
Network Working Group O. Friel
Internet-Draft R. Barnes
Intended status: Informational M. Pritikin
Expires: May 7, 2020 Cisco
 H. Tschofenig
 Arm Ltd.
 M. Baugher
 Consultant
 November 04, 2019

Application-Layer TLS
draft-friel-tls-atls-04

Abstract

 This document specifies how TLS and DTLS can be used at the
 application layer for the purpose of establishing secure end-to-end
 encrypted communication security.

 Encodings for carrying TLS and DTLS payloads are specified for HTTP
 and CoAP to improve interoperability. While the use of TLS and DTLS
 is straight forward we present multiple deployment scenarios to
 illustrate the need for end-to-end application layer encryption and
 the benefits of reusing a widely deployed and readily available
 protocol. Application software architectures for building, and
 network architectures for deploying application layer TLS are
 outlined.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Friel, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft ATLS November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Application Layer End-to-End Security Use Cases 4
3.1. Constrained Devices 4
3.2. Bootstrapping Devices 6

4. ATLS Goals . 7
5. Architecture Overview . 7
5.1. Application Architecture 7
5.2. Functional Design . 13
5.3. Network Architecture 15

6. ATLS Session Establishment 16
7. ATLS over CoAP Transport 18
8. ATLS over HTTP Transport 19
8.1. Protocol Summary . 20
8.2. Content-Type Header 20
8.3. HTTP Status Codes . 20
8.4. ATLS Session Tracking 20
8.5. Session Establishment and Key Exporting 21
8.6. Illustrative ATLS over HTTP Session Establishment 21

9. Key Exporting and Application Data Encryption 22
9.1. OSCORE . 22
9.2. COSE . 23

10. TLS Ciphersuite to COSE/OSCORE Algorithm Mapping 23
11. TLS Extensions . 24
11.1. The "oscore_connection_id" Extension 24
11.2. The "cose_ext" Extension 25

12. IANA Considerations . 25
12.1. "oscore_connection_id" TLS extension 25
12.2. TLS Ciphersuite to OSCORE/COSE Algorithm Mapping 26
12.3. .well-known URI Registry 26
12.4. Media Types Registry 27

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Friel, et al. Expires May 7, 2020 [Page 2]

Internet-Draft ATLS November 2019

12.5. HTTP Content-Formats Registry 28
12.6. CoAP Content-Formats Registry 28
12.7. TLS Key Extractor Label 28

13. Security Considerations 28
14. References . 29
14.1. Normative References 29
14.2. Informative References 30

Appendix A. Pseudo Code . 32
A.1. OpenSSL . 32
A.2. Java JSSE . 34

Appendix B. ATLS and HTTP CONNECT 36
Appendix C. Alternative Approaches to Application Layer End-to-

 End Security . 39
C.1. Noise . 39
C.2. Signal . 40
C.3. Google ALTS . 40
C.4. Ephemeral Diffie-Hellman Over COSE (EDHOC) 40

 Authors' Addresses . 40

1. Introduction

 There are multiple scenarios where there is a need for application
 layer end-to-end security between clients and application services.
 Two examples include:

 o Constrained devices connecting via gateways to application
 services, where different transport layer protocols may be in use
 on either side of the gateway, with the gateway transcoding
 between the different transport layer protocols.

 o Bootstrapping devices that must connect to HTTP application
 services across untrusted TLS interception middleboxes

 These two scenarios are described in more detail in Section 3.

 This document describes how clients and applications can leverage
 standard TLS software stacks to establish secure end-to-end encrypted
 connections at the application layer. TLS [RFC5246] [RFC8446] or
 DTLS [RFC6347] [I-D.ietf-tls-dtls13] can be used and this document is
 agnostic to the versions being used. There are multiple advantages
 to reuse of existing TLS software stacks for establishment of
 application layer secure connections. These include:

 o many clients and application services already include a TLS
 software stack, so there is no need to include yet another
 software stack in the software build

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347

Friel, et al. Expires May 7, 2020 [Page 3]

