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Abstract

This document is intended to introduce the challenges to overcome

when network management problems may require to couple with AI

solutions. On the one hand, there are many difficult problems in

Network Management that to this date have no good solutions, or

where any solutions come with significant limitations and

constraints. Artificial Intelligence may help produce novel

solutions to those problems. On the other hand, for several reasons

(computational costs of AI solutions, privacy of data), distribution

of AI tasks became primordial. It is thus also expected that network

SHOULD be operated efficiently to support those tasks.

To identify the right set of challenges, the document defines a

method based on the evolution and nature of NM problems. This will

be done in parallel with advances and the nature of existing

solutions in AI in order to highlight where AI and NM have been

already coupled together or could benefit from a higher integration.

So, the method aims at evaluating the gap between NM problems and AI

solutions. Challenges are derived accordingly, assuming solving

these challenges will help to reduce the gap between NM and AI.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
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1. Introduction

The functional scope of network management (NM) is very large,

ranging from monitoring to accounting, from network provisioning to

service diagnostics, from usage accounting to security. The taxonomy

defined in [Hoo18] extends the traditional Fault, Configuration,

Accounting, Performance, Security (FCAPS) domains by considering

additional functional areas but above all by promoting additional

views. For instance, network management approaches can be classified

according to the technologies, methods or paradigms they will rely

on. Methods include common approaches as for example mathematical

optimization or queuing theory but also techniques which have been

widely applied in last decades like game theory, data analysis, data

mining and machine learning. In management paradigms, autonomic and

cognitive management are listed. As highlighted by this taxonomy,

the definition of automated and more intelligent techniques have

been promoted to support efficient network management operations.

Research in NM and more generally in networking has been very active

in the area of applied ML [Bou18].

However, for maintaining network operational in pre-defined safety

bounds, NM still heavily relies on established procedures. Even

after several cycles of adding automation, those procedures are

still mostly fixed and set offline in the sense that the exact

control loop and all possible scenarios are defined in advance. They

are so mostly deterministic by nature or or at least with sufficient

safety margin. Obviously, there have been a lot of propositions to

make network smarter or intelligent with the use of ML but without

large adoption for running real networks because it changes the

paradigms towards stochastic methods.

ML includes regression analysis, statistical learning (SVM and

variants), deep learning (ANN and variants), reinforcement learning,

etc. It is a sub-area of AI that concentrates the focus nowadays but

AI encompasses other areas including knowledge representation,

inductive logic programming, inference rule engine or by extension

the techniques that allow to observe and perform actions on a

system.

It is thus legitimate to question if ML or AI in general could be

helpful for NM in regards to practical deployment. This question is
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actually tight with the problems the NM aims to address.

Independently of NM, ML-based solutions were introduced to solve one

type of problems in an approximate way which are very complex in

nature, i.e. finding an optimal solution is not possible (in

polynomial time). This is the case for NP-hard problems. In those

cases, solutions typically rely on heuristics that may not yield

optimal results, or algorithms that run into issues with scalability

and the ability to produce timely results due to the exponential

search space. In NM, those problems exist, for instance allocation

of resources in case of service function chaining or network slicing

among others are recent examples which have gained interest in our

community with SDN. Many propositions consist of modeling the

optimization problem as an MILP and solve it by means of heuristics

to reach a satisfactory tradeoff between solution quality (gap to

optimality) - computation time and model size/dimensionality. Hence,

ML is recognized to be well adapted to progress on this type of

problem [Kaf19].

However, all computational problems of NM are not NP-hard. Due to

real-time constraints, some involve very short control loops that

require both rapid decisions and the ability to rapidly adapt to new

situations and different contexts. So, even in that case, time is

critical and approximate solutions are usually more acceptable.

Again, it is where AI can be beneficial. Actually, expert systems

are AI systems [Ste92] but this kind of systems are not designed to

scale with the volume and heterogeneity of data we can collect in a

network today for which the expert system is built thanks to

numerous inference rules. In contrast, ML is more efficient to

automatically learn abstract representations of the rules, which can

be eventually updated.

On one hand another type of common problem in NM is classification.

For instance, classifying network flows is helpful for security

purposes to detect attack flows, to differentiate QoS among the

different flows (e.g. real-time streams which need to be

prioritized), etc. On the other hand, ML-based classification

algorithms have been widely used in literature with high quality

results when properly applied leading to their applications in

commercial products. There are many algorithms including decision

tress, support vector machine or (deep) neural networks which have

been to be proven efficient in many areas and notably for image and

natural language processing.

Finally, many problems also still rely on humans in the loop, from

support issues such as dealing with trouble tickets to planning

activities for the roll-out of new services. This creates

operational bottlenecks and is often expensive and error prone. This

kind of tasks could be either automated or guided by an AI system to

avoid human bias. Indeed, the balance between human resources and
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the complexity of problems to deal with is actually very imbalanced

and this will continue to increase due to the size of networks,

heterogeneity of devices, services, etc. Hence, human-based

procedures tend to be simple in comparison to the problems to solve

or time-consuming. Notable examples are in security where the

network operator should defend against potential unknown threat. As

a result, services might be largely affected during hours

Actually, all the problems aforementioned are exacerbated by the

situation of more complex networks to operate on many dimensions

(users, devices, services, connections, etc.). Therefore, AI is

expected to enable or simplify the solving of those problems in real

networks in the near future [czb20] [Yan20] because those would

require reaching unprecedented levels of performance in terms of

throughput, latency, mobility, security, etc.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Acronyms

AI: Artificial Intelligence FL: Federated Learning GAN: Generative

Adversarial Network GNN: Graph Neural Network IBN: Intent-Based

Networking LSTM: Long Short-Term Memory ML: Machine Learning MLP:

Multilayer Perceptron NM: Network Management RL: Reinforcement

Learning

4. Difficult problems in network management

As mentioned in introduction, problems to be tackled in NM tend to

be complex and exhibit characteristics that make them candidates for

solutions that involve AI techniques:

C1: A very large solution space, combinzatorially exploding with

the size of the problem domain. This makes it impractical to

explore and test every solution (again NP-hard problems here)

C2: Uncertainty and unpredictability along multiple dimensions,

including the context in which the solution is applied, behavior

of users and traffic, lack of visibility into network state, and

more. In addition, many networks do not exist in isolation but

are subjected to myriads of interdependencies, some outside their

control. Accordingly, there are many external parameters that

affect the efficiency of the solution to a problem and that
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cannot be known in advance: user activity, interconnected

networks, etc.

C3: The need to provide answers (i.e. compute solutions, deliver

verdicts, make decisions) in constrained or deterministic time.

