the RMBE
 eyecatcher that is in the beginning of the data area.

 o Data flags such as urgent data, writer blocked indicator, and
 cursor update requests.

4.4. Use of RMBEs

4.4.1. Initializing and accessing RMBEs

 The RMBE eyecatcher is initialized by the RMB owner prior to
 assigning it to a specific TCP connection and communicating its RMB

Fox, et. al. Expires October 1, 2015 [Page 60]

Internet-Draft Shared Memory Communications over RDMA April 2015

 index to the SMC-R partner. After an RMBE index is communicated to
 the SMC-R partner the RMBE can only be referenced in "read only mode"
 by the owner and all updates to it are performed by the remote SMC-R
 partner via RDMA write operations.

 Initialization of an RMBE must include the following:

 o Zeroing out the entire RMBE receive buffer, which helps minimize
 data integrity issues (e.g. data from a previous connection
 somehow being presented to the current connection).

 o Setting the beginning RMBE eye catcher. This eye catcher plays an
 important role in helping detect accidental overlays of the RMBE.
 The RMB owner must always validate these eye catchers before each
 new reference to the RMBE. If the eye catchers are found to be
 corrupted the local host must reset the TCP connection associated
 with this RMBE and log the appropriate diagnostic information.

4.4.2. RMB element reuse and conflict resolution
 RMB elements can be reused once their associated TCP and SMC-R
 connections are terminated. Under normal and abnormal SMC-R
 connection termination processing both SMC-R peers must explicitly
 acknowledge that they are done using an RMBE before that element can
 be freed and reassigned to another SMC-R connection instance. For
 more details on SMC-R connection termination refer to section 4.8.
 However, there are some error scenarios where this 2 way explicit
 acknowledgement may not be completed. In these scenarios (mentioned
 explicitly elsewhere in this document) an RMBE owner may chose to re-
 assign this RMBE to a new SMC-R connection instance on this SMC link
 group. When this occurs the partner SMC-R peer must detect this
 condition during SMC-R rendezvous processing when presented with an
 RMBE that it believes is already in use for a different SMC-R
 connection. In this case, the SMC-R peer must abort the existing
 SMC-R connection associated with this RMBE. The abort processing
 Resets the TCP connection (if it is still active) but it must not
 attempt to perform any RDMA writes to this RMBE and must also ignore
 any data sitting in the local RMBE associated with the existing
 connection. It then proceeds to free up the local RMBE and notify
 the local application that the connection is being abnormally reset.

 The remote SMC-R peer then proceeds to normal processing for this new
 SMC-R connection.

Fox, et. al. Expires October 1, 2015 [Page 61]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.5. SMC-R protocol considerations

 The following sections describe considerations for the SMC-R protocol
 as compared to the TCP protocol.

4.5.1. SMC-R protocol optimized window size updates

 An SMC-R receiver host sends its Consumer Cursor information to the
 sender to convey the progress that the receiving application has made
 in consuming the sent data. The difference between the writer's
 Producer Cursor and the associated receiver's Consumer Cursor
 indicates the window size available for the sender to write into.
 This is somewhat similar to TCP window update processing and
 therefore has some similar considerations, such as silly window
 syndrome avoidance, whereby the TCP protocol has an optimization that
 minimizes the overhead of very small, unproductive window size
 updates associated with sub-optimal socket applications consuming
 very small amount of data on every receive() invocation. For SMC-R,
 the receiver only updates its Consumer Cursor via a unique CDC
 message under the following conditions:

 o The current window size (from a sender's perspective) is less than
 half of the Receive Buffer space and the Consumer Cursor update
 will result in a minimum increase in the window size of 10% of the
 Receive buffer space. Some examples:

 a. Receive Buffer size: 64K, Current window size (from a
 sender's perspective): 50K. No need to update the Consumer
 Cursor. Plenty of space is available for the sender.

 b. Receive Buffer size: 64K, Current window size (from a
 sender's perspective): 30K, Current window size from a
 receiver's perspective: 31K. No need to update the Consumer
 Cursor; even though the sender's window size < 1/2 of the
 64K, the window update would only increase that by 1K which
 is < 1/10th of the 64K buffer size.

 c. Receive Buffer size: 64K, Current window size (from a
 sender's perspective): 30K, Current window size from a
 receiver's perspective: 64K. The receiver updates the
 Consumer Cursor (sender's window size < 1/2 of the 64K, the
 window update would increase that by > 6.4K).

Fox, et. al. Expires October 1, 2015 [Page 62]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o The receiver must always include a Consumer Cursor update whenever
 it sends a CDC message to the partner for another flow (i.e. send
 flow in the opposite direction). This allows the window size
 update to be delivered with no additional overhead. This is
 somewhat similar to TCP DelayAck processing and quite effective
 for request/response data patterns.

 o If a peer has set the B-bit in a CDC message then any consumption
 of data by the receiver causes a CDC message to be sent updating
 the consumer cursor until that a CDC message with that bit cleared
 is received from the peer.

 o The optimized window size updates are overridden when the sender
 sets the Consumer Cursor Update Requested flag in a CDC message to
 the receiver. When this indicator is on the consumer must send a
 Consumer Cursor update immediately when data is consumed by the
 local application or if the cursor has not been updated for a
 while (i.e. local copy consumer cursor does not match the last
 consumer cursor value sent to the the partner). This allows the
 sender to perform optional diagnostics for detecting a stalled
 receiver application (data has been sent but not consumed). It is
 recommended that the Consumer Cursor Update Requested flag only be
 sent for diagnostic procedures as it may result in non-optimal
 data path performance.

4.5.2. Small data sends

 The SMC-R protocol makes no special provisions for handling small
 data segments sent across a stream socket. Data is always sent if
 sufficient window space is available. There are no special provisions
 for coalescing small data segments, similar to the TCP Nagle
 algorithm.

 An implementation of SMC-R may optimize its sending processing by
 coalescing outbound data for a given SMC-R connection so that it can
 reduce the number of RDMA write operations it performed in a similar
 fashion to Nagle's algorithm. However, any such coalescing would
 require a timer on the sending host that would ensure that data was
 eventually sent. And the sending host would have to opt out of this
 processing if Nagle's algorithm had been disabled (programmatically
 or via system configuration).

4.5.3. TCP Keepalive processing

 TCP keepalive processing allows applications to direct the local
 TCP/IP host to periodically "test" the viability of an idle TCP
 connection. Since SMC-R connections have both a TCP representation

Fox, et. al. Expires October 1, 2015 [Page 63]

Internet-Draft Shared Memory Communications over RDMA April 2015

 along with an SMC-R representation there are unique keepalive
 processing considerations:

 o SMC-R layer keepalive processing: If keepalive is enabled for an
 SMC-R connection the local host maintains a keepalive timer that
 reflects how long an SMC-R connection has been idle. The local
 host also maintains a timestamp of last activity for each SMC link
 (for any SMC-R connection on that link). When it is determined
 that an SMC-R connection has been idle longer than the keepalive
 interval the host checks whether the SMC-R link has been idle for
 a duration longer than the keepalive timeout. If both conditions
 are met, the local host then performs a Test Link LLC command to
 test the viability of the SMC link over the RoCE fabric (RC-QPs).
 If a Test Link LLC command response is received within a
 reasonable amount of time then the link is considered viable and
 all connections using this link are considered viable as well. If
 however a response is not received in a reasonable amount of time
 or there's a failure in sending the Test Link LLC command then
 this is considered a failure in the SMC link and failover
 processing to an alternate SMC link must be triggered. If no
 alternate SMC link exists in the SMC link group then all the SMC-R
 connections on this link are abnormally terminated by resetting
 the TCP connections represented by these SMC-R connections. Given
 that multiple SMC-R connections can share the same SMC link,
 implementing an SMC link level probe using the Test Link LLC
 command will help reduce the amount of unproductive keepalive
 traffic for SMC-R connections; as long as some SMC-R connections
 on a given SMC link are active (i.e. have had I/O activity within
 the keepalive interval) then there is no need to perform
 additional link viability testing.

 o TCP layer keepalives processing: Traditional TCP "keepalive"
 packets are not as relevant for SMC-R connections given that the
 TCP path is not used for these connections once the SMC-R
 rendezvous processing is completed. All SMC-R connections by
 default have associated TCP connections that are idle. Are TCP
 keepalive probes still needed for these connections? There are
 two main scenarios to consider:

 1. TCP keepalives that are used determine whether the peer TCP
 endpoint is still active. This is not needed for SMC-R
 connections as the SMC-R level keepalives mentioned above will
 determine whether the remote endpoint connections are still
 active.

Fox, et. al. Expires October 1, 2015 [Page 64]

Internet-Draft Shared Memory Communications over RDMA April 2015

 2. TCP keepalives that are used to ensure that TCP connections
 traversing an intermediate proxy maintain an active state. For
 example, stateful firewalls typically maintain state
 representing every valid TCP connection that traverses the
 firewall. These types of firewalls are known to expire idle
 connections by removing their state in the firewall to conserve
 memory. TCP keepalives are often used in this scenario to
 prevent firewalls from timing out otherwise idle connections.
 When using SMC-R, both end points must reside in the same layer
 2 network (i.e. the same subnet). As a result, firewalls can
 not be injected in the path between two SMC-R endpoints.
 However, other intermediate proxies, such as TCP/IP layer load
 balancers may be injected in the path of two SMC-R endpoints.
 These types of load balancers also maintain connection state so
 that they can forward TCP connection traffic to the appropriate
 cluster end point. When using SMC-R these TCP connections will
 appear to be completely idle making them susceptible to
 potential timeouts at the LB proxy. As a result, for this
 scenario, TCP keepalives may still be relevant.

 The following are the TCP level keepalive processing requirements for
 SMC-R enabled hosts:

 o SMC-R peers should allow TCP keepalives to flow on the TCP path of
 SMC-R connections based on existing TCP keepalive configuration
 and programming options. However, it is strongly recommended that
 platforms provide the ability to specify very granular keepalive
 timers (for example, single digit second timers) should consider
 providing a configuration option that limits the minimum keepalive
 timer that will be used for TCP layer keepalives on SMC-R
 connections. This is important to minimize the amount of TCP
 keepalive packets transmitted in the network for SMC-R
 connections.

 o SMC-R peers must always respond to inbound TCP layer keepalives
 (by sending ACKs for these packets) even if the connection is
 using SMC-R. Typically, once a TCP connection has completed the
 SMC-R rendezvous processing and using SMC-R for data flows, no new
 inbound TCP segments are expected on that TCP connection other
 than TCP termination segments (FIN, RST, etc). TCP keepalives are
 the one exception that must be supported. And since TCP keepalive
 probes do not carry any application layer data this has no adverse
 impact on the application's inbound data stream.

Fox, et. al. Expires October 1, 2015 [Page 65]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.6. TCP connection failover between SMC-R links

 A peer may change which SMC-R link within a link group it sends its
 writes over in the event of a link failure. Since each peer
 independently chooses which link to send writes over for a specific
 TCP connection, this process is done independently by each peer.

4.6.1. Validating data integrity

 Even though RoCE is a reliable transport there is a small subset of
 failure modes that could cause unrecoverable loss of data. When an
 RNIC acknowledges receipt of an RDMA write to its peer, that creates
 a write completion event to the sending peer, which allows the sender
 to release any buffers it is holding for that write. In normal
 operation and in most failures, this operation is reliable.

 However there are failure modes possible in which a receiving RNIC
 has acknowledged an RDMA write but then was not able to place the
 received data into its host memory, for example a sudden, disorderly
 failure of the interface between the RNIC and the host. While rare,
 these types of events must be guarded against to ensure data
 integrity. The process for switching SMC-R links during failover that
 is described in this section guards against this possibility, and is
 mandatory.

 Each peer must track the current state of the CDC sequence numbers
 for a TCP connection. The sender must keep track of SS, which is the
 sequence number of the CDC message that described the last write
 acknowledged by the peer RNIC. In other words, SS describes the last
 write that the sender believes its peer has successfully received.
 The receiver must keep track of SR, the sequence number of the CDC
 message that described last write that it has successfully received,
 i.e., the data has been successfully placed into an RMBE.

 When an RNIC fails and the sender changes SMC-R links, the sender
 must first send a CDC message with the 'F' flag set over the new SMC-
 R link. This is the failover data validation message. The sequence
 number in this CDC message is equal to SS. The CDC message key, the
 length, and SMC-R alert token are the only other fields in this CDC
 message that are significant. No reply is expected from this
 validation message, and once the sender has sent it, the sender may
 resume sending on the new SMC-R link as described in 4.6.2. below

 Upon receipt of the failover validation message, the receiver must
 verify that its SR value for the TCP connection is equal to or
 greater than the sequence number in the failover validation message.
 If so, no further action is required and the TCP connection resumes

Fox, et. al. Expires October 1, 2015 [Page 66]

Internet-Draft Shared Memory Communications over RDMA April 2015

 on the new SMC-R link. If SR is less than the sequence number value
 in the validation message, data has been lost and the receiver must
 immediately reset the TCP connection.

4.6.2. Resuming the TCP connection on a new SMCR link
 When a connection is moved to a new SMC-R link and the failover
 validation message has been sent, the sender can immediately resume
 normal transmission. In order to preserve the application message
 stream the sender must replay any RDMA writes (and their associated
 CDC messages) that were in progress or failed when the previous SMC-R
 link failed, before sending new data on the new SMC-R link. The
 sender has two options for accomplishing this:

 o Preserve the sequence numbers "as is": Retry all failed and
 pending operations as they were originally done, including
 reposting all associated RDMA write operations and their
 associated CDC messages without making any changes. Then resume
 sending new data using new sequence numbers.

 o Combine pending messages and possibly add new data: Combine failed
 and pending messages into a single new write with a new sequence
 number. This allows the sender to combine pending messages into
 fewer operations. As a further optimization this write can also
 include new data, as long as all failed and pending data is also
 included. If this approach is taken, the sequence number must be
 increased beyond the last failed or pending sequence number.

4.7. RMB data flows

 The following sections describe the RDMA wire flows for the SMC-R
 protocol after a TCP connection has switched into SMC-R mode (i.e.
 SMC-R rendezvous processing is complete and a pair of RMB elements
 has been assigned and communicated by the SMC-R peers). The ladder
 diagrams below include the following:

 o RMBE control information kept by each peer. Only a subset of the
 information is depicted, specifically only the fields that reflect
 the stream of data written by Host A and read by Host B.

 o Time line 0-x that shows the wire flows in a time relative fashion

 o Note that RMBE control information is only shown in a time
 interval if its value changed (otherwise assume the value is
 unchanged from previously depicted value)

Fox, et. al. Expires October 1, 2015 [Page 67]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o The local copy of the producer and consumer cursors that is
 maintained by each host is not depicted in these figures. Note
 that the cursor values in the diagram reflect the necessity of
 skipping over the eyecatcher in the RMBE data area. They start
 and wrap at 4, not 0.