Internet-Draft ATLS November 2019

 o no need to define a new cryptographic negotiation, authentication,
 and key exchange protocol between clients and services

 o provides standards based PKI mutual authentication between clients
 and services

 o no need to train software developers on how to use a new
 cryptographic protocols or libraries

 o automatically benefit from new cipher suites by simply upgrading
 the TLS software stack

 o automatically benefit from new features, bugfixes, etc. in TLS
 software stack upgrades

 When TLS or DTLS is used at the application layer we refer to it as
 Application-Layer TLS, or ATLS. There is, however, no difference to
 TLS versions used over connection-oriented transports, such as TCP or
 SCTP. The same is true for DTLS. The difference is mainly in its
 use and the requirements placed on the underlying transport.

 This document defines how ATLS can be used over HTTP [RFC7230]
 [RFC7540] and over CoAP [RFC7252]. This document does not preclude
 the use of other transports. However, defining how ATLS can be
 established over [ZigBee], [Bluetooth], etc. is beyond the scope of
 this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Application-Layer TLS is referred to as ATLS throughout this
 document.

3. Application Layer End-to-End Security Use Cases

 This section describes describes a few end-to-end use cases in more
 detail.

3.1. Constrained Devices

 Two constrained device use cases are outlined here.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Friel, et al. Expires May 7, 2020 [Page 4]

Internet-Draft ATLS November 2019

3.1.1. Constrained Device Connecting over a Non-IP Network

 There are industry examples of smart lighting systems where
 luminaires are connected using ZigBee to a gateway. A server
 connects to the gateway using CoAP over DTLS. The server can control
 the luminaires by sending messages and commands via the gateway. The
 gateway has full access to all messages sent between the luminaires
 and the server.

 A generic use case similar to the smart lighting system outlined
 above has an IoT device talking ZigBee, Bluetooth Low Energy,
 LoRaWAN, NB-IoT, etc. to a gateway, with the gateway in turn talking
 CoAP over DTLS or another protocol to a server located in the cloud
 or on-premise. This is illustrated in Figure 1.

 There are scenarios where certain messages sent between the IoT
 device and the server must not be exposed to the gateway function.
 Additionally, the two endpoints may not have visibility to and no
 guarantees about what transport layer security and encryption is
 enforced across all hops end-to-end as they only have visibility to
 their immediate next hop. ATLS addresses these concerns.

 +--------+ ZigBee +---------+ CoAP/DTLS +------------+
 | Device |-------------->| Gateway |------------->| Server |
 +--------+ +---------+ +------------+
 ^ ^
 | |
 +-------- Device to Server -------+

 Figure 1: IoT Closed Network Gateway

3.1.2. Constrained Device Connecting over IP

 In this example an IoT device connecting to a gateway using a
 suitable transport mechanism, such as ZigBee, CoAP, MQTT, etc. The
 gateway function in turn talks HTTP over TLS (or, for example, HTTP
 over QUIC) to an application service over the Internet. This is
 illustrated in Figure 2.

 The gateway may not be trusted and all messages between the IoT
 device and the application service must be end-to-end encrypted.
 Similar to the previous use case, the endpoints have no guarantees
 about what level of transport layer security is enforced across all
 hops. Again, ATLS addresses these concerns.

Friel, et al. Expires May 7, 2020 [Page 5]

Internet-Draft ATLS November 2019

 +--------+ CoAP/DTLS +------------------+ HTTP/TLS +---------+
 | Device |-------------->| Internet Gateway |------------>| Service |
 +--------+ +------------------+ +---------+
 ^ ^
 | |
 +---------Device to Cloud Service ATLS Connection----------+

 Figure 2: IoT Internet Gateway

3.2. Bootstrapping Devices

 There are far more classes of clients being deployed on today's
 networks than at any time previously. This poses challenges for
 network administrators who need to manage their network and the
 clients connecting to their network, and poses challenges for client
 vendors and client software developers who must ensure that their
 clients can connect to all required services.

 One common example is where a client is deployed on a local domain
 TCP/IP network that protects its perimeter using a TLS terminating
 middlebox, and the client needs to establish a secure connection to a
 service in a different network via the middlebox. This is
 illustrated in Figure 3.