In many cases, context changes dynamically and decisions need to

be made quickly to be of use.

C4: Data-dependent solutions. To solve a problem accurately, it

can be necessary to rely on large volumes of data, having to deal

with issues that range from data heterogeneity to incomplete data

to general challenges of dealing with high data velocity.

C5: Need to be integrated with existing automatic and human

processes.

C6: Solutions MUST be cost-effective as resources (bandwidth,

CPU, human, etc.) can be limited, notably when part of processing

is distributed at the network edge or within the network.

Many decision/optimization problems are affected by multiple

criteria. Below is a non-exhaustive list of complex NM problems for

which AI and/or non-AI-based approaches have been proposed:

Computation of optimal paths: Packet forwarding is not always

based on traditional routing protocols with least cost routing,

but on computation of paths that are optimized for certain

criteria - for example, to meet certain level objectives, to

result in greater resilience, to balance utilization, to optimize

energy usage, etc. Many of those solutions can be found in SDN,

where a controller or path computation element computes paths

that are subsequently provisioned across the network. However,

such solutions generally do not scale to millions of paths (C1),

and cannot be recomputed in sub-second time scales (C3) to take

into account dynamically changing network conditions (C2). To

compute those paths, operations research techniques have been

extensively used in literature along with AI methods as shown in 

[Lop20]. As such, this problem can be considered as close to big

data problems with some of the different Vs: volume, velocity,

variety, value...

Classification of network traffic: Without loss of generality a

common objective of network monitoring for operators is to know

the type of traffic going through their networks (web, streaming,

gaming, VoIP). By nature, this task analyzes data (C4) which can

vary over time (C2) except in very particular scenarios like

industrial isolated networks. However, the output of the

classification technique is time-constrained only in specific

cases where fast decisions MUST be made, for example to reroute
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traffic. Simple identification based on IANA-assigned TCP/UDP

ports numbers were sufficient in the past. However, with

applications using dynamic port numbers, signature techniques can

be used to match packet payload [Sen04]. To handle applications

now encapsulated in encrypted web or VPN traffic, machine-

learning has been leveraged [Bri19].

Network diagnostics: Disruptions of networking services can have

many causes and thus can rely on analyzing many sources of data

(C4). Identifying the root cause can be of high importance when

what is causing the disruption is not properly understood, so

that repair actions can address the root cause versus just

working around the symptoms. Such repair actions may involve

human actions (C5). Further complicating the matter are scenarios

in which disruptions are not "hard" but involve only a

degradation of service level, and where disruptions are

intermittent, not reproducible, and hard to predict. Artificial

intelligence techniques can offer promising solutions.

Intent-Based Networking (IBN): Roughly speaking, IBN refers to

the ability to manage networks by articulating desired outcomes

without the need to specify a course of actions to achieve those

outcomes [RFC9315]. The ability to determine such courses of

actions, in particular in scenarios with multiple

interdependencies, conflicting goals, large scale, and highly

complex and dynamic environments is a huge and largely unsolved

challenge (C1, C2, C3). Artificial Intelligence techniques can be

of help here in multiple ways, from accurately classifying

dynamic context to determine matching actions to reframing the

expression of intent as a game that can be played (and won) using

artificially intelligent techniques.

VNF placement and SFC design: Virtual Network Functions need to

be placed on physical resources and Service Function Chains

designed in an optimized manner to avoid use of networking

resources and minimize energy usage (C1,C6).

Smart admission control to avoid congestion and oversubscription

of network resources: Admission control needs to be set up and

performed in ways that ensure service levels are optimized in a

manner that is fair and aligned with application needs,

congestion avoided or its effects mitigated (C6).

5. High-level challenges in adopting AI in NM

As shown in the previous section, AI techniques are good candidates

for the difficult NM problems. There have been many propositions but

still most of them remain at the level of prototypes or have been

only evaluated with simulation and/or emulation. It is thus
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questionable why our community investigates much research in this

direction but has not adopted those solutions to operate real

networks. There are different obstacles.

First, AI advances have been historically driven by the image/video,

natural language and signal processing communities as well as

robotics for many decades. As a result, the most impressive

applications are in this area including recently the generalization

of home assistants or the large progress in autonomous vehicles.

However, the network experts have been focused on building the

Internet, especially building protocols to make the world

interconnected and with always better performance and services. This

trend continues today with the 5G networks in deployment and beyond

5G under definition. Hence, AI was not the primary focus even if

increased network automation calls for AI and ML solutions. However,

AI is now considered as a core enabler for the future 6G networks

which are sometimes qualified as AI-native networks.

While we can see major contributions in AI-based solutions for

networking over more than two decades, only a fraction of the

community was concerned by AI at that time. Progress as a whole,

from a community perspective, was so limited and compensated by

relying on the development of AI in the communities as mentioned

earlier. Even if our problems share some commonalities, for example

on the volume of data to analyze, there are many differences: data

types are completely different, networks are by nature heavily

distributed, etc. If problems are different, they SHOULD require

distinct solutions. In a nutshell, network-tailored AI was

overlooked and leads to a first set of challenges described in 

Section 6.

Second, many AI techniques require enough representative data to be

applied independently if the algorithms are supervised or

unsupervised. NM has produced a lot of methods and technologies to

acquire data. However, in most cases, the goal was not to support AI

techniques and lead so to a mismatch. For example, (deep) learning

techniques mostly rely on having vectors of (real) numbers as input

which fits some metrics (packet/byte counts, latency, delays, etc)

but needs some adjustment for categorical (IP addresses, port

numbers, etc) or topological features. Conversions are usually

applied using common techniques like one-hot encoding or by coarse-

grained representations [Sco11]. However, more advanced techniques

have been recently proposed to embed representation of network

entities rather than pure encoding [Rin17][Evr19][Sol20].

An additional challenge concerns the fact that AI techniques that

involve analysis of networking data can also lead to the extraction

of sensitive and personally-identifiable information, raising

potential privacy concerns and concerns regarding the potential for
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abuse. For example, AI techniques used to analyze encrypted network

traffic with the legitimate goal to protect the network from

intrusions and illegitimate attack traffic could be used to infer

information about network usage and interactions of network users.

Intelligent data analysis and the need to maintain privacy are in

many ways that are contradictory in nature, resulting in an arms

race. Similarly, training ML solutions on real network data is in

many cases preferable over using less-realisitic synthetic data

sets. However, network data may contain private or sensitive data,

the sharing of which may be problematic from a privacy standpoint

and even result in legal exposure. The challenge concerns thus how

to allow AI techniques to perform legitimate network management

functions and provide network owners with operational insights into

what is going on in their networks, while prohibiting their

potential for abuse for other (illegitimate) purposes. Challenges

related to network data as input to ML algorithms is detailed in 

Section 7.