4.7.1. Scenario 1: Send flow, window size unconstrained

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flags
 4 0 0 0 4 0 0
 0 0 1 ---------------> 1 0 0 0
 RDMA-WR Data
 (4:1003)

4 0 2> 2 1004 0 0
 CDC Message

 Figure 16 Scenario 1: Send flow, window size unconstrained

 Scenario assumptions:

 o Kernel implementation

 o New SMC-R connection, no data has been sent on the connection

 o Host A: Application issues send for 1,000 bytes to Host B

 o Host B: RMBE receive buffer size is 10,000, application has issued
 a recv for 10,000 bytes

 Flow description:

 1. Application issues send() for 1,000 bytes, SMC-R layer copies
 data into a kernel send buffer. It then schedules an RDMA write
 operation to move the data into the peer's RMBE receive buffer,
 at relative position 4-1003 (to skip the four byte eyecatcher in
 the RMBE data area). Note that no immediate data or alert (i.e.
 interrupt) is provided to host B for this RDMA operation.

Fox, et. al. Expires October 1, 2015 [Page 68]

Internet-Draft Shared Memory Communications over RDMA April 2015

 2. Host A sends a CDC message to update the Producer Cursor to byte
 1004. This CDC message will deliver an interrupt to Host B. At
 this point, the SMC-R layer can return control back to the
 application. Host B, once notified of the completion of the
 previous RDMA operation, locates the RMBE associated with the
 RMBE alert token that was included in the message and proceeds
 to perform normal receive side processing, waking up the
 suspended application read thread, copying the data into the
 application's receive buffer, etc. It will use the Producer
 Cursor as an indicator of how much data is available to be
 delivered to the local application. After this processing is
 complete, the SMC-R layer will also update its local Consumer
 Cursor to match the Producer Cursor (i.e. indicating that all
 data has been consumed). Note that a message to the peer
 updating the Consumer Cursor is not needed at this time as the
 window size if unconstrained (> 1/2 of the receive buffer size).
 The window size is calculated using by taking the difference
 between the Producer and the Consumer cursors in the RMBEs
 (10,000-1,004=8,996).

Fox, et. al. Expires October 1, 2015 [Page 69]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.7.2. Scenario 2: Send/Receive flow, window unconstrained

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flags
 4 0 0 0 4 0 0
 0 0 1 ---------------> 1 0 0 0
 RDMA-WR Data
 (4:1003)

4 0 2> 2 1004 0 0
 CDC Message

 0 0 3 <-------------- 3 1004 0 0
 RDMA-WR Data
 (4:503)

1004 0 4 <.............. 4 1004 0 0
 CDC Message

 Figure 17 Scenario 2: Send/Recv flow, window size unconstrained

 Scenario assumptions:

 o New SMC-R connection, no data has been sent on the connection

 o Host A: Application issues send for 1,000 bytes to Host B

 o Host B: RMBE receive buffer size is 10,000, application has
 already issued a recv for 10,000 bytes. Once the receive is
 completed, the application sends a 500 byte response to Host A.

 Flow description:

 1. Application issues send() for 1,000 bytes, SMC-R layer copies
 data into a kernel send buffer. It then schedules an RDMA write
 operation to move the data into the peer's RMBE receive buffer,
 at relative position 4-1003. Note that no immediate data or
 alert (i.e. interrupt) is provided to host B for this RDMA
 operation.

 2. Host A sends a CDC message to update the Producer Cursor to
 byte 1004. This CDC message will deliver an interrupt to Host B.
 At this point, the SMC-R layer can return control back to the
 application.

Fox, et. al. Expires October 1, 2015 [Page 70]

Internet-Draft Shared Memory Communications over RDMA April 2015

 3. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token
 and proceeds to perform normal receive side processing, waking
 up the suspended application read thread, copying the data into
 the application's receive buffer, etc. After this processing is
 complete, the SMC-R layer will also update its local Consumer
 Cursor to match the Producer Cursor (i.e. indicating that all
 data has been consumed). Note that an update of the Consumer
 Cursor to the peer is not needed at this time as the window size
 is unconstrained (> 1/2 of the receive buffer size). The
 application then performs a send() for 500 bytes to Host A. The
 SMC-R layer will copy the data into a kernel buffer and then
 schedule an RDMA Write into the partner's RMBE receive buffer.
 Note that this RDMA write operation includes no immediate data
 or notification to Host A.

 4. Host B sends a CDC message to update the partner's RMBE Control
 information with the latest Producer Cursor (set to 503 and not
 shown in the diagram above) and to also inform the peer that the
 Consumer Cursor value is now 1004. It also updates the local
 Current Consumer Cursor and Last Sent Consumer Cursor to 1004.
 This CDC message includes notification since we are updating
 our Producer Cursor which requires attention by the peer host.

4.7.3. Scenario 3: Send Flow, window constrained

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flags
 4 0 0 0 4 0 0
 4 0 1 ---------------> 1 4 0 0
 RDMA-WR Data
 (4:3003)

4 0 2> 2 3004 0 0
 CDC Message
 4 0 3 3 3004 0 0
 4 0 4 ---------------> 4 3004 0 0
 RDMA-WR Data
 (3004:7003)

4 0 5> 5 7004 0 0
 CDC Message

7004 0 6 <................ 6 7004 0 0
 CDC Message

 Figure 18 Scenario 3: Send Flow, window size constrained

Fox, et. al. Expires October 1, 2015 [Page 71]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Scenario assumptions:

 o New SMC-R connection, no data has been sent on this connection

 o Host A: Application issues send for 3,000 bytes to Host B and then
 another send for 4,000

 o Host B: RMBE receive buffer size is 10,000. Application has
 already issued a recv for 10,000 bytes

 Flow description:

 1. Application issues send() for 3,000 bytes, SMC-R layer copies
 data into a kernel send buffer. It then schedules an RDMA write
 operation to move the data into the peer's RMBE receive buffer,
 at relative position 4-3003. Note that no immediate data or
 alert (i.e. interrupt) is provided to host B for this RDMA
 operation.

 2. Host A sends a CDC message to update its Producer Cursor to byte
 3003. This CDC message will deliver an interrupt to Host B. At
 this point, the SMC-R layer can return control back to the
 application.

 3. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token
 and proceeds to perform normal receive side processing, waking
 up the suspended application read thread, copying the data into
 the application's receive buffer, etc. After this processing is
 complete, the SMC-R layer will also update its local Consumer
 Cursor to match the Producer Cursor (i.e. indicating that all
 data has been consumed). It will not however update the partner
 with this information as the window size is not constrained
 (10000-3000=7000 of available space). The application on Host B
 also issues a new recv() for 10,000.

 4. On Host A, application issues a send() for 4,000 bytes. The SMC-
 R layer copies the data into a kernel buffer and schedules an
 async RDMA write into the peer's RMBE receive buffer at relative
 position 3003-7004. Note that no alert is provided to host B for
 this flow.

 5. Host A sends a CDC message to update the Producer Cursor to
 byte 7004. This CDC message will deliver an interrupt to Host B.
 At this point, the SMC-R layer can return control back to the
 application.

Fox, et. al. Expires October 1, 2015 [Page 72]

Internet-Draft Shared Memory Communications over RDMA April 2015

 6. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token
 and proceeds to perform normal receive side processing, waking
 up the suspended application read thread, copying the data into
 the application's receive buffer, etc. After this processing is
 complete, the SMC-R layer will also update its local Consumer
 Cursor to match the Producer Cursor (i.e. indicating that all
 data has been consumed). It will then determine whether it
 needs to update the Consumer Cursor to the peer. The available
 window size is now 3,000 (10,000 - (Producer Cursor - Last Sent
 Consumer Cursor)) which is < 1/2 receive buffer size
 (10,000/2=5,000) and the advance of the window size is > 10% of
 the windows size (1,000). Therefore a CDC message is issued to
 update the Consumer Cursor to peer A.

4.7.4. Scenario 4: Large send, flow control, full window size writes

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flags
 1004 1 0 0 1004 1 0
 1004 1 1 ---------------> 1 1004 1 0
 RDMA-WR Data
 (1004:9999)
 1004 1 2 ---------------> 2 1004 1 0
 RDMA-WR Data
 (4:1003)
 1004 1 3> 3 1004 2 Wrt
 CDC Message
 1004 2 4 <............... 4 1004 2 Wrt
 CDC Message
 1004 2 5 ---------------> 5 1004 2 Wrt
 RDMA-WR Data Blk
 (1004:9999)
 1004 2 6 ---------------> 6 1004 2 Wrt
 RDMA-WR Data Blk
 (4:1003)
 1004 2 7> 7 1004 3 Wrt
 CDC Message
 1004 3 8 <............... 8 1004 3 Wrt
 CDC Message
 Figure 19 Scenario 4: Large send, flow control, full window size
 writes

 Scenario assumptions:

Fox, et. al. Expires October 1, 2015 [Page 73]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Kernel implementation

 o Existing SMC-R connection, Host B's receive window size is fully
 open(Peer Consumer Cursor = Peer Producer Cursor).

 o Host A: Application issues send for 20,000 bytes to Host B

 o Host B: RMB receive buffer size is 10,000, application has issued
 a recv for 10,000 bytes

 Flow description:

 1. Application issues send() for 20,000 bytes, SMC-R layer copies
 data into a kernel send buffer (assumes send buffer space of
 20,000 is available for this connection). It then schedules an
 RDMA write operation to move the data into the peer's RMBE
 receive buffer, at relative position 1004-9999. Note that no
 immediate data or alert (i.e. interrupt) is provided to host B
 for this RDMA operation.

 2. Host A then schedules an RDMA write operation to fill the
 remaining 1000 bytes of available space in the peer's RMBE
 receive buffer, at relative position 4-1003. Note that no
 immediate data or alert (i.e. interrupt) is provided to host B
 for this RDMA operation. Also note that an implementation of
 SMC-R may optimize this processing by combining step 1 and 2
 into a single RDMA Write operation (with 2 different data
 sources).

 3. Host A sends CDC message to update the Producer Cursor to byte
 1004. Since the entire receive buffer space is filled, the
 Producer Writer Blocked flag (WrtBlk indicator above) is set and
 the Producer Window Wrap Sequence Number (Producer WrapSeq#
 above) is incremented. This CDC message will deliver an
 interrupt to Host B. At this point, the SMC-R layer can return
 control back to the application.

Fox, et. al. Expires October 1, 2015 [Page 74]

Internet-Draft Shared Memory Communications over RDMA April 2015

 4. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token
 and proceeds to perform normal receive side processing, waking
 up the suspended application read thread, copying the data into
 the application's receive buffer, etc. In this scenario, Host B
 notices that the Producer Cursor has not been advanced (same
 value as Consumer Cursor), however, it notices that the Producer
 Window Wrap Size Sequence number is different from its local
 value (1) indicating that a full window of new data is
 available. All the data in the receive buffer can be processed,
 the first segment (1004-9999) followed by the second segment (4-
 1003). Because the Producer Writer Blocked indicator was set,
 Host B schedules a CDC message to update its latest information
 to the peer: Consumer Cursor (1004), Consumer Window Wrap Size
 Sequence Number (2: the current Producer Window Wrap Sequence
 Number is used).

 5. Host A, upon receipt of the CDC message locates the TCP
 connection associated with the alert token, and upon examining
 the control information provided notices that Host B has
 consumed all of the data (based on the Consumer Cursor and the
 Consumer Window Wrap Size Sequence number) and initiates the
 next RDMA write to fill the receive buffer at offset 1003-9999.

 6. Host A then moves the next 1000 bytes into the beginning of the
 receive buffer (4-1003) by scheduling an RDMA write operation.
 Note at this point there are still 8 bytes remaining to be
 written.

 7. Host A then sends a CDC message to set the Producer Writer
 Blocked indicator and to increment the Producer Window Wrap Size
 Sequence Number (3).

 8. Host B, upon notification completes the same processing as step
 4 above, including sending a CDC message to update the peer to
 indicate that all data has been consumed. At this point Host A
 can write the final 8 utes to host B's RMBE into positions 1004-
 1011 (not shown).

Fox, et. al. Expires October 1, 2015 [Page 75]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.7.5. Scenario 5: Send flow, urgent data, window size unconstrained

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flag
 1000 1 0 0 1000 1 0
 1000 1 1 ---------------> 1 1000 1 0
 RDMA-WR Data
 (1000:1499)
 1000 1 2> 2 1500 1 UrgP
 CDC Message UrgA

 1500 1 3 <............... 3 1500 1 UrgP
 CDC Message UrgA

 1500 1 4 ---------------> 4 1500 1 UrgP
 RDMA-WR Data UrgA
 (1500:2499)

1500 1 5> 5 2500 1 0
 CDC Message

 Figure 20 Scenario 5: send Flow, urgent data, window size open

 Scenario assumptions:

 o Kernel implementation

 o Existing SMC-R connection, window size open, all data has been
 consumed by receiver.

 o Host A: Application issues send for 500 bytes with urgent data
 indicator (OOB) to Host B, then sends 1000 of normal data

 o Host B: RMBE Receive buffer size is 10,000, application has issued
 a recv for 10,000 bytes and is also monitoring the socket for
 urgent data

 Flow description:

 1. Application issues send() for 500 bytes of urgent data. SMC-R
 layer copies data into a kernel send buffer. It then schedules
 an RDMA write operation to move the data into the peer's RMBE
 receive buffer, at relative position 1000-1499. Note that no
 immediate data or alert (i.e. interrupt) is provided to host B
 for this RDMA operation.

Fox, et. al. Expires October 1, 2015 [Page 76]

Internet-Draft Shared Memory Communications over RDMA April 2015

 2. Host A sends a CDC message to update its Producer Cursor to byte
 1500 and to turn on the Producer Urgent Data Pending (UrgP) and
 Urgent Data Present (UrgA) flags. This CDC message will deliver
 an interrupt to Host B. At this point, the SMC-R layer can
 return control back to the application.

 3. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token,
 notices that the Urgent Data Pending flag is on and proceeds
 with Out of Band socket API notification. For example,
 satisfying any outstanding select() or poll() requests on the
 socket by indicating that urgent data is pending (i.e. by
 setting the exception bit on). The Urgent Data Present indicator
 allows Host B to also determine the position of the urgent data
 (Producer cursor points one byte beyond the last byte of urgent
 data). Host B can then perform normal receive side processing
 (including specific urgent data processing), copying the data
 into the application's receive buffer, etc. Host B then sends a
 CDC message to update the partner's RMBE Control area with its
 latest Consumer Cursor (1500). Note this CDC message must occur
 regardless of the current local window size that is available.
 The partner host (Host A) cannot initiate any additional RDMA
 writes until acknowledgement that the urgent data has been
 processed (or at least processed/remembered at the SMC-R layer).

 4. Upon receipt of the message, Host A wakes up, sees that peer
 consumed all data up to and including the last byte of Urgent
 data and now resumes sending any pending data. In this case,
 the application had previously issued a send for 1000 bytes of
 normal data which would have been copied in the send buffer and
 control would have been returned to the application. Host A now
 initiates a RDMA write to move that data to the Peer's receive
 buffer at position 1500-2499.

 5. Host A then sends a CDC message with inline data update its
 Producer Cursor value (2500) and turn off the Urgent Data
 Pending and Urgent Data Present flags. Host B wakes up,
 processes the new data (resumes application, copies data into
 the application receive buffer) and then proceeds to update the
 Local current consumer cursor (2500). Given that the window size
 is unconstrained there is no need for Consumer Cursor update in
 the peer's RMBE.