 Traditionally, this has been enabled by the network administrator
 deploying the necessary certificate authority trusted roots on the
 client. This can be achieved at scale using standard tools that
 enable the administrator to automatically push trusted roots out to
 all client machines in the network from a centralized domain
 controller. This works for personal computers, laptops and servers
 running standard Operating Systems that can be centrally managed.
 This client management process breaks for multiple classes of clients
 that are being deployed today, there is no standard mechanism for
 configuring trusted roots on these clients, and there is no standard
 mechanism for these clients to securely traverse middleboxes.

 +--------+ C->M TLS +-----------+ M->S TLS +---------+
 | Client |--------------->| Middlebox |------------->| Service |
 +--------+ +-----------+ +---------+
 ^ ^
 | |
 +-----------Client to Service ATLS Connection---------+

 Figure 3: Bootstrapping Devices

 The ATLS mechanism defined in this document enables clients to
 traverse middleboxes and establish secure connections to services
 across network domain boundaries. The purpose of this connection may

Friel, et al. Expires May 7, 2020 [Page 6]

Internet-Draft ATLS November 2019

 simply be to facilitate a bootstrapping process, for example
 [I-D.ietf-anima-bootstrapping-keyinfra], whereby the client securely
 discovers the local domain certificate authorities required to
 establish a trusted network layer TLS connection to the middlebox.

4. ATLS Goals

 The high level goals driving the design of this mechanism are:

 o enable authenticated key exchange at the application layer by
 reusing existing technologies,

 o ensure that ATLS packets are explicitly identified thus ensuring
 that any middleboxes or gateways at the transport layer are
 content aware,

 o leverage TLS stacks and handshake protocols thus avoiding
 introducing new software or protocol dependencies in clients and
 applications

 o reuse TLS [RFC5246] [RFC8446] and DTLS [RFC6347]
 [I-D.ietf-tls-dtls13] specifications,

 o do not mandate constraints on how the TLS stack is configured or
 used,

 o be forward compatible with future TLS versions including new
 developments such as compact TLS [I-D.rescorla-tls-ctls], and

 o ensure that the design is as simple as possible.

5. Architecture Overview

5.1. Application Architecture

 TLS software stacks allow application developers to 'unplug' the
 default network socket transport layer and read and write TLS records
 directly from byte buffers. This enables application developers to
 use ATLS, extract the raw TLS record bytes from the bottom of the TLS
 stack, and transport these bytes over any suitable transport. The
 TLS software stacks can generate byte streams of full TLS flights,
 which may include multiple TLS records. Additionally, TLS software
 stacks support Keying Material Exporters [RFC5705] and allow
 applications to export keying material from established TLS sessions.
 This keying material can then be used by the application for
 encryption of data outside the context of the TLS session. This is
 illustrated in Figure 4 below.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5705

Friel, et al. Expires May 7, 2020 [Page 7]

Internet-Draft ATLS November 2019

 +------------+ +---------+
 Handshake Records | | Handshake Records | |
 ------------------->| |------------------->| |
 | | | Byte |
 Unencrypted Data | TLS | Encrypted Data | |
 ------------------->| |------------------->| Buffers |
 | Software | | |
 Encrypted Data | | Unencrypted Data | |
 ------------------->| Stack |------------------->| |
 | | +---------+
 Keying Material | |
 <-------------------| |
 + -----------+

 Figure 4: TLS Stack Interfaces

 These TLS software stack APIs enable application developers to build
 the software architectures illustrated in Figure 5 and Figure 6.

 In both architectures, the application creates and interacts with an
 application layer TLS session in order to generate and consume raw
 TLS records. The application transports these raw TLS records inside
 transport layer message bodies using whatever standard transport
 layer stack is suitable for the application or architecture. This
 document does not place any restrictions on the choice of transport
 layer and any suitable protocol such as HTTP, TCP, CoAP, ZigBee,
 Bluetooth, etc. could be used.