Finally, networks are already operated thanks to (semi-)automated

procedures involving a large number of resources which are

synchronized with management or orchestration tools. Adding AI

supposes it would be seamlessly integrated within pre-existing

processes. Although the goal of these procedures might be solely to

provide relevant information to operators through alerts or

dashboards in case of monitoring applications, many other

applications rely on those procedures to trigger actions on the

different resources, which can be local or remote. The use of AI or

any other approaches to derive NM actions adds further constraint on

them, especially regarding time constraints and synchronization to

maintain a coherence over a distributed system.

A related challenge concerns the fact that to be deployed, a

solution needs to not only provide a technical solution but to also

be acceptable to users - in this case, network administrators and

operators. One challenge with automated solutions concerns that

users want to feel “in control” and able to understand what is going

on, even more so if ultimately those users are the ones who are held

accountable for whether or not the network is running smoothly.

Those same concerns extend to artificially intelligent systems for

obvious reasons. To mitigate those concerns, aspects such as the

ability to explain actions that are taken - or about to be taken -

by AI systems become important.

Beyond reasons of making users more comfortable, there are

potentially also legal or regulatory ramifications to ensure that

actions taken are properly understood. For example,agencies such as

the FCC may impose fines on network operators when services such as

E911 experience outages, as there is a public interest in ensuring

highest availability for such services. In investigating causes for
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such outages, the underlying behavior of systems has to be properly

understood, and even more so the reasons for actions that fall under

the realm of network operations. All these aspects about integration

and acceptability of the integration of AI in NM processes is

detailed in Section 8.

6. AI techniques and network management

6.1. Problem type and mapping

In the last few years, an increasing number of different AI

techniques have been proposed and applied successfully to a growing

variety of different problems in different domains, including

network management [Mus18], [Xie18]. Some of the more recently

proposed AI approaches are clearly advancements of older approaches,

which they supersede. Many other AI approaches are not predecessors

or successors but simply complementary because they are useful for

different problems or optimize different metrics. In fact, different

AI approaches are useful for different kinds of problem inputs

(e.g., tabular data vs. text vs. images vs. time series) and also

for different kinds of desired outputs (e.g., a predicted value, a

classification, or an action). Similarly, there may be trade-offs

between multiple approaches that take the same kind of inputs and

desired outputs (e.g., in terms of desired objective, computation

complexity, constraints).

Overall, it is a key challenge of using AI for network management to

properly understand and map which kind of problems with which

inputs, outputs, and objectives are best solved with which kind of

AI (or non-AI) approaches. Given the wealth of existing and newly

released AI approaches, this is far from a trivial task.

6.1.1. Sub-challenge: Suitable Approach for Given Input

Different problems in network management come with widely different

problem parameters. For example, security-related problems may have

large amounts of text or encrypted data as input, whereas

forecasting problems have historical time series data as input. They

also vary in the amount of available data.

Both the type and amount of data influences which AI techniques

could be useful. On one hand, in scenarios with little data,

classical machine learning techniques (e.g., SVM, tree-based

approaches, etc.) are often sufficient and even superior to neural

networks. On the other hand, neural networks have the advantage of

learning complex models from large amounts of data without requiring

feature engineering. Here, different neural network architectures

are useful for different kinds of problems. The traditional and

simplest architecture are (fully connected) multi-layer perceptrons
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(MLPs), which are useful for structured, tabular data. For images,

videos, or other high-dimensional data with correlation between

“close” features, convolutional neural networks (CNNs) are useful.

Recurrent neural networks (RNNs), especially LSTMs, and attention-

based neural networks (transformers) are great for sequential data

like time series or text. Finally, Graph Neural Networks (GNNs) can

incorporate and consider the graph-structured input, which is very

useful in network management, e.g., to represent the network

topology.

The aforementioned rough guidelines can help identify a suitable AI

approach and neural network architecture. Still, best results are

often only achieved with sophisticated combinations of different

approaches. For example, multiple elements can be combined into one

architecture, e.g., with both CNNs and LSTMs, and multiple separate

AI approaches can be used as an ensemble to combine their strengths.

Here, simplifying the mapping from problem type and input to

suitable AI approaches and architectures is clearly an open

challenge. Future work SHOULD address this challenge by providing

both clearer guidelines and striving for more general AI approaches

that can easily be applied to a large variety of different problem

inputs.

6.1.2. Sub-challenge: Suitable Approach for Desired Output

Similar to the challenge of identifying suitable AI approaches for a

given problem input, the desired output for a given problem also

affects which AI approach SHOULD be chosen. Here, the format of the

desired output (single value, class, action, etc.), the frequency of

these outputs and their meaning SHOULD be considered.

Again, there are rough guidelines for identifying a group of

suitable AI approaches. For example, if a single value is required

(e.g., the amount of resources to allocate to a service instance),

then typical supervised regression approaches SHOULD be used. If

classification (e.g., of malware or another security issue [Abd10])

instead of a value is desired, supervised classification methods 

SHOULD be used. Alternatively, unsupervised machine learning can

help to cluster given data into separate groups, which can be useful

to analyze networking data, e.g., for better understanding different

types of traffic or user segments.

In addition to these classical supervised and unsupervised methods,

reinforcement learning approaches allow active, sequential decisions

rather than simple predictions or classifications. This is often

useful in network management, e.g., to actively control service

scaling and placement as well as flow scheduling and routing.

Reinforcement learning agents autonomously select suitable actions

in a given environment and are especially useful for self-learning

¶

¶

¶

¶



network management. In addition to model-free reinforcement

learning, model-based planning approaches (e.g., Monte Carlo Tree

Search (MCTS)) also allow choosing suitable actions in a given

environment but require full knowledge of the environment dynamics.

In contrast, model-free reinforcement learning is ideal for

scenarios with unknown environment dynamics, which is often the case

in network management.

Similar to the previous sub-challenge, these are just rough

guidelines that can help to select a suitable group of AI

approaches. Identifying the most suitable approach within the group,

e.g., the best out of the many existing reinforcement learning

approaches, is still challenging. And, as before, different

approaches could be combined to enable even more effective network

management (e.g., heuristics + RL, LSTMs + RL, …). Here, further

research MAY simplify the mapping from desired problem output to

choosing or designing a suitable AI approach.

6.1.3. Sub-challenge: Tailoring the AI Approach to the Given Problem

After addressing the two aforementioned sub-challenges, one may have

selected a useful kind of AI approach for the given input and output

of a network management problem. For example, one may select

regression and supervised learning to forecast upcoming network

traffic. Or select reinforcement learning to continuously control

network and service coordination (scaling, placement, etc.).