Fox, et. al. Expires October 1, 2015 [Page 77]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.7.6. Scenario 6: Send flow, urgent data, window size closed

 SMC Host A SMC HostB
 RMBE A Info RMBE B Info
 (Consumer Cursors) (Producer Cursors)
 Cursor Wrap Seq# Time Time Cursor Wrap Seq# Flag
 1000 1 0 0 1000 2 Wrt
 Blk

 1000 1 1> 1 1000 2 Wrt
 CDC Message Blk
 UrgP

 1000 2 2 <............... 2 1000 2 Wrt
 CDC Message Blk
 UrgP

 1000 2 3 ---------------> 3 1000 2 Wrt
 RDMA-WR data l Blk
 (1000:1499) UrgP

 1000 2 4> 4 1500 2 UrgP
 CDC Message UrgA

 1500 2 5 <............... 5 1500 2 UrgP
 CDC Message UrgA

 1500 2 6 ---------------> 6 1500 2 UrgP
 RDMA-WR data l UrgA
 (1500:2499)

1000 2 7> 7 2500 2 0
 CDC Message

 Figure 21 Scenario 6: Send flow, urgent data, window size closed

 Scenario assumptions:

 o Kernel implementation

 o Existing SMC-R connection, window size closed, writer is blocked.

 o Host A: Application issues send for 500 bytes with urgent data
 indicator (OOB) to Host B, then sends 1000 of normal data.

 o Host B: RMBE Receive buffer size is 10,000, application has no
 outstanding recv() (for normal data) and is monitoring the socket
 for urgent data.

Fox, et. al. Expires October 1, 2015 [Page 78]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Flow description:

 1. Application issues send() for 500 bytes of urgent data. SMC-R
 layer copies data into a kernel send buffer (if available).
 Since the writer is blocked (window size closed) it cannot send
 the data immediately. It then sends a CDC message to notify the
 peer of the Urgent Data Pending (UrgP)indicator (the Writer
 Blocked indicator remains on as well). This serves as a signal
 to Host B that urgent data is pending in the stream. Control is
 also returned to the application at this point.

 2. Host B, once notified of the receipt of the previous CDC
 message, locates the RMBE associated with the RMBE alert token,
 notices that the Urgent Data Pending flag is on and proceeds
 with Out of Band socket API notification. For example,
 satisfying any outstanding select() or poll() requests on the
 socket by indicating that urgent data is pending (i.e. by
 setting the exception bit on). At this point it is expected that
 the application will enter urgent data mode processing,
 expeditiously processing all normal data (by issuing recv API
 calls) so that it can get to the urgent data byte. Whether the
 application has this urgent mode processing or not, at some
 point the application will consume some or all of the pending
 data in the receive buffer. When this occurs, Host B will also
 send a CDC message with inline data to update its Consumer
 Cursor and Consumer Window Wrap Sequence Number to the peer. In
 the example above, a full window worth of data was consumed.

 3. Host A, once awakened by the message will notice that the window
 size is now open on this connection (based on the Consumer
 Cursor and the Consumer Window Wrap Sequence Number which now
 matches the Producer Window Wrap Sequence Number) and resume
 sending of the urgent data segment by scheduling an RDMA write
 into relative position 1000-1499.

 4. Host A the sends a CDC message to advance its Producer Cursor
 (1500) and to also notify Host B of the Urgent Data Present
 (UrgA) indicator (and turn off the Writer Blocked indicator).
 This signals to Host B that the urgent data is now in the local
 receive buffer and that the Producer Cursor points to the last
 byte of urgent data.

 5. Host B wakes up, processes the urgent data and once the urgent
 data is consumed sends a CDC message with inline data to update
 its Consumer Cursor (1500).

Fox, et. al. Expires October 1, 2015 [Page 79]

Internet-Draft Shared Memory Communications over RDMA April 2015

 6. Host A wakes up, sees that Host B has consumed the sequence
 number associated with the urgent data and then initiates the
 next RDMA write operation to move the 1000 bytes associated with
 the next send() of normal data into the peer's receive buffer at
 position (1500-2499). Note that send() API would have likely
 completed earlier in the process by copying the 1000 bytes into
 a send buffer and returning back to the application even though
 we could not send any new data until the urgent data was
 processed and acknowledged by Host B.

 7. Host A sends a CDC message to advance its Producer Cursor to
 2500 and to reset the Urgent Data Pending and Present flags.
 Host B wakes up and processes the inbound data.

4.8. Connection termination

 Just as SMC-R connections are established using a combination of TCP
 connection establishment flows and SMC-R protocol flows, the
 termination of SMC-R connections also uses a similar combination of
 SMC-R protocol termination flows and normal TCP protocol connection
 termination flows. The following sections describe the SMC-R protocol
 normal and abnormal connection termination flows.

4.8.1. Normal SMC-R connection termination flows

 Normal SMC-R connection flows are triggered via the normal stream
 socket API semantics, namely by the application issuing a close() or
 shutdown() API. Most applications, after consuming all incoming data
 and after sending any outbound data will then issue a close() API to
 indicate that they are done both sending and receiving data. Some
 applications, typically a small percentage, make use of the
 shutdown() API that allows then to indicate that the application is
 done sending data, receiving data or both sending and receiving data.
 The main use of this API is scenarios where a TCP application wants
 to alert its partner end point that it is done sending data, yet is
 still receiving data on its socket (shutdown for Write). Issuing
 shutdown for both sending and receiving data is really no different
 than issuing a close() and can therefore be treated in a similar
 fashion. Shutdown for read is typically not a very useful operation
 and in normal circumstances does not trigger any network flows to
 notify the partner TCP end point of this operation.

 These same trigger points will be used by the SMC-R layer to initiate
 SMC-R connections termination flows. The main design point for SMC-R
 normal connection flows is to use the SMC-R protocol to first
 shutdown the SMC-R connection and free up any SMC-R RDMA resources
 and then allow the normal TCP connection termination protocol (i.e.

Fox, et. al. Expires October 1, 2015 [Page 80]

Internet-Draft Shared Memory Communications over RDMA April 2015

 FIN processing) to drive cleanup of the TCP connection. This design
 point is very important in ensuring that RDMA resources such as the
 RMBEs are only freed and reused when both SMC-R end points are
 completely done with their RDMA Write operations to the partner's
 RMBE.

 1
 +-----------------+
 |-------------->| CLOSED |<-------------|
 3D | | | | 4D
 | +-----------------+ |
 | | |
 | 2 | |
 | V |
 +----------------+ +-----------------+ +----------------+
 |AppFinCloseWait | | ACTIVE | |PeerFinCloseWait|
 | | | | | |
 +----------------+ +-----------------+ +----------------+
 | | | | | | |
 | Active Close | 3A | 4A | Passive Close |
 | V | V |
 | +--------------+ | +-------------+ |
 |--<----|PeerCloseWait1| | |AppCloseWait1|--->----|
 3C | | | | | | | 4C
 | +--------------+ | +-------------+ | | | | |
 | | | | |
 | | 3B | 4B | |
 | V | V |
 | +--------------+ | +-------------+ |
 |--<----|PeerCloseWait2| | |AppCloseWait2|--->----|
 | | | | |
 +--------------+ | +-------------+
 |
 |
 Figure 22 SMC-R connection states

 Figure 23 describes the states that an SMC-R connection typically
 goes through. Note that there are variations to these states that can
 occur when an SMC-R connection is abnormally terminated, similar in a
 way to when a TCP connection is reset. The following are the high
 level state transitions for an SMC-R connection:

Fox, et. al. Expires October 1, 2015 [Page 81]

Internet-Draft Shared Memory Communications over RDMA April 2015

 1. An SMC-R connection begins in the Closed state. This state is
 meant to reflect an RMBE that is not currently in use (was
 previously in use but no longer is or one that was never
 allocated)

 2. An SMC-R connection progresses to the Active state once the SMC-
 R rendezvous processing has successfully completed, RMB element
 indices have been exchanged and SMC-R links have been activated.
 In this state, TCP connection is fully established, rendezvous
 processing has been completed and SMC-R peers can begin exchange
 of data via RDMA.

 3. Active close processing (on SMC-R peer that is initiating the
 connection termination)

 A. When an application on one of the SMC-R connection peers issues
 a close() or shutdown(write or both) the SMC-R layer on that host
 will initiate SMC-R connection termination processing. First if
 close() or shutdown(both) is issued it will check to see that
 there's no data in the local RMB element that has not been read
 by the application. If unread data is detected, the SMC-R
 connection must be abnormally reset - for more detail on this
 refer to "SMC-R connection reset". If no unread data is pending,
 it then checks to see whether any outstanding data is waiting to
 be written to the peer or if any outstanding RDMA writes for this
 SMC-R connection have not yet completed. If either of these two
 scenarios are true, an indicator that this connection is in a
 pending close state is saved in internal data structures
 representing this SMC-R connection and control is returned to the
 application. If all data to be written to the partner has
 completed this peer will send a CDC message to notify the peer of
 either the PeerConnectionClosed indicator (close or shutdown for
 both was issued) or the PeerDoneWriting indicator. This will
 provide stimulus to the partner SMC-R peer that the connection is
 terminating. At this point the local side of the SMC-R connection
 transitions in the PeerCloseWait1 state and control can be
 returned to the application. If this process could not be
 completed synchronously (close pending condition mentioned above)
 it is completed when all RDMA writes for data and control cursors
 have been completed.

 B. At some point the SMC-R peer application (passive close) will
 consume all incoming data, realize that that partner is done
 sending data on this connection and proceed to initiate its own
 close of the connection once it has completed sending all data
 from its end. The partner application can initiate this
 connection termination processing via a close() or shutdown()

Fox, et. al. Expires October 1, 2015 [Page 82]

Internet-Draft Shared Memory Communications over RDMA April 2015

 APIs. If the application does so by issuing a shutdown() for
 write, then the partner SMC-R layer will send a CDC message to
 notify the peer (active close side) of the PeerDoneWriting
 indicator. When the "active close" SMC-R peer wakes up as a
 result of the previous CDC message, it will notice that the
 PeerDoneWriting indicator is now on and transition to the
 PeerCloseWait2 state. This state indicates that the peer is done
 sending data and may still be reading data. The "active close"
 peer will also at this point need to ensure that any outstanding
 recv() calls for this socket are woken up and remember that that
 no more data is forthcoming on this connection (in case the local
 connection was shutdown() for write only)

 C. This flow is a common transition from 3a or 3b above. When the
 SMC-R peer (passive close) consumes all data, updates all
 necessary cursors to the peer and the application closes its
 socket (close or shutdown for both) it will send a CDC message to
 the peer (the active close side) with the PeerConnectionClosed
 indicator set. At this point the connection can transition back
 to Closed state if the local application has already closed (or
 issued shutdown for both) the socket. Once in the Closed state,
 the RMBE can now be safely be reused for a new SMC-R connection.
 When the PeerConnectionClosed indicator is turned on, the SMC-R
 peer is indicating that it is done updating the partner's RMBE.

 D. Conditional State: If the local application has not yet issued
 a close() or shutdown(both) yet, we need to wait until the
 application does so (ApplFinWaitState). Once it does, the local
 host will send a CDC message to notify the peer of the
 PeerConnectionClosed indicator and then transition to the Closed
 state.

 4. Passive close processing (on SMC-R peer that receives an
 indication that the partner is closing the connection)

 A. Upon receipt of an inbound RDMA write notice the SMC-R layer
 will detect that the PeerConnectionClosed indicator or
 PeerDoneWriting indicator is on. If any outstanding recv() calls
 are pending they are completed with an indicator that the partner
 has closed the connection (zero length data presented to
 application). If any pending data to be written and
 PeerConnectionClosed is on then an SMC-R connection reset must be
 performed. The connection then enters the ApplCloseWait1 state on
 the passive close side waiting for the local application to
 initiate its own close processing

Fox, et. al. Expires October 1, 2015 [Page 83]

Internet-Draft Shared Memory Communications over RDMA April 2015

 B. If the local application issues a shutdown() for writing then
 the SMC-R layer will send a CDC message to notify the partner of
 the PeerDoneWriting indicator transition the local side of the
 SMC-R connection to the ApplCloseWait2 state.

 C. When the application issues a close() or shutdown() for both,
 the local SMC-R peer will send a message informing the peer of
 the PeerConnectionClosed indicator and transition to the Closed
 state if the remote peer has also sent the local peer the
 PeerConnectionClosed indicator. If the peer has not sent the
 PeerConnectionClosed indicator, we transition into the
 PeerFinalCloseWait state.

 D. The local SMC-R connection stays in this state until the peer
 sends the PeerConnectionClosed indicator in our RMBE. When the
 indicator is sent we transition to the Closed state and are then
 free to reuse this RMBE.

 Note that each SMC-R peer needs to provide some logic that will
 prevent being stranded in termination state indefinitely. For
 example, if an Active Close SMC-R peer is in a PeerCloseWait (1 or 2)
 state awaiting the remote SMC-R peer to update its connection
 termination status it needs to provide a timer that will prevent it
 from waiting in that state indefinitely should the remote SMC-R peer
 not respond to this termination request. This could occur in error
 scenarios; for example, if the remote SMC-R peer suffered a failure
 prior to being able to respond to the termination request or the
 remote application is not responding to this connection termination
 request by closing its own socket. This latter scenario is similar
 to the TCP FINWAIT2 state that has been known to sometimes cause
 issues when remote TCP/IP hosts lose track of established connections
 and neglect to close them. Even though the TCP standards do not
 mandate a time out from the TCP FINWAIT2 state, most TCP/IP
 implementations implement a timeout for this state. A similar
 timeout will be required for SMC-R connections. When this timeout
 occurs, the local SMC-R peer performs TCP reset processing for this
 connection. However, no additional RDMA writes to the partner RMBE
 can occur at this point (we have already indicated that we are done
 updating the peer's RMBE). After the TCP connection is Reset the RMBE
 can be returned to the free pool for reallocation. See section 3.2.5
 for more details.

 Also note that it is possible to have two SMC-R end points initiate
 an Active close concurrently. In that scenario the flows above still
 apply, however, both end points follow the active close path (path
 3).

Fox, et. al. Expires October 1, 2015 [Page 84]

Internet-Draft Shared Memory Communications over RDMA April 2015

4.8.1.1. Abnormal SMC-R connection termination flows

 Abnormal SMC-R connection termination can occur for a variety of
 reasons, including:

 o The TCP connection associated with an SMC-R connection is reset.
 In the TCP protocol either end point can send a RST segment to
 abort an existing TCP connection when error conditions are
 detected for the connection or the application overtly requests
 that the connection be reset.

 o Normal SMC-R connection termination processing has unexpectedly
 stalled for a given connection. When the stall is detected
 (connection termination timeout condition) an abnormal SMC-R
 connection termination flow is initiated.

 In these scenarios it is very important that resources associated
 with the affected SMC-R connections are properly cleaned up to ensure
 that there are no orphaned resources and that resources can reliably
 be reused for new SMC-R connections. Given that SMC-R relies heavily
 on the RDMA Write processing, special care needs to be taken to
 ensure that an RMBE is no longer being used by a SMC-R peer before
 logically reassigning that RMBE to a new SMC-R connection.