 The transport layer will typically encrypt data, and this encryption
 is completely independent from any application layer encryption. The
 transport stack may create a transport layer TLS session. The
 application layer TLS session and transport layer TLS session can
 both leverage a shared, common TLS software stack. This high level
 architecture is applicable to both clients and application services.
 The key differences between the architectures are as follows.

 In the model illustrated in Figure 5, the application sends all
 sensitive data that needs to be securely exchanged with the peer
 application through the Application TLS session in order to be
 encrypted and decrypted. All sensitive application data is thus
 encoded within TLS records by the TLS stack, and these TLS records
 are transmitted over the transport layer.

Friel, et al. Expires May 7, 2020 [Page 8]

Internet-Draft ATLS November 2019

 +-------------+
 | | App
 | | Data +---------+
 | Application |<---------->| App | +---------+
 | | TLS | TLS |----->| TLS |
 | | Records | Session | | Stack |
 | +--->|<---------->| | +---------+
 | | | +---------+ ^
 | | | |?
 | | | Transport +-----------+ +------------+
 | | | Payload | Transport | | Transport |
 | +--->|<--------->| Stack |--->| Encryption |-->Packets
 +-------------+ +-----------+ +------------+

 Figure 5: TLS Stack used for all data encryption

 In the model illustrated in Figure 6, the application establishes an
 application layer TLS session purely for the purposes of key
 exchange. Therefore, the only TLS records that are sent or received
 by the application layer are TLS handshake records. Once the
 application layer TLS session is established, the application uses
 Keying Material Exporter [RFC5705] APIs to export keying material
 from the TLS stack from this application layer TLS session. The
 application can then use these exported keys to derive suitable
 shared encryption keys with its peer for exchange of encrypted data.
 The application encrypts and decrypts sensitive data using these
 shared encryption keys using any suitable cryptographic library
 (which may be part of the same library that provides the TLS stack),
 and transports the encrypted data directly over the transport layer.

https://datatracker.ietf.org/doc/html/rfc5705

Friel, et al. Expires May 7, 2020 [Page 9]

Internet-Draft ATLS November 2019

 +--------------+
 | |
 | Application |
 | |
 | +-------+ | +---------+
	App		Key Export	
	Data	<---	<-----------	
	Crypto			App
+-------+	TLS	TLS	+---------+	
^	Handshake	Session	----->	TLS
		Records		
	+--->	<---------->		+---------+
			+---------+ ^	
				?
			Transport +-----------+ +------------+	
			Payload	Transport
+----+--->	<--------->	Stack	--->	Encryption
 +--------------+ +-----------+ +------------+

 Figure 6: TLS stack used for key agreement and exporting

 The choice of which application architecture to use will depend on
 the overall solution architecture, and the underlying transport layer
 or layers in use. While the choice of application architecture is
 outside the scope of this document, some considerations are outlined
 here.

 o in some IoT use cases reducing the number of bytes transmitted is
 important. [I-D.mattsson-lwig-security-protocol-comparison]
 analyses the overhead of TLS headers compared with OSCORE
 [I-D.ietf-core-object-security] illustrating the additional
 overhead associated with TLS headers. The overhead varies between
 the different TLS versions and also between TLS and DTLS. It may
 be more appropriate to use the architecture defined in Figure 6 in
 order to establish shared encryption keys, and then transport
 encrypted data directly without the overhead of unwanted TLS
 record headers.

 o when using HTTP as a transport layer, it may be more appropriate
 to use the architecture defined in Figure 6 in order to avoid any
 TLS session vs. HTTP session affinity issues.

5.1.1. Application Architecture Benefits

 There are several benefits to using a standard TLS software stack to
 establish an application layer secure communications channel between
 a client and a service. These include:

Friel, et al. Expires May 7, 2020 [Page 10]

Internet-Draft ATLS November 2019

 o no need to define a new cryptographic negotiation and exchange
 protocol between client and service

 o automatically benefit from new cipher suites by simply upgrading
 the TLS software stack

 o automatically benefit from new features, bugfixes, etc. in TLS
 software stack upgrades

5.1.2. ATLS Packet Identification

 It is recommended that ATLS packets are explicitly identified by a
 standardized, transport-specific identifier enabling any gateways and
 middleboxes to identify ATLS packets. Middleboxes have to contend
 with a vast number of applications and network operators have
 difficulty configuring middleboxes to distinguish unencrypted but not
 explicitly identified application data from end-to-end encrypted
 data. This specification aims to assist network operators by
 explicitly identifying ATLS packets. The HTTP and CoAP encodings
 documented in Section 8 and Section 7 explicitly identify ATLS
 packets.