However, even within each of these fields (regression, reinforcement

learning, etc.), there are many possible algorithms and

hyperparameters to consider. Selecting a suitable algorithm and

parametrizing it with the right hyperparameters is crucial to tailor

the AI approach to the given network management problem.

For example, there are many different regression techniques

(classical linear, polynomial regression, lasso/ridge regression,

SVR, regression trees, neural networks, etc.), each with different

benefits and drawbacks and each with its own set of hyperparameters.

Choosing a suitable technique depends on the amount and structure of

the input data as well as on the desired output. It also depends on

the available amount of compute resources and compute time until a

prediction is required. If resources and time are not a limiting

factor, many hyperparameters can be tuned automatically. In

practice, however, the design space of choosing algorithms and

hyperparameters is often so large that it cannot be effectively

tuned automatically but also requires some initial expertise in

selecting suitable AI algorithms and hyperparameters.

This sub-challenge holds for all fields of AI: Supervised learning

(regression and classification), self-supervised learning,

unsupervised learning, and reinforcement learning, each are broad
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and rapidly growing fields. Selecting suitable algorithms and

hyperparameters to tailor AI approaches to the network management

problem is both an opportunity and a challenge. Here, future work

should further explore these trade-offs and provide clearer

guidelines on how to navigate these trade-offs for different network

management tasks.

6.2. Performance of produced models

From a general point of view, any AI technique will produce results

with a certain level of quality. This leads to two inherent

questions: (1) what is the definition of the performance in a

context of a NM application? (2) How to measure it? and (3) How to

ensure/improve the quality of produced results?

Many metrics have been already defined to evaluate the performance

of an AI-based techniques in regards to its NM-level objectives. For

example, QoS metrics (throughput, latency) can serve to measure the

performance of a routing algorithm along with the computational

complexity (memory consumption, size of routing tables). The

question is to model and measure these two antagonist types of

metrics. Number of true/false positives/negatives are the most basic

metrics for network attack detection functions. Although the first

two questions are thus already answered even if improvement can be

done, question (3) refers to the integration of metrics into AI

algorithms. Its objective is to obtain the best results which need

to be quantified with these metrics. Depending on the type of

algorithm, these metrics are either evaluated in an online manner

with a feedback loop (for example with reinforcement learning) or in

batch to optimize a model based on a particular context (for example

described by a dataset for machine learning).

The problem is two-fold. First, the performance can be measured

through multiple metrics of different types (numerical or ordinal

for example) and some can be constrained by fixed boundaries (like a

maximum latency), making their joint use challenging when creating

an AI model to resolve a NM problem. Second, the scale metrics

differ from each other in terms of importance or impact and can

eventually vary on their domains. It can be hard to precisely assess

what is a good or bad value (as it might depend on multiple other

ones) and it is even more difficult to integrate in an AI technique,

especially for learning algorithms to adjust their models based on

the performance. Indeed, learning algorithms run through multiple

iterations and rely on internal metrics (MAE or (R)MSE for neural

network, gini index or entropy for decision trees, distance to an

hyperplane for SVMs, etc) which are not strongly correlated to the

final metrics of the application. For instance, a decision tree

algorithm for classification purposes aims at being able to create

branches with a maximum of data from the same classes and so avoid
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mixing classes. It is done thanks to a criterion like the entropy

index but this kind of Index does not assume any difference between

mixing class A and B or A and C. Assuming now that from an

operational point of view, if A and B are mixed in the predictions

is not critical, the algorithm should have preferred to mix and A

and B rather than A and C even if in the first case it will produce

more errors.

Therefore, the internal functioning of the AI algorithms should be

refined, here by defining a particular criterion to replace the

entropy as a quality measure when separating two branches. It

assumes that the final NM objectives are integrated at this stage.

Another concrete example is traffic predictors which aim at

forecasting traffic demands. They only produce an input that is not

necessarily simple to be interpreted and used by, e.g., capacity

allocation strategies/policies. A traditional traffic prediction

that tries to minimize (perfectly symmetric) MAE/MSE treats positive

and negative errors in identical ways, hence is agnostic of the

diverse meaning (and costs) of under- and over-provisioning. And,

such a prediction does not provide any information on, e.g., how to

dimension resources/capacity to accommodate the future demand

avoiding all underprovisioning (which entails service disruption)

while minimizing overprovisioning (i.e., wasting resources). In

other words, it forces the operator to guess the overprovisioning by

taking (non-informed) safety margins. A more sensible approach here

is instead forecasting directly the needed capacity, rather than the

traffic [Beg19].

While the one above is just an example, the high-level challenge is

devising forecasting models that minimize the correct objective/loss

function for the specific NM task at hand (instead of generic MAE/

MSE). In this way, the prediction phase becomes an integral part of

the NM, and not just a (limited and hard-to-use) input to it. In ML

terms, this maps to solving the loss-metric mismatch in the context

of anticipatory NM [Hua19].

Another issue for statistical learning (from examples/observations)

is mainly about extracting an estimator from a finite set of input-

output samples drawn from an unknown probability distribution that

should be descriptive enough for unseen/new input data. In this

context online monitoring and error control of the quality/

properties of these point estimators (bias, variance, mean squared

error, etc.) is critical for dynamic/uncertain network environments.

Similar reasoning/challenge applies for interval estimates, i.e.,

confidence intervals (frequentist) and credible intervals

(Bayesian).
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6.3. Lightweight AI

Network management and operations often need to be performed under

strict time constraints, i.e. at line rate, in particular in the

context of autonomic or self-driven networks. Locating NM functions

as close as possible where forwarding is achieved is thus an

interesting option to avoid additional delays when these operations

are performed remotely, for example in a centralized controller.

Besides, forwarding devices may offer available resources to

supplement or replace edge resources. In case of AI coupled with

network management, AI tasks can be offloaded in network devices, or

more generally embedded within the network. Obviously, time-critical

tasks are the best candidates to be offloaded within the network.

Costly learning tasks should be processed in high-end servers but

created models can be deployed, configured, modified and tuned in

switches.

Recent advances in network programmability ease the programming of

specific tasks at data-plane level. P4 [Bos14] is widely used today

for many tasks including firewalling [Dat18] or bandwidth management 

[Che19]. P4 is prone to be agnostic to a specific hardware. Switches

actually have particular architectures and the RMT (Reconfigurable

Match Table) [Bos13] model is generally accepted to be generic

enough to represent limited but essential switch architecture

components and functionalities. P4 is inspired by this architecture.