 When an SMC-R peer initiates a TCP connection reset it also initiates
 an SMC-R abnormal connection flow at the same time. The SMC-R peers
 explicitly signal their intent to abnormally terminate an SMC-R
 connection and await explicit acknowledgement that the peer has
 received this notification and has also completed abnormal connection
 termination on its end. Note that TCP connection reset processing can
 occur in parallel to these flows.

Fox, et. al. Expires October 1, 2015 [Page 85]

Internet-Draft Shared Memory Communications over RDMA April 2015

 +-----------------+
 |-------------->| CLOSED |<-------------|
 | | | |
 | +-----------------+ |
 | |
 | |
 | |
 | +-----------------+ |
 | | Any State | |
 |1B | (before setting | 2B|
 | | PeerConnClosed | |
 | | Indicator in | |
 | | Peer's RMBE) | |
 | +-----------------+ |
 | 1A | | 2A |
 | Active Abort | | Passive Abort |
 | V V |
 | +--------------+ +--------------+ |
 |-------|PeerAbortWait | | Process Abort|------|
 | | | |
 +--------------+ +--------------+

 Figure 23 SMC-R abnormal connection termination state diagram

 Figure 24 above shows the SMC-R abnormal connection termination state
 diagram:

 1. Active abort designates the SMC-R peer that is initiating the
 TCP RST processing. At the time that the TCP RST is sent the
 active abort side must also

 A. Send the PeerConnAbort indicator to the partner via RDMA
 messaging with inline data and then transition to the
 PeerAbortWait state. During this state it will monitor this SMC-
 R connection waiting for the peer to send its corresponding
 PeerConnAbort indicator but will ignore any other activity in
 this connection (i.e. new incoming data). It will also surface an
 appropriate error to any socket API calls issued against this
 socket (e.g. ECONNABORTED, ECONNRESET, etc.)

 B. Once the peer sends the PeerConnAbort indicator to the local
 host, the local host can transition this SMC-R connection to the
 Closed state and reuse this RMBE. Note that the SMC-R peer that
 goes into the Active abort state must provide some protection

Fox, et. al. Expires October 1, 2015 [Page 86]

Internet-Draft Shared Memory Communications over RDMA April 2015

 against staying in that state indefinitely should the remote SMC-
 R peer not respond by sending its own PeerConnAbort indicator to
 the local host. While this should be a rare scenario it could
 occur if the remote SMC-R peer (passive abort) suffered a failure
 right after the local SMC-R peer (active abort) sent the
 PeerConnAbort indicator. To protect against these types of
 failures, a timer can be set after entering the PeerAbortWait
 state and when if that timer pops before the peer has sent its
 local PeerConnAbort indicator (to the active abort side) then
 this RMBE can be returned to the free pool for possible re-
 allocation. See section See section 3.2.5 for more details.

 2. Passive abort designates the SMC-R peer that is the recipient of
 an SMC-R abort from the peer designated by the PeerConnAbort
 indicator being sent by the peer in a CDC message. Upon
 receiving this request, the local peer must

 A. Indicate to the socket application that this connection has
 been aborted using the appropriate error codes, purge all in-
 flight data for this connection that is waiting to be read or
 waiting to be sent.

 B. Send a CDC message to notify the peer of the PeerConnAbort
 indicator and once that is completed transition this RMBE to the
 Closed state.

 If an SMC-R peer receives a TCP RST for a given SMC-R connection it
 also initiates SMC-R abnormal connection termination processing if it
 has not already been notified (via the PeerConnAbort indicator) that
 the partner is severing the connection. It is possible to have two
 SMC-R endpoints concurrently be in an Active abort role for a given
 connection. In that scenario the flows above still apply but both
 end points take the active abort path (path 1).

4.8.1.2. Other SMC-R connection termination conditions
 The following are additional conditions that have implications of
 SMC-R connection termination:

 o A SMC-R peer being gracefully shut down. If an SMC-R peer supports
 a graceful shutdown operation it should attempt to terminate all
 SMC-R connections as part of shutdown processing. This could be
 accomplished via LLC Delete Link requests on all active SMC Links.

Fox, et. al. Expires October 1, 2015 [Page 87]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o Abnormal termination of an SMC-R peer. In this example, there may
 be no opportunity for the host to perform any SMC-R cleanup
 processing. In this scenario it is up to the remote peer to
 detect a RoCE communications failure with the failing host. This
 could trigger an SMC link switch but that would also surface RoCE
 errors causing the remote host to eventually terminate all
 existing SMC-R connections to this peer.

 o Loss of RoCE connectivity between two SMC-R peers. If two peers
 are no longer reachable across any links in their SMC Link group
 then both peers perform a TCP reset for the connections, surface
 an error to the local applications and free up all QP resources
 associated with the link group.

5. Security considerations

5.1. VLAN considerations

 The concepts and access control of virtual LANs (VLANs) must be
 extended to also cover the RoCE network traffic flowing across the
 ethernet.

 The RoCE VLAN configuration and accesses must mirror the IP VLAN
 configuration and accesses over the CEE fabric. This means that
 hosts, routers and switches that have access to specific VLANs on the
 IP fabric must also have the same VLAN access across the RoCE
 fabric. In other words, the SMC-R connectivity will follow the same
 virtual network access permissions as normal TCP/IP traffic.

5.2. Firewall considerations

 As mentioned above, the RoCE fabric inherits the same VLAN
 topology/access as the IP fabric. RoCE is a layer 2 protocol that
 requires both end points to reside in the same layer 2 network (i.e.
 VLAN). RoCE traffic can not traverse multiple VLANs as there is no
 support for routing RoCE traffic beyond a single VLAN. As a result,
 SMC-R communications will also be confined to peers that are members
 of the same VLAN. IP based firewalls are typically inserted between
 VLANs (or physical lans) and rely on normal IP routing to insert
 themselves in the data path. Since RoCE (and by extension SMC-R) is
 not routable beyond the local VLAN, there is no ability to insert a
 firewall in the network path of two SMC-R peers.

Fox, et. al. Expires October 1, 2015 [Page 88]

Internet-Draft Shared Memory Communications over RDMA April 2015

5.3. Host-based IP Filters

 Because SMC-R maintains the TCP three-way handshake for connection
 setup before switching to RoCE out of band, existing IP filters that
 control connection setup flows remain effective in an SMC-R
 environment. IP filters that operate on traffic flowing in an active
 TCP connection are not supported, because the connection data does
 not flow over IP.

5.4. Intrusion Detection Services

 Similar to IP filters, intrusion detection services that operate on
 TCP connection setups are compatible with SMC-R with no changes
 required. However once the TCP connection has switched to RoCE out
 of band, packets are not available for examination.

5.5. IP Security (IPSec)

 IP Security is not compatible with SMC-R because there are no IP
 packets to operate on. TCP connections that require IP security must
 opt out of SMC-R.

5.6. TLS/SSL

 TLS/SSL is preserved in an SMC-R environment. The TLS/SSL layer
 resides above the SMC-R layer and outgoing connection data is
 encrypted before being passed down to the SMC-R layer for RMDA write.
 Similarly, incoming connection data goes through the SMC-R layer
 encrypted and is decrypted by the TLS/SSL layer as it is today.

 The TLS/SSL handshake messages flow over the TCP connection after the
 connection has switched to SMC-R, so are exchanged using RDMA writes
 by the SMC-R layer, transparently to the TLS/SSL layer.

6. IANA considerations

 The scarcity of TCP option codes available for assignment is
 understood and this architecture uses experimental TCP options
 following the conventions of RFC 6994 "Shared Use of Experimental TCP
 Options".

 If this protocol achieves wide acceptance a discrete option code may
 be requested by subsequent versions of this protocol.

https://datatracker.ietf.org/doc/html/rfc6994

Fox, et. al. Expires October 1, 2015 [Page 89]

Internet-Draft Shared Memory Communications over RDMA April 2015

7. References

7.1. Normative References

 [ROCE] RDMA over Converged Ethernet specification, URL,
http://members.infinibandta.org/kwspub/spec/Annex_RoCE_fina
l.pdf

 [IBTA] Infiniband Architecture specification, URL,
http://www.infinibandta.org/specs

 [RFC793] University of Southern California Information Services
 Institute, "Transmission Control Protocol", RFC 793,
 September 1981.

 [RFC4727] Fenner B., "Experimental Values in IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

7.2. Informative References

 [RFC 6994] Touch, J., "Shared use of Experimental TCP Options",
 draft URL, https://tools.ietf.org/html/rfc6994

8. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

9. Conventions used in this document

 In the rendezvous flow diagrams, dashed lines (----) are used to
 indicate flows over the TCP/IP fabric and dotted lines (....) are
 used to indicate flows over the RoCE fabric.

 In the data transfer ladder diagrams, dashed lines (----) are used to
 indicate RDMA write operations and dotted lines (....) are used to
 indicate CDC messages, which are RDMA messages with inline data that
 contain control information for the connection.

Fox, et. al. Expires October 1, 2015 [Page 90]

http://members.infinibandta.org/kwspub/spec/Annex_RoCE_final.pdf
http://members.infinibandta.org/kwspub/spec/Annex_RoCE_final.pdf
http://www.infinibandta.org/specs
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc4727
https://tools.ietf.org/html/rfc6994

Internet-Draft Shared Memory Communications over RDMA April 2015

Appendix A. Formats

A.1. TCP option

 The SMC-R TCP option is formatted in accordance with RFC 6994 "Shared
 Use of Experimental TCP Options". The ExID value is IBM-1047
 (EBCDIC) encoding for 'SMCR'

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind = 254 | Length = 6 | x'E2' | x'D4' |
 +-+
 | x'C3' | x'D9' |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Figure 24 SMC-R TCP option format

A.2. CLC messages

 The following rules apply to all CLC messages:

 General rules on formats:

 o Reserved fields must be set to zero and not validated

 o Each message has an eyecatcher at the start and another eyecatcher
 at the end. These must both be validated by the receiver.

 o SMC version indicator: The only SMC-R version defined in this
 architecture is version 1. In the future, if peers have a
 mismatch of versions, the lowest common version number is used.

A.2.1. Peer ID format

 All CLC messages contain a peer ID that uniquely identifies an
 instance of a TCP/IP stack. This peer ID is required to be
 universally unique across TCP/IP stacks and instances (including
 restarts) of TCP/IP stacks.

Fox, et. al. Expires October 1, 2015 [Page 91]

https://datatracker.ietf.org/doc/html/rfc6994

Internet-Draft Shared Memory Communications over RDMA April 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Instance ID | RoCE MAC (first two bytes) |
 +-+
 | RoCE MAC (last four bytes) |
 +-+
 Figure 25 Peer ID format

 Instance ID

 A two-byte instance count that ensures that if the same RNIC MAC
 is later used in the peer ID for a different TCP/IP stack, for
 example if an RNIC is redeployed to another stack, the values are
 unique. It also ensures that if a TCP/IP stack is restarted, the
 instance ID changes. Value is implementation defined, with one
 suggestion being two bytes of the system clock.

 RoCE MAC

 The RoCE MAC address for one of the peer's RNICs. Note that in a
 virtualized environment this will be the virtual MAC of one of
 the peer's RNICs.

Fox, et. al. Expires October 1, 2015 [Page 92]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.2.2. SMC Proposal CLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 | Type = 1 | Length |Version| Rsrvd |
 +-+
 | |
 +- Client's Peer ID -+
 | |
 +-+
 | |
 +- -+
 | |
 +- Client's preferred GID -+
 | |
 +- -+
 | |
 +-+
 | Client's preferred RoCE |
 +- MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |Offset to mask/prefix area (0) |
 +-+
 . .
 . Area for future growth .
 . .
 +-+
 | IPv4 Subnet Mask |
 +-+
 | IPv4 Mask Lgth| Reserved |Num IPv6 prfx |
 +-+
 : :
 : (Variable length) array of IPv6 Prefixes :
 : :
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+

 Figure 26 SMC Proposal CLC message format

 The fields present in the SMC Proposal CLC message are:

 Eyecatchers

Fox, et. al. Expires October 1, 2015 [Page 93]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Like all CLC messages, the SMC Proposal has beginning and ending
 eyecatchers to aid with verification and parsing. The hex digits
 spell 'SMCR' in IBM-1047 (EBCDIC)

 Type

 CLC message type 1 indicates SMC Proposal

 Length

 The length of this CLC message. If this an IPv4 flow, this
 value is 52. Otherwise it is variable depending upon how many
 prefixes are listed.

 Version

 Version of the SMC-R protocol. Version 1 is the only currently
 defined value

 Client's Peer ID

 As described in A.2.1. above

 Client's preferred RoCE GID

 This is the IPv6 address of the client's preferred RNIC on the
 RoCE fabric

 Client's preferred RoCE MAC address

 The MAC address of the client's preferred RNIC on the RoCE
 fabric. It is required as some operating systems do not have
 neighbor discovery or ARP support for RoCE RNICs.

 Offset to mask/prefix area

 Provides the number of bytes that must be skipped after this
 field, to access the IPv4 Subnet Mask and the fields that follow
 it. Allows for future growth of this signal. In this version of
 the architecture, this value is always zero.

 Area for future growth

 In this version of the architecture, this field does not exist.
 This indicates where additional information may be inserted into
 the signal in the future. "The Offset to mask/prefix area" field
 must be used to skip over this area.

Fox, et. al. Expires October 1, 2015 [Page 94]

Internet-Draft Shared Memory Communications over RDMA April 2015

 IPv4 Subnet mask

 If this message is flowing over an IPv4 TCP connection, the value
 of the subnet mask associated with the interface the client sent
 this message over. If this an IPv6 flow this field is all
 zeroes.

 This field, along with all fields that follow it in this signal,
 must be accessed by skipping the number of bytes listed in the
 "Offset to mask/prefix area" field after the end of that field.

 IPv4 Mask Lgth

 If this message is flowing over an IPv4 TCP connection, the
 number of significant bits in the IPv4 subnet mask. If this an
 IPv6 flow, this field is zero.

 Num IPv6 prfx

 If this message is flowing over an IPv6 TCP connection, the
 number of IPv6 prefixes that follow, with a maximum value of 8.
 if this is an IPv4 flow this field is zero and is immediately
 followed by the ending eyecatcher.

 Array of IPv6 Prefixes

 For IPv6 TCP connections, a list of the IPv6 prefixes associated
 with the network the client sent this message over, up to a
 maximum of 8 prefixes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + IPv6 Prefix value +
 | |
 + +
 | |
 +-+
 | Prefix Length |
 +-+-+-+-+-+-+-+-+

 Figure 27 Format for IPv6 Prefix array element

Fox, et. al. Expires October 1, 2015 [Page 95]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.2.3. SMC Accept CLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 | Type = 2 | Length = 68 |Version|F|Rsvd |
 +-+
 | |
 +- Server's Peer ID -+
 | |
 +-+
 | |
 +- -+
 | |
 +- Server's RoCE GID -+
 | |
 +- -+
 | |
 +-+
 | Server's RoCE |
 +- MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Server QP (bytes 1-2) |
 +---+
 |Srvr QP byte 3 | Server RMB Rkey (bytes 1-3) |
 +-+
 |Srvr RMB byte 4|Server RMB indx| Srvr RMB alert tkn (bytes 1-2)|
 +-+
 | Srvr RMB alert tkn (bytes 3-4)|Bsize | MTU | Reserved |
 +-+
 | |
 +- Server's RMB virtual address -+
 | |
 +-+
 | Reserved | Server's initial packet sequence number |
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 Figure 28 SMC Accept CLC message format

 The fields present on the SMC Accept CLC message are:

 Eyecatchers

Fox, et. al. Expires October 1, 2015 [Page 96]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Like all CLC messages, the SMC Accept has beginning and ending
 eyecatchers to aid with verification and parsing. The hex digits
 spell 'SMCR' in IBM-1047 (EBCDIC)

 Type

 CLC message type 2 indicates SMC Accept

 Length

 The SMC Accept CLC message is 68 bytes long

 Version

 Version of the SMC-R protocol. Version 1 is the only currently
 defined value.

 F-bit

 First Contact flag: A 1-bit flag that indicates that the server
 believes this TCP connection is the first SMC-R contact for this
 link group

 Server's Peer ID

 As described in A.2.1. above

 Server's RoCE GID

 This is the IPv6 address of the RNIC that the server chose for
 this SMC Link

 Server's RoCE MAC address

 The MAC address of the server's RNIC for the SMC link. It is
 required as some operating systems do not have neighbor discovery
 or ARP support for RoCE RNICs.

 Server's QP number

 The number for the reliably connected queue pair that the server
 created for this SMC link

 Server's RMB Rkey

 The RDMA Rkey for the RMB that the server created or chose for
 this TCP connection

Fox, et. al. Expires October 1, 2015 [Page 97]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Server's RMB element index

 This indexes which element within the server's RMB will represent
 this TCP connection

 Server's RMB element alert token

 A platform defined, architecturally opaque token that identifies
 this TCP connection. Added by the client as immediate data on
 RDMA writes from the client to the server to inform the server
 that there is data for this connection to retrieve from the RMB
 element

 Bsize:

 Server's RMB element buffer size in four bits compressed
 notation: x=4 bits. Actual buffer size value is (2^(x+4)) * 1K.
 Smallest possible value is 16K. Largest size supported by this
 architecture is 512K.

 MTU

 An enumerated value indicating this peer's QP MTU size. The two
 peers exchange this value and the minimum of the peer's value
 will be used for the QP. This field should only be validated on a
 first contact exchange.

 The enumerated MTU values are:

 0: reserved

 1: 256

 2: 512

 3: 1024

 4: 2048

 5: 4096

 6-15: reserved

 Server's RMB virtual address

 The virtual address of the server's RMB as assigned by the
 server's RNIC.

Fox, et. al. Expires October 1, 2015 [Page 98]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Server's initial packet sequence number

 The starting packet sequence number that this peer will use when
 sending to the other peer, so that the other peer can prepare its
 QP for the sequence number to expect.

A.2.4. SMC Confirm CLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 | Type = 3 | Length = 68 |Version| Rsrvd |
 +-+
 | |
 +- Client's Peer ID -+
 | |
 +-+
 | |
 +- -+
 | |
 +- Client's RoCE GID -+
 | |
 +- -+
 | |
 +-+
 | Client's RoCE |
 +- MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Client QP (bytes 1-2) |
 +---+
 |Clnt QP byte 3 | Client RMB Rkey (bytes 1-3) |
 +-+
 |Clnt RMB byte 4|Client RMB indx| Clnt RMB alert tkn (bytes 1-2)|
 +-+
 | Clnt RMB alert tkn (bytes 3-4)|Bsize | MTU | Reserved |
 +-+
 | |
 +- Client's RMB Virtual Address -+
 | |
 +-+
 | Reserved | Client's initial packet sequence number |
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 Figure 29 SMC Confirm CLC message format

Fox, et. al. Expires October 1, 2015 [Page 99]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The SMC Confirm CLC message is nearly identical to the SMC Accept
 except that it contains client information and lacks a first contact
 flag.

 The fields present on the SMC Confirm CLC message are:

 Eyecatchers

 Like all CLC messages, the SMC Confirm has beginning and ending
 eyecatchers to aid with verification and parsing. The hex digits
 spell 'SMCR' in IBM-1047 (EBCDIC)

 Type

 CLC message type 3 indicates SMC Confirm

 Length

 The SMC Confirm CLC message is 68 bytes long

 Version

 Version of the SMC-R protocol. Version 1 is the only currently
 defined value.

 Client's Peer ID

 As described in A.2.1. above

 Clients's RoCE GID

 This is the IPv6 address of the RNIC that the client chose for
 this SMC Link

 Client's RoCE MAC address

 The MAC address of the client's RNIC for the SMC link. It is
 required as some operating systems do not have neighbor discovery
 or ARP support for RoCE RNICs.

 Client's QP number

 The number for the reliably connected queue pair that the client
 created for this SMC link

 Client's RMB Rkey

Fox, et. al. Expires October 1, 2015 [Page 100]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The RDMA Rkey for the RMB that the client created or chose for
 this TCP connection

 Client's RMB element index

 This indexes which element within the client's RMB will represent
 this TCP connection

 Client's RMB element alert token

 A platform defined, architecturally opaque token that identifies
 this TCP connection. Added by the server as immediate data on
 RDMA writes from the server to the client to inform the client
 that there is data for this connection to retrieve from the RMB
 element

 Bsize:

 Client's RMB element buffer size in four bits compressed
 notation: x=4 bits. Actual buffer size value is (2^(x+4)) * 1K.
 Smallest possible value is 16K. Largest size supported by this
 architecture is 512K.

 MTU

 An enumerated value indicating this peer's QP MTU size. The two
 peers exchange this value and the minimum of the peer's value
 will be used for the QP. The values are enumerated in A.2.3. This
 value should only be validated on the first contact exchange.

 Client's RMB virtual address

 The virtual address of the server's RMB as assigned by the
 server's RNIC.

 Client's initial packet sequence number

 The starting packet sequence number that this peer will use when
 sending to the other peer, so that the other peer can prepare its
 QP for the sequence number to expect

 .

Fox, et. al. Expires October 1, 2015 [Page 101]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.2.5. SMC Decline CLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 | Type = 4 | Length = 28 |Version|S|Rsrvd|
 +-+
 | |
 +- Sender's Peer ID -+
 | |
 +-+
 | Peer Diagnosis Information |
 +-+
 | |
 +-+
 | x'E2' | x'D4' | x'C3' | x'D9' |
 +-+
 Figure 30 SMC Decline CLC message format

 The fields present on the SMC Decline CLC message are:

 Eyecatchers

 Like all CLC messages, the SMC Decline has beginning and ending
 eyecatchers to aid with verification and parsing. The hex digits
 spell 'SMCR' in IBM-1047 (EBCDIC)

 Type

 CLC message type 4 indicates SMC Decline

 Length

 The SMC Decline CLC message is 28 bytes long

 Version

 Version of the SMC-R protocol. Version 1 is the only currently
 defined value.

 S-bit

 Synch Bit. Indicates that the link group is out of synch and
 receiving peer must clean up its representation of the link group

Fox, et. al. Expires October 1, 2015 [Page 102]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Sender's Peer ID

 As described in A.2.1. above

 Peer Diagnosis Information

 Four bytes of diagnosis information provided by the peer. These
 values are defined by the individual peers and it is necessary to
 consult the peer's system documentation to interpret the results.

A.3. LLC messages

 LLC messages are sent over an existing SMC-R link using RoCE message
 passing and are always 44 bytes long so that they fit into the space
 available in a single WQE without requiring the receiver to post
 receive buffers. If all 44 bytes are not needed, they are padded out
 with zeroes. LLC messages are in a request/response format. The
 message type is the same for request and response, and a flag
 indicates whether a message is flowing as a request or a response.

 The two high order bits of an LLC message opcode indicate how it is
 to be handled by a peer that does not support the opcode.

 If the high order bits of the opcode are b'00' then the peer must
 support the LLC message and indicate a protocol error if it does not.

 If the high order bits of the opcode are b'10' then the peer must
 silently discard the LLC message if does not support the opcode. This
 requirement is inserted to allow for toleration of advanced, but
 optional function.

 High order bits of b'11' indicate a Connection Data Control (CDC)
 message as described in A.4.

Fox, et. al. Expires October 1, 2015 [Page 103]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.3.1. CONFIRM LINK LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 1 | length = 44 | Reserved |R| Reserved |
 +-+
 | Sender's RoCE |
 +- MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 +- -+
 | Sender's RoCE GID |
 +- -+
 | |
 +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |Sender's QP number, bytes 1-2 |
 +-+
 |Sender QP byte3| Link number |Sender's link userid, bytes 1-2|
 +-+
 |Sender's link userid bytes, 3-4| Max links | Reserved |
 +-+
 | |
 +- Reserved -+
 | |
 +-+
 Figure 31 CONFIRM LINK LLC message format

 The CONFIRM LINK LLC message is required to be exchanged between the
 server and client over a newly created SMC-R link to complete the
 setup of an SMC link. Its purpose is to confirm that the RoCE path
 is actually usable.

 On first contact this flows after the server receives the SMC Confirm
 CLC message from the client over the IP connection. For additional
 links added to an SMC link group, it flows after the ADD LINK and ADD
 LINK CONTINUATION exchange. This flow provides confirmation that the
 queue pair is in fact usable. Each peer echoes its RoCE information
 back to the other.

 Type

 Type 1 indicates CONFIRM LINK

 Length

Fox, et. al. Expires October 1, 2015 [Page 104]

Internet-Draft Shared Memory Communications over RDMA April 2015

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is a CONFIRM LINK REPLY

 Sender's RoCE MAC address

 The MAC address of the sender's RNIC for the SMC link. It is
 required as some operating systems do not have neighbor discovery
 or ARP support for RoCE RNICs.

 Sender's RoCE GID

 This is the IPv6 address of the RNIC that the sender is using for
 this SMC-R Link

 Sender's QP number

 The number for the reliably connected queue pair that the sender
 created for this SMC-R link

 Link number

 An identifier assigned by the server that uniquely identifies the
 link within the link group. This identifier is ONLY unique
 within a link group. Provided by the server and echoed back by
 the client

 Link User ID

 An opaque, implementation defined identifier assigned by the
 sender and provided to the receiver solely for purposes of
 display, diagnosis, network management, etc. The link user ID
 should be unique across the sender's entire software space,
 including all link other link groups.

 Max Links

 The maximum number of links the sender can support in a link
 group. The maximum for this link group is the the smaller of the
 values provided by the two peers.

Fox, et. al. Expires October 1, 2015 [Page 105]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.3.2. ADD LINK LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 2 | length = 44 | Rsrvd |RsnCode|R|Z| Reserved |
 +-+
 | Sender's RoCE |
 +- MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 +- -+
 | Sender's RoCE GID |
 +- -+
 | |
 +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |Sender's QP number, bytes 1-2 |
 +-+
 |Sender QP byte3| Link number |Rsrvd | MTU |Initial PSN |
 +-+
 | Initial PSN, continued | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ -+
 | Reserved |
 +- -+
 | |
 +-+
 Figure 32 ADD LINK LLC message format

 The ADD LINK LLC message is sent over an existing link in the link
 group when a peer wishes to add an SMC-R link to an existing SMC-R
 link group. It sent by the server to add a new SMC-R link to the
 group, or by the client to request that the server add a new link,
 for example when a new RNIC becomes active. When sent from the
 client to the server, it represents a request that the server
 initiate an ADD LINK exchange.

 This message is sent immediately after the initial SMC link in the
 group completes, as described in 3.5.1. First contact. It can also be
 sent over an existing SMC-R link group at any time as new RNICs are
 added and become available. Therefore there can be as few as 1 new
 RMB RTokens to communicate, or several. Rtokens will be
 communicated using ADD LINK CONTINUATION messages.

 The contents of the ADD LINK LLC message are:

Fox, et. al. Expires October 1, 2015 [Page 106]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Type

 Type 2 indicates ADD LINK

 Length

 All LLC messages are 44 bytes long

 RsnCode

 If the Z (rejection) flag is set, this field provides the reason
 code. Values can be:

 X'1' - no alternate path available: set when the server provides
 the same MAC/GID as an existing SMC-R link in the group, and the
 client does not have any additional RNICs available (i.e., server
 is attempting to set up an asymmetric link but none is available)

 X'2' - Invalid MTU value specified

 R

 Reply flag. When set indicates this is an ADD LINK REPLY

 Z

 Rejection flag. When set on reply indicates that the server's
 ADD LINK was rejected by the client. When this flag is set, the
 reason code will also be set.

 Sender's RoCE MAC address

 The MAC address of the sender's RNIC for the new SMC-R link. It
 is required as some operating systems do not have neighbor
 discovery or ARP support for RoCE RNICs.

 Sender's RoCE GID

 The IPv6 address of the RNIC that the sender is using for the new
 SMC-R Link

 Sender's QP number

 The number for the reliably connected queue pair that the sender
 created for the new SMC-R link

 Link number

Fox, et. al. Expires October 1, 2015 [Page 107]

Internet-Draft Shared Memory Communications over RDMA April 2015

 An identifier for the new SMC-R link. This is assigned by the
 server and uniquely identifies the link within the link group.
 This identifier is ONLY unique within a link group. Provided by
 the server and echoed back by the client

 MTU

 An enumerated value indicating this peer's QP MTU size. The two
 peers exchange this value and the minimum of the peer's value
 will be used for the QP. The values are enumerated in A.2.3.

 Initial PSN

 The starting packet sequence number that this peer will use when
 sending to the other peer, so that the other peer can prepare its
 QP for the sequence number to expect.

A.3.3. ADD LINK CONTINUATION LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 3 | length = 44 | Reserved |R| Reserved |
 +-+
 | Linknum | NumRTokens | Reserved |
 +-+
 | |
 +- -+
 | |
 +- Rkey/Rtoken Pair -+
 | |
 +- -+
 | |
 +-+
 | |
 +- -+
 | |
 +- Rkey/Rtoken Pair or zeroes -+
 | |
 +- -+
 | |
 +-+
 | Reserved |
 +-+
 Figure 33 ADD LINK CONTINUATION LLC message format

Fox, et. al. Expires October 1, 2015 [Page 108]

Internet-Draft Shared Memory Communications over RDMA April 2015

 When a new SMC-R link is added to an SMC-R link group, it is
 necessary to communicate the new link's RTokens for the RMBs that the
 SMC-r link group can access. This message follows the ADD LINK and
 provides the RTokens.

 The server kicks off this exchange by sending the first ADD LINK
 CONTINUATION LLC message, and the server controls the exchange as
 described below.

 o If the client and the server require the same number of ADD LINK
 CONTINUATION messages to communicate their RTokens, the server
 starts the exchange by sending the client the first ADD LINK
 CONTINUATION request to the client with its RTokens, then the
 client responds with an ADD LINK CONTINUATION response with its
 RTokens, and so on until the exchange is completed.

 o If the server requires more ADD LINK CONTINUATION messages than
 the client, then after the client has communicated all its
 RTokens, the server continues to send ADD LINK CONTINUATION
 request messages to the client. The client continues to respond,
 using empty (number of RTokens to be communicated = 0) ADD LINK
 CONTINUATION response messages.

 o If the client requires more ADD LINK CONTINUATION messages than
 the server, then after communicating all its RTokens the server
 will continue to send empty ADD LINK CONTINUATION messages to the
 client to solicit replies with the client's RTokens, until all
 have been communicated.