The RMT model allows reconfiguring match-action tables where actions

can be usual ones (rewrite some headers, forward, drop...). Actions

are thus applied on the packets when they are forwarded. Actions can

also be more complex programs with some safeguards: no loop,

resistivity… The impact on the program development is huge. For

example, real number operations are not available by default while

they are primordial in many AI algorithms.

In a nutshell, the first challenge to overcome of embedding AI in a

network is the capacity of the hardware to support AI operations

(architectural limitation). Considering software equipment such as a

virtual switch simplifies the problem but does not totally resolve

it as, even in that case, strong line-rate requirement limits the

type of programs to be executed. For example, BPF (Berkeley Packet

Filter) programs provides a higher control on packet processing in

OVS [Cha18] but still have some limitations, as the execution time

of these programs are bounded by nature to ensure their termination,

an essential requirement assuming the run-to-completion model which

permits high throughput.

The second challenge (resource limitation) of network-embedded AI in

the network is to allocate enough resources for AI tasks with a

limited impact on other tasks of network devices such as forwarding,

monitoring, filtering… Approximation and/or optimization of AI tasks
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are potential directions to help in this area. For instance, many

network monitoring proposals rely on sketches and with a proposed

well-tuned implementation for data-plane [Liu16][Yan18]. However, no

general optimized AI-programmable abstraction exists to fit all

cases and proposals are mostly use-case centric. Research direction

in NM regarding this issue can benefit from propositions in the

field of embedded systems that face the same issues. Binarization of

neural networks is one example [Lia18]. Besides, distributed

processing is a common technique to distribute the load of a single

task between multiple entities. AI task decomposition between

network elements, edge servers or controllers has been also proposed

[Gup18].

6.4. Distributed AI

Distributed AI assumes different related tasks and components to be

distributed across computational resources which are possibly

heterogeneous. For example, with advances in transfer and Federated

Learning (FL), models can be learned, partially shared and combined

or data can be also shared to either improve a local or global

model. By nature, a network and a networked infrastructure is

distributed and is thus well adapted to any distributed

applications. This is exacerbated with the deployment of fog

infrastructure mixing network and computational resources. Hence,

network management can directly benefit to the distributed network

structure to solve its own particular problems but any other type of

AI-based distributed applications also assumes communication

technologies to enable interactions between the different entities.

This leads so the two sub-challenges described hereafter.

6.4.1. Network management for efficient distributed AI

Distributed AI relies on exchanging information between different

entities and comes with various requirements in terms of volume,

frequency, security, etc. This can be mapped to network requirements

such as latency, bandwidth or confidentiality. Therefore, the

network needs to provide adequate resources to support the proper

execution of the AI distributed application. While this is true for

any distributed application, the nature of the problem that is

intended to be solved by an AI application and how this would be

solved can be considered. For example, with FL, local models can be

shared to create a global model. In case of failure of network links

or in case of too high latency, some local models might not be

appropriately integrated into the global model with a possible

impact on AI performance. Depending on the nature of the latter, it

might be better to guarantee high performance communications with a

few number of nodes or to ensure connectivity between all of them

even with lower network performance. Coupling is thus necessary

between the network management plane and the distributed AI
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applications which leads to a set of questions to be addressed about

interfaces, data and information models or protocols. While the

network can be adapted or eventually adapt itself to the AI

distributed applications, AI applications could also adapt

themselves to the underlying network conditions. It paves the way to

research on methods to support AI application aware-network

management or network-aware AI applications or a mix of both.

6.4.2. Distributed AI for network management

For network management applications relying on distributed AI,

challenges from Section 6.4.1 are still valid. Furthermore, network

management problems also consider network-specific elements like

traffic to be analyzed or configuration to be set on distributed

network equipments. Co-locating AI processing and these elements

(fully or partially) may help to increase performance. For example,

precalculation on traffic data can be offloaded on network routers

before being further processed in high-end servers in a data-center.

Besides, as data is forwarded through multiple routers,

decomposition of AI processes along the forward path is possible 

[Jos22]. In general, distributed AI-based network management

decisions could be made at different nodes in the network based on

locally available information [Sch21]. Hence, deployment of AI-based

solutions for network management can also take into account various

network attributes like network topology, routing policies or

network device capability. In that case, management of computational

and network resources is even more coupled than in Section 6.4.1

since the network is both part of the AI pipeline resources and the

managed object through AI.

A primary application for distributed AI is for management problems

that have a local scope. One example concerns problems that can be

addressed at the edge, involving tasks and control loops that

monitor and apply local optimizations to the edge in isolation from

activities conducted by other instances across the network. However,

distributed AI can involve techniques in which multiple entities

collaborate to solve a global problem. Such solutions lend

themselves to problems in which centralized solutions are faced with

certain foundational challenges such as security, privacy, and

trust: The need to maintain complete state in a centralized solution

may not be practical in some cases due to concerns such as privacy

and trust among multiple subdomains which may not want to share all

of their data even if they would be willing to collaborate on a

problem). Other foundational challenges concern issue related to

timeliness, in which distributed solutions may have inherent

advanges over centralized solutions as they avoid issues related to

delays caused by the need to communicate updates globally and across

long distances.
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6.5. AI for planning of actions

Many tasks in network management revolve around the planning of

actions with the purpose of optimizing a network and facilitating

the delivery of communication services. For example, Paths need to

be planned and set up in ways that minimize wasted network resources

(to optimize cost) while facilitating high network utilization

(avoiding bottlenecks and the formation of congestion hotspots) and

ensuring resiliency (by making sure that backup paths are not

congruent with primary paths). Other examples were mentioned in 

Section 4.

The need for planning only increases with the rise of centralized

control planes. The promise of central control is that decisions can

be optimized when made with complete knowledge of relevant context,

as opposed to distributed control that needs to rely on local

decisions being made with incomplete knowledge while incurring

higher overhead to replicate relevant state across multiple systems.

However, as the scale of networks and interconnected systems

continues to grow, so does the size of the planning task. Many

problems are NP-hard. As a result, solutions typically need to rely

on heuristics and algorithms that often result in suboptimal

outcomes and that are challenging to deploy in a scalable manner.

The emergence of Intent-Based Networking emphasizes the need for

automated planning even further. The concept underlying “intent” is

that it should allow users (network operators, not end users of

communication services) to articulate desired outcomes without the

need to specify how to achieve those outcomes. An Intent-Based

System is responsible for translating the intent into courses of

action that achieve the desired outcomes and that continue to

maintain the outcomes over time. How the necessary courses of action

are derived and what planning needs to take place is left open but

where the real challenge lies. Solutions that rely on clever

algorithms devised by human developers face the same challenges as

any other network management tasks.