 The contents of this message are:

 Type

 Type 3 indicates ADD LINK CONTINUATION

 Length

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is an ADD LINK CONTINUATION
 REPLY

Fox, et. al. Expires October 1, 2015 [Page 109]

Internet-Draft Shared Memory Communications over RDMA April 2015

 LinkNum

 The link number of the new link within the SMC link group that
 Rkeys are being communicated for

 NumRTokens

 Number of RTokens remaining to be communicated (including the
 ones in this message). If the value is less than or equal to 2,
 this is the last message. If it is greater than 2, another
 continuation message will be required, and its value will be the
 value in this message minus 2, and so on until all Rkeys are
 communicated. The maximum value for this field is 255.

 Up to 2 Rkey/RToken pairs

 These consist of an Rkey for an RMB that is known on the SMC-R
 link that this message was sent over (the reference Rkey), paired
 with the same RMB's RToken over the new SMC link. A full RToken
 is not required for the reference because it is only being used
 to distinguish which RMB it applies to, not address it.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reference Rkey |
 +-+
 | New Rkey |
 +-+
 | |
 +- New Virtual Address -+
 | |
 +-+
 Figure 34 Rkey/Rtoken pair format

 The contents of the RKey/RToken pair are:

 Reference Rkey

 The Rkey of the RMB as it is already known on the SMC-R link over
 which this message is being sent. Required so that the peer knows
 which RMB to associate the new Rtoken with.

 New Rkey

 The Rkey of this RMB as it is known over the new SMC-R link

Fox, et. al. Expires October 1, 2015 [Page 110]

Internet-Draft Shared Memory Communications over RDMA April 2015

 New Virtual Address

 The virtual address of this RMB as it is known over the new SMC-R
 link.

A.3.4. DELETE LINK LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 4 | length = 44 | Reserved |R|A|O| Rsrvd |
 +-+
 | Linknum | Reason code (bytes 1-3) |
 +-+
 |RsnCode byte 4 | |
 +-+-+-+-+-+-+-+-+ -+
 | |
 +- -+
 | |
 +- -+
 | |
 +- Reserved -+
 | |
 +- -+
 | |
 +- -+
 | |
 +- -+
 | |
 +- -+
 | |
 +-+
 Figure 35 DELETE LINK LLC message format

 When the client or server detects that a QP or SMC-R link goes down
 or needs to come down, it sends this message over one of the other
 links in the link group.

 When the DELETE Link is sent from the client it only serves as a
 notification, and the client expects the server to send a DELETE LINK
 Request in response. To avoid races, only the server will initiate
 the actual DELETE LINK Request and Response sequence that results
 from notification from the client.

Fox, et. al. Expires October 1, 2015 [Page 111]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The server can also initiate the DELETE Link without notification
 from the client if it detects an error or if orderly link termination
 was initiated.

 The client may also request termination of the entire link group and
 the server may terminate the entire link group using this message.

 The contents of this message are:

 Type

 Type 4 indicates DELETE LINK

 Length

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is an DELETE LINK REPLY

 A

 All flag. When set indicates that all links in the link group
 are to be terminated. This terminates the link group.

 O

 Orderly flag. Indicates orderly termination. Orderly termination
 is generally caused by an operator command rather than an error
 on the link. When the client requests orderly termination, the
 server may wait to complete other work before terminating.

 LinkNum

 The link number of the link to be terminated. If the A flag is
 set, this field has no meaning and is set to 0.

 RsnCode

 The termination reason code. Currently defined reason codes are:

 Request Reason Codes:

 o X'00010000' = lost path

 o X'00020000' = operator initiated termination

Fox, et. al. Expires October 1, 2015 [Page 112]

Internet-Draft Shared Memory Communications over RDMA April 2015

 o X'00030000' = Program initiated termination (link inactivity)

 o X'00040000' = LLC protocol violation

 o X'00050000' = Asymmetric link no longer needed

 Response Reason Codes:

 o X'00100000' = Unknown Link ID (no link)

 o Others TBD

A.3.5. CONFIRM RKEY LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 6 | length = 44 | Reserved |R|0|Z|C|Rsrvd |
 +-+
 | NumTkns | New RMB Rkey for this link (bytes 1-3) |
 +-+
 |ThisLink byte 4| |
 +-+-+-+-+-+-+-+-+ -+
 | New RMB virtual address for this link |
 +- +-+
 | | |
 +-+-+-+-+-+-+-+-+ -+
 | |
 +- Other link RMB specification or zeros -+
 | |
 +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ -+
 | |
 +- -+
 | Other link RMB specification or zeroes |
 +- +-+-+-+-+-+-+-+-+
 | | Reserved |
 +-+
 Figure 36 CONFIRM RKEY LLC message format

 The CONFIRM_RKEY flow can be sent at any time from either the client
 or the server, to inform the peer that an RMB has been created or
 deleted. The creator of a new RMB must inform its peer of the new
 RMB's RToken for all SMC-R links in the SMC-R link group. The
 deleter of an RMB must inform its peer of the deleted RMB's RToken
 for all SMC-R links.

Fox, et. al. Expires October 1, 2015 [Page 113]

Internet-Draft Shared Memory Communications over RDMA April 2015

 For RMB creation, the creator sends this message over the SMC link
 that the first TCP connection that uses the new RMB is using. This
 message contains the new RMB RToken for the SMC link that the message
 is sent over, then it lists the sender's SMC links in the link group
 paired with the new RToken for the new RMB for that link. This
 message can communicate the new RTokens for 3 QPs: the QP for the
 link this message is sent over, and 2 others. If there are more than
 3 links in the SMC-R link group, CONFIRM_RKEY_CONTINUATION will be
 required.

 For RMB deletion, the creator sends the same format of message with a
 delete flag set, to inform the peer that the RMB's RTokens on all
 links in the group are deleted.

 In both cases, the peer responds by simply echoing the message with
 the response flag set. If the response is a negative response, the
 sender must recalculate the RToken set and start a new CONFIRM_RKEY
 exchange from the beginning. The timing of this retry is controlled
 by the C flag as described below.

 The contents of this message are:

 Type

 Type 6 indicates CONFIRM RKEY

 Length

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is a CONFIRM RKEY REPLY

 0

 Reserved bit

 Z

 Negative response flag

 C

 Configuration Retry bit. If this is a negative response and this
 flag is set, the originator should recalculate the Rkey set and
 retry this exchange as soon as the current configuration change

Fox, et. al. Expires October 1, 2015 [Page 114]

Internet-Draft Shared Memory Communications over RDMA April 2015

 is completed. If this flag is not set on a negative response, the
 originator must wait for the next natural stimulus (for example,
 a new TCP connection started that requires a new RMB) before
 retrying.

 NumTkns

 The number of other link/RToken pairs, including those provided
 in this message, to be communicated. Note that this value does
 not include the Rtoken for the link this message was sent on
 (i.e., the maximum value is 2). If this value is three or fewer
 this is the only message in the exchange. If this value is
 greater than three, a CONFIRM RKEY CONTINUATION message will be
 required.

 Note: in this version of the architecture, 8 is the maximum
 number of links supported in a link group.

 New RMB Rkey for this link

 The new RMB's Rkey as assigned on the link this message is being
 sent over.

 New RMB virtual address for this link

 The new RMB's virtual address as assigned on the link this
 messages is being sent over.

 Other link RMB specification

 The new RMB's specification on the other links in the link group,
 as shown in Figure 38.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Link number | RMB's Rkey for the specified link (bytes 1-3) |
 +-+
 |New Rkey byte 4| |
 +-+-+-+-+-+-+-+-+ -+
 | RMB's virtual address for the specified link |
 +- +-+
 | |
 +-+-+-+-+-+-+-+-+
 Figure 37 Format of link number/Rkey pairs

Fox, et. al. Expires October 1, 2015 [Page 115]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Link number

 The link number for a link in the link group

 RMB's Rkey for the specified link

 The Rkey used to reach the RMB over the link whose number was
 specified in the link number field.

 RMB's virtual address for the specified link

 The virtual address used to reach the RMB over the link whose
 number was specified in the link number field.

A.3.6. CONFIRM RKEY CONTINUATION LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 8 | length = 44 | Reserved |R|0|Z| Rsrvd |
 +-+
 | NumTknsLeft | |
 +-+-+-+-+-+-+-+-+ -+
 | |
 +- Other link RMB specification -+
 | |
 +- +-+
 | | |
 +-+-+-+-+-+-+-+-+ -+
 | |
 +- Other link RMB specification or zeros -+
 | |
 +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ -+
 | |
 +- -+
 | Other link RMB specification or zeroes |
 +- +-+-+-+-+-+-+-+-+
 | | Reserved |
 +-+

 The CONFIRM RKEY CONTINUATION LLC message is used to communicate any
 additional RMB RTokens that did not fit into the CONFIRM RKEY
 message. Each of these messages can hold up to 3 RMB RTokens. The
 Numlinks field indicates how many RMB RTokens are to be communicated,

Fox, et. al. Expires October 1, 2015 [Page 116]

Internet-Draft Shared Memory Communications over RDMA April 2015

 including the ones in this message. If the value is 3 or less, this
 is the last message of the group. If the value is 4 or higher,
 additional CONFIRM RKEY CONTINUATION messages will follow, and the
 Numlinks value will be a countdown until all are communicated.

 Like the CONFIRM RKEY message, the peer responds by echoing the
 message back with the reply flag set.

 The contents of this message are:

 Type

 Type 8 indicates CONFIRM RKEY CONTINUATION

 Length

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is a CONFIRM RKEY
 CONTINUATION REPLY

 0

 Reserved bit

 Z

 Negative response flag

 NumTknsLeft

 The number of link/RToken pairs, including those provided in this
 message, that are remaining to be communicated. If this value is
 three or fewer this is the last message in the exchange. If this
 value is greater than three, another CONFIRM RKEY CONTINUATION
 message will be required. Note that in this version of the
 architecture, 8 is the maximum number of links supported in a
 link group.

 Other link RMB specifications

 The new RMB's specification on other links in the link group, as
 shown in Figure 38.

Fox, et. al. Expires October 1, 2015 [Page 117]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.3.7. DELETE RKEY LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 9 | length = 44 | Reserved |R|0|Z| Rsrvd |
 +-+
 | Count | Error Mask | Reserved |
 +-+
 | First deleted Rkey |
 +-+
 | Second deleted Rkey or zeros |
 +-+
 | Third deleted Rkey or zeros |
 +-+
 | Fourth deleted Rkey or zeros |
 +-+
 | Fifth deleted Rkey or zeros |
 +-+
 | Sixth deleted Rkey or zeros |
 +-+
 | Seventh deleted Rkey or zeros |
 +-+
 | Eighth deleted Rkey or zeros |
 +-+
 | Reserved |
 +-+

 The DELETE_RKEY flow can be sent at any time from either the client
 or the server, to inform the peer that one or more RMBs have been
 deleted. Because the peer already knows every RMB's Rkey on each
 link in the link group, this message only specifies one Rkey for each
 RMB being deleted. The Rkey provided for each deleted RMB will be its
 Rkey as known on the SMC-R link that this message is sent over.

 It is not necessary to provide the entire RToken. The Rkey alone is
 sufficient for identifying an existing RMB.

 The peer responds by simply echoing the message with the response
 flag set. If the peer did not recognize an Rkey, a negative response
 flag will be set, however no aggressive recovery action beyond
 logging the error will be taken.

Fox, et. al. Expires October 1, 2015 [Page 118]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The contents of this message are:

 Type

 Type 9 indicates DELETE RKEY

 Length

 All LLC messages are 44 bytes long

 R

 Reply flag. When set indicates this is a DELETE RKEY REPLY

 0

 Reserved bit

 Z

 Negative response flag

 Count

 Number of RMBs being deleted by this message. Maximum value is 8

 Error Mask

 If this is a negative response, indicates which RMBs were not
 successfully deleted. Each bit corresponds to a listed RMB. So
 for example b'01010000' indicates that the second and fourth
 Rkeys weren't successfully deleted.

 Deleted Rkeys

 A list of Count Rkeys. Provided on the request flow and echoed
 back on the response flow. Each Rkey is valid on the link this
 message is sent over, and represents a deleted RMB. Up to eight
 RMBs can be deleted in this message.

Fox, et. al. Expires October 1, 2015 [Page 119]

Internet-Draft Shared Memory Communications over RDMA April 2015

A.3.8. TEST LINK LLC message format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type = 7 | length = 44 | Reserved |R| Reserved |
 +-+
 | |
 +- -+
 | |
 +- User Data -+
 | |
 +- -+
 | |
 +-+
 | |
 +- -+
 | |
 +- -+
 | Reserved |
 +- -+
 | |
 +- -+
 | |
 +- -+
 | |
 +-+
 Figure 38 TEST LINK LLC message format

 The TEST_LINK request can be sent from either peer to the other on an
 existing SMC-R link at any time to test that the SMC-R link is active
 and healthy at the software level. A peer which receives a TEST_LINK
 LLC message immediately sends back a TEST_LINK reply, echoing back
 the user data. Also refer to 4.5.3. TCP Keepalive processing.

 The contents of this message are:

 Type

 Type 7 indicates TEST LINK

 Length

 All LLC messages are 44 bytes long

 R

Fox, et. al. Expires October 1, 2015 [Page 120]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Reply flag. When set indicates this is a TEST LINK REPLY

 User Data

 The receiver of this message echoes the sender's data back in a
 TEST_LINK response LLC message

A.4. Connection Data Control (CDC) message format

 The RMBE control data is communicated using Connection Data Control
 (CDC) messages, which use RDMA message passing using inline data,
 similar to LLC messages. Also similar to LLC messages, this data
 block is 44 bytes long to ensure that it can it into private data
 areas of receive WQEs, without requiring the receiver to post receive
 buffers.

 Unlike LLC messages, this data is integral to the data path so its
 processing must be prioritized and optimized similarly to other data
 path processing. While LLC messages may be processed on a slower
 path than data, these messages cannot be.

Fox, et. al. Expires October 1, 2015 [Page 121]

Internet-Draft Shared Memory Communications over RDMA April 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 0 +-+
 | Type = x'FE' | Length = 44 | Sequence number |
 4 +-+
 | SMC-R alert token |
 8 +-+
 | Reserved | Producer cursor wrap seqno |
 12 +-+
 | Producer Cursor |
 16 +-+
 | Reserved | Consumer cursor wrap seqno |
 20 +-+
 | Consumer Cursor |
 24 +-+
 |B|P|U|R|F|Rsrvd|D|C|A| Reserved |
 28 +-+
 | |
 32 +- -+
 | |
 36 +- Reserved -+
 | |
 40 +- -+
 | |
 44 +-+

 Figure 39 Connection Data Control (CDC) Message Format

 Type = x'FE'

 This type number has the two high order bits turned on to enable
 processing to quickly distinguish it from an LLC message

 Length = 44

 The length of inline data that does not require posting of a
 receive buffer.

 Sequence number

 A 2 byte unsigned integer that represents a wrapping sequence
 number. The initial value is one and this value can wrap to 0.
 Incremented with every control message send, except for the
 failover data validation message, and used to guard against
 processing an old control message out of sequence, and also used
 in failover data validation. In normal usage, if this number is

Fox, et. al. Expires October 1, 2015 [Page 122]

Internet-Draft Shared Memory Communications over RDMA April 2015

 less than the last received value, discard this message. If
 greater, processes this message. Old control messages can be
 lost with no ill effect, but cannot be processed after newer
 ones.

 If this is a failover validation CDC message (F flag set), then
 the receiver must verify that it has received and fully processed
 the RDMA write that was described by the CDC message with the
 sequence number in this message. If not, the TCP connection must
 be reset, to guard against data loss. Details of this processing
 are in section 4.6.1.

 SMC-R alert token

 The endpoint-assigned alert token that identifies which TCP
 connection on the link group this control message refers to.

 Producer cursor wrap seqno

 A 2 byte unsigned integer that represents wrapping counter
 incremented by the producer whenever the data written into this
 RMBE receiver buffer causes a wrap (i.e. the producer cursor
 wraps). This is used by the receiver to determine when new data
 is available even though the cursors appear unchanged such as
 when a full window size write is completed (Producer cursor of
 this RMBE sent by peer = Local Consumer Cursor) or in scenarios
 where the Producer Cursor sent for this RMBE < Local Consumer
 Cursor).

 Producer cursor

 Unsigned, 4 byte integer that is a wrapping offset into the RMBE
 data area. Points to the next byte of data to be written by the
 sender. Can advance up to the receiver's Consumer Cursor as known
 by the sender. When the urgent data present indicator is on then
 points one byte beyond the last byte of urgent data. When
 computing this cursor, the presence of the eyecatcher in the RMBE
 data area must be accounted for. The first writeable data
 location in the RMBE is at offset 4, so this cursor begins at 4
 and wraps to 4.

 Consumer cursor wrap seqno

 2 byte unsigned integer that mirrors the value of the Producer
 cursor wrap sequence number when the last read from this RMBE
 occurred. Used as an indicator on how far along the consumer is
 in reading data (i.e. processed last wrap point or not). The

Fox, et. al. Expires October 1, 2015 [Page 123]

Internet-Draft Shared Memory Communications over RDMA April 2015

 producer side can use this indicator to detect whether more data
 can be written to the partner in full window write scenarios
 (where the Producer Cursor = Consumer Cursor as known on the
 remote RMBE). In this scenario if the consumer sequence number
 equals the local producer sequence number the producer knows that
 more data can be written.

 Consumer Cursor

 Unsigned 4 byte integer that is a wrapping offset into the
 sender's RMBE data area. Points to the offset of the next byte
 of data to be consumed by the peer in its own RMBE. When
 computing this cursor, the presence of the eyecatcher in the RMBE
 data area must be accounted for. The first writeable data
 location in the RMBE is at offset 4, so this cursor begins at 4
 and wraps to 4. The sender cannot write beyond this cursor into
 the peer's RMBE without causing data loss.

 B-bit

 Writer blocked indicator: Sender is blocked for writing, requires
 explicit notification when receive buffer space is available.

 P-bit

 Urgent data pending: Sender has urgent data pending for this
 connection

 U-bit

 Urgent data present: Indicates that urgent is data present in the
 RMBE data area, and the producer cursor points to one byte beyond
 the last byte of urgent data.

 R-bit

 Request for consumer cursor update: Indicates that a consumer
 cursor update is requested bypassing any window size optimization
 algorithms.

 F-bit

 Failover validation indicator: sent by a peer to guard against
 data loss during failover when the TCP connection is being moved
 to another SMC-R link in the link group. When this bit is set
 the only other fields in the CDC message that are significant are
 the type, length, SMC-R alert token and the sequence number. The

Fox, et. al. Expires October 1, 2015 [Page 124]

Internet-Draft Shared Memory Communications over RDMA April 2015

 receiver must validate that it has fully processed the RDMA write
 described by the previous CDC message bearing the same sequence
 number as this validation message. If it has, no further action
 is required. If it has not, the TCP connection must be reset.
 This processing is described in detail in section 4.6.1.

 D-bit

 Sending done indicator: Sent by a peer when it is done writing
 new data into the receiver's RMBE data area.

 C-bit

 Peer Closed Connection indicator: Sent by a peer when it is
 completely done with this connection and will no longer be making
 any updates to the receiver's RMBE, and will also not be sending
 any more control messages.

 A-bit

 Abnormal Close indicator: Sent by a peer when the connection is
 abnormally terminated (for example, the TCP connection was
 Reset). When sent it indicates that the peer is completely done
 with this connection and will no longer be making any updates to
 this RMBE or sending any more control messages. It also indicates
 that the RMBE owner must flush any remaining data on this
 connection and surface an error return code to any outstanding
 socket APIs on this connection (same processing as receiving an
 RST segment on a TCP connection).

Fox, et. al. Expires October 1, 2015 [Page 125]

Internet-Draft Shared Memory Communications over RDMA April 2015

Appendix B. Socket API considerations

 A key design goal for SMC-R is to require no application changes for
 exploitation. It is confined to socket applications using stream
 (i.e. TCP protocol) sockets over IPv4 or IPv6. By virtue of the fact
 that the switch to the SMC-R protocol occurs after a TCP connection
 is established no changes are required in socket address family or in
 the IP addresses and ports that the socket application are using.
 Existing socket APIs that allow the application to retrieve local and
 remote socket address structures for an established TCP connection
 (for example, getsockname() and getpeername()) will continue to
 function as they have before. Existing DNS setup and APIs for
 resolving hostnames to IP addresses and vice versa also continue to
 function without any changes. In general all of the usual socket APIs
 that are used for TCP communicates (send APIs, recv APIs, etc.) will
 continue to function as they do today even if SMC-R is used as the
 underlying protocol.

 Each SMC-R enabled implementation does however need to pay special
 attention to any socket APIs that have a reliance on the underlying
 TCP and IP protocols and ensure that their behavior in an SMC-R
 environment is reasonable and minimizes impact to the application.
 While the basic socket API set is fairly similar across different
 Operating Systems, when it comes to advanced socket API options there
 is more variability. Each implementation needs to perform a detailed
 analysis of its API options and SMC-R impact and implications. As
 part of that step a discussion or review with other implementations
 supporting SMC-R would be useful to ensure a consistent
 implementation.

 setsockopt()/ getsockopt() considerations

 These APIs allow socket applications to manipulate socket, transport
 (TCP/UDP) and IP level options associated with a given socket.
 Typically, a platform restricts the number of IP options available to
 stream (TCP) socket applications given their connection oriented
 nature. The general guideline here is to continue processing these
 APIs in a manner that allows for application compatibility. Some
 options will be relevant to the SMC-R protocol and will require
 special processing under the covers. For example, the ability to
 manipulate TCP send and receive buffer sizes is still valid for SMC-
 R. However, other options may have no meaning for SMC-R. For
 example, if an application enabled the TCP_NODELAY option to disable
 Nagle's algorithm it should have no real effect in SMC-R
 communications as there is no notion of Nagle's algorithm with this
 new protocol. But the implementation must accept the TCP_NODELAY
 option as it does today and save it so that it can be later extracted

Fox, et. al. Expires October 1, 2015 [Page 126]

Internet-Draft Shared Memory Communications over RDMA April 2015

 via getsockopt() processing. Note that any TCP or IP level options
 will still have an effect on any TCP/IP packets flowing for an SMC-R
 connection (i.e. as part of TCP/IP connection establishment and
 TCP/IP connection termination packet flows).

 Under the covers manipulation of the TCP options will also include
 the SMC layer setting and reading the SMC-R experimental option
 before and after completion of the 3 way TCP handshake.

Fox, et. al. Expires October 1, 2015 [Page 127]

Internet-Draft Shared Memory Communications over RDMA April 2015

Appendix C. Rendezvous Error scenarios

 Error scenarios in setting up and managing SMC-R links are discussed
 in this section.

C.1. SMC Decline during CLC negotiation

 A peer to the SMC-R CLC negotiation can send SMC Decline in lieu of
 any expected CLC message to decline SMC and force the TCP connection
 back to IP fabric. There can be several reasons for an SMC Decline
 during the CLC negotiation including: RNIC went down, SMC-R forbidden
 by local policy, subnet (IPv4) or prefix (IPv6) doesn't match, lack
 of resources to perform SMC-R. In all cases when an SMC Decline is
 sent in lieu of an expected CLC message, no confirmation is required
 and the TCP connection immediately falls back to using the IP fabric.

 To prevent ambiguity between CLC messages and application data, an
 SMC Decline cannot "chase" another CLC message. SMC Decline can only
 be sent in lieu of an expected CLC message. For example, if the
 client sends SMC Proposal then its RNIC goes down, it must wait for
 the SMC Accept for the server and then it can reply to that with an
 SMC Decline.

 This "no chase" rule means that if this TCP connection is not a first
 contact between RoCE peers, a server cannot send SMC Decline after
 sending SMC Accept - it can only either break the TCP connection.
 Similarly, once the client sends SMC Confirm on a TCP connection that
 isn't first contact, it is committed to SMC-R for this TCP connection
 and cannot fall back to IP.

C.2. SMC Decline during LLC negotiation

 For a TCP connection that represents first contact between RoCE
 pairs, it is possible for SMC to fail back to IP during the LLC
 negotiation. This is possible until the first contact SMC link is
 confirmed. For example, see Figure 40. After a first contact SMC
 link is confirmed, fallback to IP is no longer possible. The rule
 that this translates to is: a first contact peer can send SMC Decline
 at any time during LLC negotiation until it has successfully sent its
 CONFIRM LINK (request or response) flow. After that point, it cannot
 fall back to IP.

Fox, et. al. Expires October 1, 2015 [Page 128]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Host X -- Server Host Y -- Client
 +-------------------+ +-------------------+
 | PeerID = PS1 | | PeerID = PC1 |
 | +------+ +------+ |
 | QP 8 |RNIC 1| SMC-R link 1 |RNIC 2| QP 64 | | |
 | RKey X | |MAC MA|<-------------------->|MAC MB| | |
 | | |GID GA| attempted setup |GID GB| | RKey Y2|
 | \/ +------+ +------+ \/ |
 |+--------+ | | +--------+ | | | | |
 || RMB | | | | RMB | |
 |+--------+ | | +--------+ |
 | /\ +------+ +------+ /\ |
 | | |RNIC 3| |RNIC 4| | Rkey W2|
 | | |MAC MC| |MAC MD| | |
 | QP 9 |GID GC| |GID GD| QP65 |
 | +------+ +------+ |
 +-------------------+ +-------------------+

 SYN / SYN-ACK / ACT TCP 3-way handshake with TCP option
 <--->

 SMC Proposal / SMC Accept / SMC Confirm exchange
 <-->

 CONFIRM LINK(request, link 1)
 ...>

 CONFIRM LINK(response, link 1)
 X...................................
 :
 : ROCE write faliure
 :.................................>

 SMC Decline(PC1, reason code)
 <--

 Connection data flows over IP fabric
 <--->

 Legend:
 ------------ TCP/IP and CLC flows
 RoCE (LLC) flows

 Figure 40 SMC Decline during LLC negotiation

Fox, et. al. Expires October 1, 2015 [Page 129]

Internet-Draft Shared Memory Communications over RDMA April 2015

C.3. The SMC Decline window

 Because SMC-R does not support fall-back to IP for a TCP connection
 that is already using RDMA, there are specific rules on when SMC
 Decline, which signals a fall-back to IP because of an error or
 problem with the RoCE fabric, can be sent during TCP connection
 setup. There is a point of no return after which a connection cannot
 fall back to IP, and RoCE errors that occur after this point require
 the connection to be broken with a RST flow in the IP fabric.

 For first contact, that point of no return is after the Add Link LLC
 message has been successfully sent for the second SMC-R link.
 Specifically, the server cannot fall back to IP after receiving
 either a positive write completion indication for the Add Link
 request, or after receiving the Add Link response from the client,
 whichever comes first. The client cannot fall back to IP after
 either sending a negative Add Link response, receiving a positive
 write complete on a positive Add Link response, or receiving a
 Confirm Link for the second SMC-R link from the server, whichever
 comes first.

 For subsequent contact, that point of no return is after the last
 send of the CLC negotiation completes. This, in combination with the
 rule that error "chasers" are not allowed during CLC negotiation,
 means that the server cannot send SMC Decline after sending an SMC
 Accept, and the client cannot send an SMC Decline after sending an
 SMC Confirm.

C.4. Out of synch conditions during SMC-R negotiation

 The SMC Accept CLC message contains a "first contact" flag that
 indicates to the client whether or not the server believes it is
 setting up a new link group, or using an existing link group. This
 flag is used to detect an out of synch condition between the client
 and the server. The scenario detected is as follows: There is a
 single existing SMC-R link between the peers. After the client sends
 the SMC Proposal CLC message, the existing SMC-R link between the
 client and the server fails. The client cannot chase the SMC
 Proposal CLC message with an SMC Decline CLC message in this case
 because the client does not yet know that the server would have
 wanted to choose the SMC-R link that just crashed. The QP that
 failed recovers before the server returns its SMC Accept CLC message.
 This means that there is a QP but no SMC link. Since the server had
 not yet learned of the SMC link failure when it sent the SMC Accept
 CLC message, it attempts to re-use the SMC link that just failed.
 This means the server would not set the "first contact" flag,
 indicating to the client that the server thinks it is reusing an SMC-

Fox, et. al. Expires October 1, 2015 [Page 130]

Internet-Draft Shared Memory Communications over RDMA April 2015

 R link. However the client does not have an SMC-R link that matches
 the server's specification. Because the "first contact" flag is off,
 the client realizes it is out of synch with the server and sends SMC
 Decline to cause the connection to fall back to IP.

C.5. Timeouts during CLC negotiation

 Because the SMC-R negotiation flows as TCP data, there are built-in
 timeouts and retransmits at the TCP layer for individual messages.
 Implementations also must to protect the overall TCP/CLC handshake
 with a timer or timers to prevent connections from hanging
 indefinitely due to SMC-R processing. This can be done with
 individual timers for individual CLC messages or an overall timer for
 the entire exchange, which may include the TCP handshake and the CLC
 handshake under one timer or separate timers. This decision is
 implementation dependent.

 If the TCP and/or CLC handshakes time out, the TCP connection must be
 terminated as it would be in a legacy IP environment when connection
 setup doesn't complete in a timely manner. Because the CLC flows are
 TCP messages, if they cannot be sent and received in a timely
 fashion, the TCP connection is not healthy and would not work if
 fallback to IP were attempted.

C.6. Protocol errors during CLC negotiation

 Protocol errors occur during CLC negotiation when a message is
 received that is not expected. For example, a peer that is expecting
 a CLC message but instead receives application data has experienced a
 protocol error, and also indicates a likely software error as the two
 sides are out of synch. When application data is expected, this data
 is not parsed to ensure it's not a CLC message.

 When a peer is expecting a CLC negotiation message, any parsing error
 except a bad enumerated value in that message must be treated as
 application data. The CLC negotiation messages are designed with
 beginning and ending eyecatchers to help verify that they are
 actually the expected message. If other parsing errors in an
 expected CLC message occur, such as incorrect length fields or
 incorrectly formatted fields, the message must be treated as
 application data.