These properties (problems with a clearly defined need, whose

solution is faced with exploding search spaces and that today rely

on algorithms and heuristics that in many cases result only

suboptimal outcomes and significant limitations in scale) make

automated planning of actions an ideal candidate for the application

of AI-based solutions.

AI applications in network management in the past have been largely

focusing on classification problems. Examples include analysis by

Intrusion Protection Systems of traffic flow patterns to detect

suspicious traffic, classification of encrypted traffic for improved

QoS treatment based on suspected application type, and prediction of
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performance parameters based on observations. In addition, AI has

been used for troubleshooting and diagnostics, as well as for

automated help and customer support systems. However, AI-based

solutions for the automated planning of actions, including the

automated identification of courses of action, have to this point

not been explored much.

A much-publicized leap in AI has been the development of Alpha Go.

Instead of using AI to merely solve classification problems, Alpha

Go has been successful in automatically deriving winning strategy

for board games, specifically the game of Go which features a

prohibitively large search space that was long thought to put the

ability to play Go at a world class level beyond the reach of

problems that AI could solve. Among the remarkable aspects of Alpha

Go is that it is able to identify winning strategies completely on

its own, without needing those strategies to be taught or learned by

observations assuming the system is aware of rules.

The challenge for AI in network management is hence, where is the

equivalent of an Alpha Go that can be applied to network management

(and networking) problems? Specifically, better solutions are needed

for solutions that automatically derive plans and courses of actions

for network optimization and similar NP-hard problems, such as

provided today with only limited effectiveness by controllers and

management applications.

Also, the evaluation of AI algorithms to derive courses of actions

is more complex than more common regression or classification tasks.

Actions need to be applied in order to observe the results it leads

to. However, contrary to game playing, solutions need to be applied

in the real world, where actions have real effects and consequences.

Different orientations can be envisioned. First, incremental

application of AI decisions with small steps can allow us to

carefully observe and detect unexpected effects. This can be

complemented with roll-back techniques. Second, formal verification

techniques can be leveraged to verify decisions made by AI are

maintained within safety bounds. Third, sandbox environments can be

used but they SHOULD be representative enough of the real world.

After progress in simulation and emulation, recent research advances

lead to the definition of digital twins which implies a tight

coupling between a real system and its digital twin to ensure a

parallel but synchronized execution. Alternatively, transfer

learning techniques in another promising area to be able to

capitalize on ML models applicable on a real word system in a more

generic sandbox environment. It is actually also an open problem to

make the use of AI more acceptable as highlighted in the dedicated

section.
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7. Network data as input for ML algorithms

Many applications of AI takes as input data. The quality of the

outputs of ML-based techniques are highly dependent on the quality

and quantity of data used for learning but also on other parameters.

For example, as modern network infrastructures move towards higher

speed and scale, they aim to support increasingly more demanding

services with strict performance guarantees. These often require

resource reconfigurations at run time, in response to emerging

network events, so that they can ensure reliable delivery at the

expected performance level. Timely observation and detection of

events is also of paramount importance for security purposes, and

can allow faster execution of remedy actions thus leading to reduced

service downtime.

Thus, the challenge of data management is multifaceted as detailed

in next subsections.

7.1. Data for AI-based NM solutions

Assuming a network management application, the first problem to

address is to define the data to be collected which will be

appropriate to obtain accurate results. This data selection can

require defining problem-specific data or features (feature

engineering).

Firstly, NM has already produced a lot of methods and technologies

to acquire data. However, in most cases, the goal was not to support

AI problems and lead to a mismatch. Indeed, machine learning

algorithms only work as desired when data to be analyzed respects

properties. Many methods rely on vector-based distances which so

supposes that the data encoded into the vector respects the

underlying distance semantic. Taking the first n bytes of a packet

as vectors and computing distances accordingly is possible but does

not embed the semantic of the information carried out in the

headers. For example, (deep) learning techniques mostly rely on

vectors of (real) numbers as input which fits some metrics (packet/

byte counts, latency, delays, etc) but needs some adjustment for

categorical (IP addresses, port numbers, etc) or topological

features. Conversions are usually applied using common techniques

like one-hot encoding or by coarse-grained representations [Sco11].

However, more advanced techniques have been recently proposed to

embed representation of network entities rather than pure encoding 

[Rin17][Evr19][Sol20]. Data to handle can be in a schema-free or

eventually text-based format. One example could be the automated

annotation of management intents provided in an unstructured textual

format (policies descriptions, specifications,) to extract from them

management entities and operations. For that purpose, suitable

annotation models need to be built using existing NER (Named Entity
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Recognition) techniques usually applied for NLP. However, this SHALL

be carefully crafted or specialized for network management (intent)

language which indirectly bounces back to the challenges of AI

techniques for NM specified earlier.

Secondly, The behavior of any network is not just derived from the

events that can be directly observed, such as network traffic

overload, but also from events occurring outside the environment of

the network. The information provided by the detectors of such kinds

of events, e.g. a natural incident (earthquake, storm), can be used

to determine the adaptation of the network to avoid potential

problems derived from such events. Those can be provided by BigData

sources as well as sensors of many kinds. The AI challenge related

to this task is to process large amounts of data and associate it

with the effects that those events have on the network. It is hard

to determine the static and dynamic relation between the data

provided by external sources and the specific implications it has in

networks. For instance, the effect of a “flash crowd” detected in an

external source depends on the relation of a particular network to

such an event. This can be addressed by AI and its particular

application to network management. The objective is to complement a

control-loop, as shown in [Mar18], by including the specific AI

engines into the decision components as well as the processes that

close the loop, so the AI engine can receive feedback from the

network in order to improve its own behavior. Similar challenges are

addressed in other domains, image processing and computer vision, by

using artifacts for anticipating movements in object location and

identification.

7.2. Data collection

Once defined, the second problem to address is the collection of

data. Monitoring frameworks have been developed for many years such

as IPFIX [RFC7011] and more recently with SDN-based monitoring

solutions [Yu14][Ngu20]. However, going towards more AI for actions

in network management supposes also to retrieve more than traffic

related information. Actually, configuration information such as

topologies, routing tables or security policies have been proven to

be relevant in specific scenarios. As a result, many different

technologies can be used to retrieve meaningful data. To support

improved QoE, monitoring of the application layer is helpful but far

from being easy with the heterogeneity of end-user applications and

the wide use of encrypted channels. Monitoring techniques need to be

reinvented through the definition of new techniques to extract

knowledge from raw measurement [Bri19] or by involving end-users

with crowd-sourcing [Hir15] and distributed monitoring. Also, the

data-mesh concept proposes to classify data into three categories:

source-aligned, aggregate and consumer-aligned. Source-aligned data

are those related to the same operational domain and it is important
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to correlate or aggregate them with higher planes: management-,

control- and forwarding plane. An issue is the difference, not only

in the nature of data, but in their volumes and their variety. Some

may change rapidly over time (for example network traffic) while

other may be quite stable (device state).

The collecting process requirements depend on the kind of

processing. We can distinguish two major classes: batch/offline vs

real-time/online processing. In particular, real-time monitoring

tools are key in enabling dynamic resource management functions to

operate on short reconfiguration cycles. However, maintaining an

accurate view of the network state requires a vast amount of

information to be collected and processed. While efficient

mechanisms that extract raw measurement data at line rate have been

recently developed, the processing of collected data is still a

costly operation. This involves potentially sampling, evaluating and

aggregating a vast amount of state information as a response to a

diverse set of monitoring queries, before generating accurate

reports. One difficult problem resides also in the availability of

data as real-time data from different sources to be aggregated may

not arrive at the same time requiring so some buffering techniques.

Machine learning methods, e.g. based on regression, can be used to

intelligently filter the raw measurements and thus reduce the volume

of data to process. For example, in [Tan20] the authors proposed an

approach in which the classifiers derived for this purpose

(according to measurements on traffic properties) can achieve a

threefold improvement in the query processing capability. A residual

question is the storage of raw measurements. In fact, predicting the

lifetime of data is challenging because their analysis may not be

planned and triggered by a particular event (for example, an anomaly

or attack). As a result, the provisioning of storage capacity can be

hard.

In parallel to the continuously increasing dynamicity of networks

and complexity of traffic, there is a trend towards more user

traffic processing customization [RFC8986][Li19]. As a result, fine

grained information about network element states is expected and new

propositions have emerged to collect on-path data or in-band network

telemetry information [Tan20b]. These new approaches have been

designed by introducing much flexibility and customization and could

be helpful to be used in conjunction with AI applications. However,

the seamless coupling of telemetry processes with packet forwarding

requires careful definition of solutions to limit the overhead and

the impact of the throughput while providing the necessary level of

details. This shares commonalities with the lightweight AI

challenge.
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7.3. Usable data

Although all agree on the necessity to have more shared datasets, it

is quite uncommon in practice. Data contains private or sensitive

information and may not be shared because of the criticality of data

(which can be used by ill-intentioned adversaries) or due to laws or

regulations, even within the same company. To solve this issue,

anonymization techniques [Dij19] can be enhanced to optimize the

trade-off between valuable data vs sensitive information (potential)

leakage or reconstruction. Whatever the final user of data,

regulations and laws impose rules on data management with

potentially costly impact if they are not respected voluntarily or

not. Defining a new monitoring framework should always consider

security and privacy aspects, for example to let any user/customer

or access/remove its own data with General Data Protection

Regulation (GDPR) in EU. The challenge resides here in the capacity

of qualifying what is critical or private information and the

capacity for an adversary to reconstruct it from other sources of

data. Hence AI/ML based solutions will require more data but also

more administrative, legal and ethical procedures. Those can last

long and so slow down the deployment of a new solution. In addition,

this requires interaction with experts from different domains (e.g.

AI engineer and a lawyer). The integration of these non-technical

constraints should be considered when defining new data to be

collected or a new technique to collect data. However, knowing the

final use of data is most of the time necessary for ethical and

legal assessment which assumes that those considerations SHOULD be

integrated from the early design of new AI-based solutions.

For supervised or semi-supervised training, having a labeled dataset

is a prerequisite. It constitutes a major challenge as well. One one

hand, collectors are able to retrieve data. On the other hand, those

network data are typically unlabeled. This limits application of ML

to unsupervised learning tasks (learning from data). Because manual

labeling is a tedious task. one option is to leverage AI to guide

humans. This may also support a better generalization of a learned

model. Indeed, an underlying challenge is the genericity or coverage

of the datasets. Labels encode values of an objective function, the

challenge posed by the design of such tools is tremendous since for

involving a M:N relationship: 1 data type may be associated to M

objective function values and N data types may be associated to 1

objective function. As a result, most datasets used for research

encodes a single label for a particular application like attack

label for datasets to be used in the context of intrusion detection

or application type for network traffic used for classification

where the value of a single dataset could be capitalized in several

applications.
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Again, researchers need empirical (or at least realistic) datasets

to validate their solutions. Unfortunately, as highlighted above,

having such data from real deployments for various reasons (business

secrets, privacy concerns, concerns that vulnerabilities are

revealed by accident, raw unlabeled data, etc.) is tough. Even if

such a dataset is available it might not be enough to convincingly

validate a new algorithm. Instead of falling back to artificial

testbed experiments or simulation, it would be useful to have the

capability to generate datasets with characteristics that are not

100% identical but similar to the characteristics of one or more

real datasets. Such synthetic networks can be used to validate new

management algorithms, intrusion detection systems, etc. The usage

of AI (for example GANs) in this area [Hui22] is not yet widespread

and there are still many concerns that deter researchers, e.g. the

fear of leaking sensitive information from the original dataset into

the synthetic dataset.

8. Acceptability of AI

Networks are critical infrastructures. On one hand, they SHOULD be

operated without interruption and must be interoperable. Networks,

except in a lab, are not isolated which slow down innovation in

general. For example, changing Internet routing protocols SHOULD be

accepted by all. The same applies for protocol. Even if there have

been several versions of major protocols in use like TCP or DNS,

there are still some security issues which cannot be patched with

100% guarantee. On the other hand, results provided by AI solutions

are uncertain by nature. The same technique applied in different

environments can produce different results. AI techniques need some

effort (time and human) to be properly configured or to be

stabilized. For instance, reinforcement learning needs several

iterations before being able to produce acceptable results. These

properties of AI techniques are thus a bit antagonist with the

criticality of network infrastructures. With that in mind,

acceptability of AI by network operators is clearly an obstacle for

its larger adoption.

8.1. Explainability of Network-AI products

A common issue across all Machine Learning (ML) applications is that

they are black boxes. This means that, after training, the knowledge

acquired by ML models is unintelligible to humans. As a result,

offering hard guarantees on performance is a very challenging issue.

In addition, complex ML models like neural networks -that often have

more than hundreds of thousands of parameters- are very hard to

debug or troubleshoot in case of failure.

While this is a common issue for all applications of AI, many areas

work well with uncertainty and the black-box behavior of AI-based
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solutions. For instance, users accept an inherent error in

recommender systems or computer vision solutions.