 All protocol errors with the exception of bad enumerated values must
 result in termination of the TCP connection. No fallback to IP is
 allowed in the case of a protocol error because if the protocols are
 out of synch, mismatched, or corrupted, then data and security
 integrity cannot be ensured.

Fox, et. al. Expires October 1, 2015 [Page 131]

Internet-Draft Shared Memory Communications over RDMA April 2015

 The exception to this rule is enumerated values, for example the QP
 MTU values on SMC Accept and SMC Confirm. If a reserved value is
 received, the proper error response is to send SMC Decline and fall
 back to IP. The reason for this is that use of a reserved enumerated
 value indicates that the other partner likely has additional support
 that the receiving partner does not have. This indicated mismatch of
 SMC-R capabilities is not an integrity problem, but indicates that
 SMC-R cannot be used for this connection

C.7. Timeouts during LLC negotiation

 Whenever a peer sends an LLC message to which a reply is expected, it
 sets a timer after the send posts to wait for the reply. An expected
 response may be a reply flavor of the LLC message (for example
 CONFIRM LINK REPLY) or a new LLC message (for example an ADD LINK
 CONTINUATION expected from the server by the client if there are more
 Rkeys to communicate).

 On LLC flows that are part of a first contact setup of a link group,
 the value of the timer is implementation dependent but should be long
 enough to allow the other peer have a write complete timeout and 2-3
 retransmits of an SMC Decline on the TCP fabric. For LLC flows
 that are maintaining the link group and not part of first contact
 setup of a link group, the timers may be shorter. Upon receipt of an
 expected reply the timer is cancelled. If a timer pops without a
 reply having been received, the sender must initiate a recovery
 action

 During first contact processing, failure of an LLC verification timer
 is a should-not-occur which indicates a problem with one of the
 endpoints. The reason for this is that if there is a "routine"
 failure in the RoCE fabric that causes an LLC verification send to
 fail, the sender will get a write completion failure and will then
 send SMC Decline to the partner. The only time an LLC verification
 timer will expire on a first contact is when the sender thinks the
 send succeeded but it actually didn't. Because of the reliable
 connected nature of QP connections on the RoCE fabric, this is
 indicates a problem with one of the peers, not with the RoCE fabric.

 After the reliable connected QP for the first SMC-R link in a link
 group is set up on initial contact, the client sets a timer to wait
 for a RoCE verification message from the server that the QP is
 actually connected and usable. If the server experiences a failure
 sending its QP confirmation message, it will send SMC Decline, which
 should arrive at the client before the client's verification timer
 expires. If the client's timer expires without receiving either an
 SMC Decline or a RoCE message confirmation from the server, there is

Fox, et. al. Expires October 1, 2015 [Page 132]

Internet-Draft Shared Memory Communications over RDMA April 2015

 a problem either with the server or with the TCP fabric. In either
 case the client must break the TCP connection and clean up the SMC-R
 link.

 There are two scenarios in which the client's response to the QP
 verification message fails to reach the server. The main difference
 is whether or not the client has successfully completed the send of
 the CONFIRM LINK response.

 In the normal case of a problem with the RoCE path, the client will
 learn of the failure by getting a write completion failure, before
 the server's timer expires. In this case, the client sends an SMC
 Decline CLC message to the server and the TCP connection falls back
 to IP.

 If the client's send of the Confirmation message receives a positive
 return code but for some reason still does not reach the server, or
 the client's SMC Decline CLC message fails to reach the server after
 the client fails to send its RoCE confirmation message, then the
 server's timer will time out and the server must break the TCP
 connection by sending RST. This is expected to be a very rare case,
 because if the client cannot send its CONFIRM LINK RSP LLC message,
 the client should get a negative return code and initiate fallback to
 IP. A client receiving a positive return code on a send that fails
 to reach the server should be extremely rare.

C.7.1. Recovery actions for LLC timeouts and failures

 The following table describes recovery actions for LLC timeouts. A
 write completion failure or other indication of failure to send on
 the send of the LLC command is treated the same as a timeout.

 LLC Message: CONFIRM LINK from server (first contact, first link in
 the link group)

 Timer waits for: CONFIRM LINK reply from client

 Recovery action: Break the TCP connection by sending RST and
 clean up the link. The server should have received an SMC
 Decline from the client by now if the client had an LLC send
 failure.

 LLC Message: CONFIRM LINK from server (first contact, second link in
 the link group)

 Timer waits for: CONFIRM LINK reply from client

Fox, et. al. Expires October 1, 2015 [Page 133]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Recovery action: The second link was not successfully set up.
 Send DELETE LINK to the client. Connection data cannot flow in
 the first link in the link group, until the reply to this DELETE
 LINK is received, to prevent the peers from being out of synch on
 the state of the link group.

 LLC Message: CONFIRM LINK from server (not first contact)

 Timer Waits for: CONFIRM LINK reply from client

 Recovery action: Clean up the new link and set a timer to retry.
 Send DELETE LINK to the client, in case the client has a longer
 timer interval, so the client can stop waiting

 LLC Message: CONFIRM LINK REPLY from client (first contact)

 Timer waits for: ADD LINK from server

 Recovery action: Clean up the SMC-R link and break the TCP
 connection by sending RST over the IP fabric. There is a problem
 with the server. If the server had a send failure, it should
 have have sent SMC Decline by now.

 LLC Message: ADD LINK from server (first contact)

 Timer waits for: ADD LINK reply from client

 Recovery action: Break the TCP connection with RST and clean up
 RoCE resources. The connection is past the point where the
 server can fall back to IP, and if the client had a send problem
 it should have sent SMC Decline by now.

 LLC Message: ADD LINK from server (not first contact)

 Timer waits for: ADD LINK reply from client

 Recovery action: Clean up resources (QP, RMB keys, etc) for the
 new link and treat the link that the ADD LINK was sent over as if
 it had failed. If there is another link available to resend the
 ADD LINK and the link group still needs another link, retry the
 ADD LINK over another link in the link group.

 LLC Message: ADD LINK REPLY from client (and there are more Rkeys to
 be communicated)

 Timer waits for: ADD LINK CONTINUATION from server

Fox, et. al. Expires October 1, 2015 [Page 134]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Recovery action: Treat the same as ADD LINK timer failure

 LLC Message: ADD LINK REPLY or ADD LINK CONTINUATION reply from
 client (and there are no more Rkeys to be communicated, for the
 second link in a first contact scenario)

 Timer waits for: CONFIRM LINK from the server on the new link

 Recovery action: The new link has failed to set up. Send DELETE
 LINK to the server. Do not consider the socket opened to the
 client application until receiving confirmation from the server
 in the form of a DELETE LINK request for this link and sending
 the reply (to prevent the partners from being out of synch on the
 state of the link group).

 Set a timer to send another ADD LINK to the server if there is
 still an unused RNIC on the client side.

 LLC Message: ADD LINK REPLY or ADD LINK CONTINUATION reply from the
 client (and there are no more Rkeys to be communicated)

 Timer waits for: CONFIRM LINK from the server, over the new link

 Recovery action: Send a DELETE LINK to the server for the new
 link, then clean up any resource allocated for the new link and
 set a timer to send ADD LINK to the server if there is still an
 unused RNIC on the client side. The new link has failed to set
 up, but the link that the ADD LINK exchange occurred over is
 unaffected.

 LLC Message: ADD LINK CONTINUATION from server

 Timer waits for: ADD LINK CONTINUATION REPLY from client

 Recovery action: Treat the same as ADD LINK timer failure

 LLC Message: ADD LINK CONTINUATION reply from client (first contact,
 and RMB count fields indicate that the server owes more ADD LINK
 CONTINUATION messages)

 Timer waits for: ADD LINK CONTINUATION from the server

 Recovery action: Clean up the SMC link and break the TCP
 connection by sending RST. There is a problem with the server.

Fox, et. al. Expires October 1, 2015 [Page 135]

Internet-Draft Shared Memory Communications over RDMA April 2015

 If the server had a send failure, it should have have sent SMC
 Decline by now.

 LLC Message: ADD LINK CONTINUATION reply from client (not first
 contact and RMB count fields indicate that the server owes more ADD
 LINK CONTINUATION messages)

 Timer waits for: ADD LINK CONTINUATION from server

 Recovery action: Treat as is if client detected link failure on
 the link the ADD LINK exchange is using. Send DELETE LINK to
 the server over another active link if one exists, otherwise
 clean up the link group.

 LLC Message: DELETE LINK from client

 Timer waits for: DELETE LINK request from server

 Recovery action: If the scope of the request is to delete a
 single link, the surviving link, over which the client sent the
 DELETE LINK is no longer usable either. If this is the last link
 in the link group, end TCP connections over the link group by
 sending RST packets. If there are other surviving links in the
 link group, resend over a surviving link. Also send a DELETE
 LINK over a surviving link for the link that the client attempted
 to send the initial DELETE LINK message over. If the scope of
 the request is to delete the entire link group, try resending on
 other links in the link group until success is achieved. If all
 sends fail, tear down the link group and any TCP connections that
 exist on it.

 LLC Message: DELETE LINK from server (scope: entire link group)

 Timer waits for: Confirmation from the adapter that the message
 was delivered.

 Recovery action: Tear down the link group and any TCP connections
 that exist over it.

 LLC Message: DELETE LINK from server (scope: single link)

 Timer waits for: DELETE LINK reply from the client

 Recovery action: The link over which the client sent the DELETE
 LINK is no longer usable either. If this is the last link in the
 link group, end TCP connections over the link group by sending
 RST packets. If there are other surviving links in the link

Fox, et. al. Expires October 1, 2015 [Page 136]

Internet-Draft Shared Memory Communications over RDMA April 2015

 group, resend over a surviving link. Also send a DELETE LINK
 over a surviving link for the link that the server attempted to
 send the initial DELETE LINK message over. If the scope of the
 request is to delete the entire link group, try resending on
 other links in the link group until success is achieved. If all
 sends fail, tear down the link group and any TCP connections that
 exist on it.

 LLC Message: CONFIRM RKEY from the client

 Timer waits for: CONFIRM RKEY REPLY from the server

 Recovery action: Perform normal client procedures for detection
 of failed link. The link over which the message was sent has
 failed.

 LLC Message: CONFIRM RKEY from the server

 Timer waits for : CONFIRM RKEY REPLY from the client

 Recovery action: Perform normal server procedures for detection
 of failed link. The link over which the message was sent has
 failed.

 LLC Message: TEST LINK from the client

 Timer waits for: TEST LINK REPLY from the server

 Recovery action: Perform normal client procedures for detection
 of failed link. The link over which the message was sent has
 failed.

 LLC Message: TEST LINK from the server

 Timer waits for : TEST LINK REPLY from the client

 Recovery action: Perform normal server procedures for detection
 of failed link. The link over which the message was sent has
 failed.

 The following table describes recovery actions for invalid LLC
 messages. These could be misformatted or contain out of synch data.

 LLC Message received: CONFIRM LINK from server

 What could be bad: Incorrect link information

Fox, et. al. Expires October 1, 2015 [Page 137]

Internet-Draft Shared Memory Communications over RDMA April 2015

 Recovery action: Protocol error. The link must be brought down
 by sending a DELETE LINK for the link over another link in the
 link group if one exists. If this is first contact, fall back to
 IP by sending SMC Decline to server.

 LLC Message received: ADD LINK

 What could be bad: Undefined enumerated MTU value

 Recovery action: Send negative ADD LINK reply with reason code
 x'2'

 LLC Message received: ADD LINK reply from client

 What could be bad: Client side link information that would result
 in a parallel link being set up

 Recovery action: Parallel links are not permitted. Delete the
 link by sending DELETE LINK to the client over another link in
 the link group.

 LLC Message received: Any link group command from the server except
 DELETE LINK for the entire link group

 What could be bad: Client has sent DELETE LINK for the link that
 the message was received on

 Recovery action: Ignore the LLC message. Worst case the server
 will time out. Best case the DELETE LINK crosses with the
 command from the server and the server realizes it failed.

 LLC Message received: ADD LINK CONTINUATION from the server or ADD
 LINK CONTINUATION REPLY from the client

 What could be bad: Number of RMBs provided doesn't match count
 given on initial ADD LINK or ADD LINK reply message

 Recovery action: Protocol error. Treat as if detected link outage

 LLC Message received: DELETE LINK from client

 What could be bad: Link indicated doesn't exist

 Recovery action: If the link is in the process of being cleaned
 up, assume timing window and ignore message. Otherwise, send
 DELETE LINK REPLY with reason code 1.

Fox, et. al. Expires October 1, 2015 [Page 138]

Internet-Draft Shared Memory Communications over RDMA April 2015

 LLC Message received: DELETE LINK from server

 What could be bad: Link indicated doesn't exist

 Recovery action: Send DELETE LINK REPLY with reason code 1.

 LLC Message received: CONFIRM RKEY form either client or server

 What could be bad: No Rkey provided for one or more of the links
 in the link group

 Recovery action: Treat as if detected failure of the link(s) for
 which no RKEY was provided

 LLC message received: DELETE RKEY

 Specified RKey doesn't exist

 Send negative DELETE RKEY response.

 LLC message received: TEST LINK reply

 What could be bad: User data doesn't match what was sent in the
 TEST LINK request

 Recovery action: Treat as if detected that the link has gone
 down. This is a protocol error

 LLC message received: Unknown LLC type with high order bits of opcode
 equal b'10'

 What could be bad: This is an optional LLC message which the
 receiver does not support

 Recovery action: Ignore (silently discard) the message

 LLC message received: any unambiguously incorrect or out of synch LLC
 message

 What it indicates: Link is out of sync

 Recovery action: Treat as if detected that the link has gone
 down. Note that an unsupported or unknown LLC opcode whose two
 high order bits are b'10' is not an error, and must be silently
 discarded. Any other unknown or unsupported LLC opcode is an
 error.

Fox, et. al. Expires October 1, 2015 [Page 139]

Internet-Draft Shared Memory Communications over RDMA April 2015

C.8. Failure to add second SMC-R link to a link group

 When there is any failure in setting up the second SMC-R link in an
 SMC-R link group, including confirmation timer expiration, the SMC-R
 link group is allowed to continue, without available failover.
 However this situation is extremely undesirable and the server must
 endeavor to correct it as soon as it can.

 The server peer in the SMC-R link group must set a timer to drive it
 to retry setup of a failed additional SMC-R link. The server will
 immediately retry the SMC-R link setup when the first of the
 following events occurs:

 o The retry timer expires

 o A new RNIC becomes available to the server, on the same LAN as the
 SMC-R link group

 o An "Add Link" LLC request message is received from the client,
 which indicates availability of a new RNIC on the client side.

Fox, et. al. Expires October 1, 2015 [Page 140]

Internet-Draft Shared Memory Communications over RDMA April 2015

Authors' Addresses

 Mike Fox
 IBM
 3039 Cornwallis Rd.
 Research Triangle Park, NC 27709

 Email: mjfox@us.ibm.com

 Constantinos (Gus) Kassimis
 IBM
 3039 Cornwallis Rd.
 Research Triangle Park, NC 27709

 Email: kassimis@us.ibm.com

 Jerry Stevens
 IBM
 3039 Cornwallis Rd.
 Research Triangle Park, NC 27709

 Email: sjerry@us.ibm.com

Fox, et. al. Expires October 1, 2015 [Page 141]