The networking field has already produced a set of well-established

network management algorithms and methods, with clear performance

guarantees and troubleshooting mechanisms [Rex06][Kr14]. As such,

improving debugging, troubleshooting and guarantees on AI-based

solutions for networking is a must.

AI researchers and practitioners are devoting large research efforts

to improve this aspect of ML models, which is commonly known as

explainability [XAI].

This set of techniques provides insights and, in some cases,

guarantees on the performance and behavior of ML-based solutions.

Understanding such techniques, researching and applying them to

network AI is critical for the success of the field.

There exist several ML-based methods that are human-understandable,

although not widely used today. For instance, [Mar20] shows a method

for building anticipation models (prediction) that provide

explanations while determining some actions for tuning some

parameters of the network. There are other challenges that SHOULD be

addressed, such as providing explanations for other ML methods that

are quite extended. For instance, xNN/SVM models can be accompanied

by Digital Twins of the network that are reversely explored to

explain some output from the ML model (e.g., xNN/SVM). In this

context, there already exist several methods [Zil20][Puj21] that

produce human-readable interpretations of trained NN models, by

analyzing their neural activations on different inputs. (As an

aside, it should be noted that Digital Twins are not considered per

se an AI approach; they merely serve to provide a digital

representation of a network that can serve as its proxy and offer a

layer of indirection between management applications and actual

network resources. That being said, it is conceivable that AI-based

management applications can be combined and operate in conjunction

with Digital Twin technology, for example to use a Digital Twins as

an experimentation sandbox or staging ground for AI-driven

applciations.)

8.2. AI-based products and algorithms in production systems

AI-based network management and optimization algorithms are first

trained, then the resulting model is used to produce relevant

inferences in operation, either in management or optimization

scenarios. A relevant question for the success of AI-based solutions

is: where does this training occur?
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Traditionally, AI-based models have been trained in the same

scenario where they operate[Val17][Xu18], this is the customer

network. However this presents critical drawbacks. First, training

an AI model for management and operation typically requires

generating network configurations and scenarios that can break the

network. This is because training requires seeing a broad spectrum

of scenarios. Thus, it is not feasible in production networks.

Second, customer networks may not be equipped with the monitoring

infrastructure required to collect the data used in the training

process (e.g., performance metrics).

A more sensible approach is to train the AI-based product in a lab,

for instance in the vendor’s premises. In the lab, AI models can be

trained in a controlled testbed, with any configuration, even ones

that break the network. However, the main challenge here arises from

the fundamental differences between the lab’s network and the

customer networks. For instance, the topology of the lab’s network

might be smaller, etc. As a result, there is a need for models that

are able to generalize. In this context, generalization means that

models should be able to operate in other scenarios not seen during

training, with different topologies, routing configurations,

scheduling policies, etc.

In order to address this generalization problem, multiple

complementary approaches are possible: One approach is training on

diverse data that represents large parts of the expected problem

space. For example, training with various different traffic patterns

will help improve generalization to unseen but comparable traffic

patterns. Another approach is to leverage AI designs or

architectures that facilitate generalization. One example are Graph

Neural Networks (GNN) [gnn1][gnn2]. GNNs are a rather novel type of

neural network able to operate and generalize over graphs. Indeed,

networks are fundamentally represented as graphs: topology, routing,

etc. With GNNs, vendors can train the AI model in a lab with a

certain topology and then directly use the resulting model in

different customer networks, even with different network topologies.

Finally, another approach is Transfer Learning [tl1]. With this

technique, the knowledge gained in the lab’s training is used to

operate in the customer network. Transfer Learning still requires

that some data from the customer is used to re-train and fine-tune

the model (e.g., accurate performance measurements). This means

that, for each customer network, re-training is required. This may

be problematic since it requires added cost and access to customer

data.

In addition to the challenge of generalizing from training to

production environment, there are also challenges in terms of

interoperability between different AI approaches and different

deployment environments. As mentioned above, AI approaches may be

¶
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deployed in diverse environments, e.g., for training and production,

but also for local development, for testing, and for validation or

in different part of the production systems. These environments may

differ in available compute resources, network topology, operating

systems, cloud providers, etc. (single node machine, single cluster,

many distributed clusters, ...). Deploying the same AI solutions in

these different environments can lead to various challenges in terms

of interoperability. Common AI frameworks support scaling across

networks of different size. Yet, many frameworks are often combined,

e.g., for data collection, processing, predictions, validation, etc.

Again, ensuring interoperability between these frameworks can be

tedious.

This shares some with problems described in Section 6.4 and

particularly emphasizes the need for network environments to provide

interfaces and descriptions suitable for AI solutions to be properly

instantiated and configured.

One approach to address these interoperability challenges is through

meta-frameworks that interface with most available AI frameworks.

These meta-frameworks provide a higher level of abstraction and

often allow seamless deployment across different environments (e.g.,

on-premise or at different cloud providers) [Mor18].

8.3. AI with humans in the loop

Depending on the network management task, AI can automate and

replace manual human control or it can complement human experts and

keep them in the loop. Keeping humans in the loop will be an

important step of building trust in AI approaches and help ensure

the desired outcomes. There are various ways of keeping humans in

the loop in the different fields of AI, which could be useful for

different aspects of network management.

In classification tasks (e.g., detecting security breaches, malware

or detecting anomalies), trained AI models provide a confidence

score in addition to the predicted class. If the confidence is high,

the prediction is used directly. If the confidence is too low, a

human expert may jump in and make the decision - thereby also

providing valuable training data to improve the AI model. Such

approaches are already being used in industry, e.g., to

automatically label datasets (AWS SageMake). Similar approaches

could also be used for other supervised learning tasks, e.g.,

regression. Still, it is an open challenge to keep humans in the

loop in all phases of the learning process.

Another field of AI is reinforcement learning, which is useful for

taking continuous control decisions in network management, e.g.,

controlling service scaling and placement as well as flow scheduling

¶
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and routing over time. Reinforcement learning agents typically

interact with the environment (i.e., the simulated or real network)

completely autonomously without human feedback. However, there is a

growing number of approaches to put human experts back into the

loop. One approach is offline reinforcement learning, where the

training data does not come from the reinforcement learning agent’s

own exploration but from pre-recorded traces of human experts (e.g.,

placement decisions that were made by humans before). Another

approach is to reward the reinforcement learning agent based on

human feedback rather than a pre-defined reward function [Lee21].

Again, while there are first promising approaches, more work is

required in this area. Overall, it is an open challenge to both

leverage the benefits of AI but keep human experts in the loop where

it is useful.

9. Security Considerations

TODO Security

10. IANA Considerations

This document has no IANA actions.
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