5.1.3. ATLS Session Tracking

 The ATLS application service establishes multiple ATLS sessions with
 multiple clients. As TLS sessions are stateful, the application
 service must be able to correlate ATLS records from different clients
 across the relevant ATLS sessions. The details of how session
 tracking is implemented are outside the scope of this document.
 Recommendations are given in Section 8 and Section 7, but session
 tracking is application and implementation specific.

5.1.4. ATLS Record Inspection

 No constraints are placed on the ContentType contained within the
 transported TLS records. The TLS records may contain handshake,
 application_data, alert or change_cipher_spec messages. If new
 ContentType messages are defined in future TLS versions, these may
 also be transported using this protocol.

5.1.5. ATLS Message Routing

 In many cases ATLS message routing is trival. However, there are
 potentially cases where the middlebox topology is quite complex and
 an example is shown in Figure 7. In this scenario multiple devices
 (Client 1-3) are connected using serial communication to a gateway
 (referred as middlebox A). Middlebox A communicates with another

Friel, et al. Expires May 7, 2020 [Page 11]

Internet-Draft ATLS November 2019

 middlebox B over UDP/IP. Middlebox B then interacts with some
 servers in the backend using CoAP over TCP.

 This scenario raises the question about the ATLS message routing. In
 particular, there are two questions:

 o How do the middleboxes know to which IP address to address the
 ATLS packet? This question arises in scenarios where clients are
 communicating over non-IP transports.

 o How are response messages demultiplexed?

 In some scenarios it is feasible to pre-configure the destination IP
 address of outgoing packets. Another other scenarios extra
 information available in the ATLS message or in a shim layer has to
 provide the necessary information. In the case of ATLS the use of
 the Server Name Indicating (SNI) parameter in the TLS/DTLS
 ClientHello message is a possibility to give middleboxes enough
 information to determine the ATLS communication endpoint. This
 approach is also compatible with SNI encryption.

 For demultiplexing again different approaches are possible. The
 simplest approach is to use separate source ports for each ATLS
 session. In our example, Middlebox A allocates a dedicated socket
 (with a separate source port) for outgoing UDP datagrams in order to
 be able to relay a response message to the respective client.
 Alternatively, it is possible to make use of a shim layer on top of
 the transport that provides this extra demultiplexing capabilities.
 The use of multiple UDP "sessions" (as well as different TCP
 sessions) has the advantage of avoiding head-of-line blocking.

Friel, et al. Expires May 7, 2020 [Page 12]

Internet-Draft ATLS November 2019

 +---------+ +---------+
 | Server 1|----+-----| Server 2|
 +---------+ | +---------+
 |
 |CoAP
 |over
 |TCP/TLS
 |
 +-----+-----+
 |Middlebox B|
 +-----------+
 |
 |
 |CoAP
 |over
 |UDP/DTLS
 |
 +-----------+
 +---------|Middlebox A|-----------+
 | +-----------+ |
 | | |
 |CoAP |CoAP |CoAP
 |over |over |over
 |Serial |Serial |Serial
 | | |
 +--------+ +--------+ +--------+
 |Client 1| |Client 2| |Client 3|
 +--------+ +--------+ +--------+

 Figure 7: Message Routing Scenario

5.1.6. Implementation

 Pseudo code illustrating how to read and write TLS records directly
 from byte buffers using both OpenSSL BIO functions and Java JSSE
 SSLEngine is given in the appendices. A blog post by [Norrell]
 outlines a similar approach to leveraging OpenSSL BIO functions, and
 Oracle publish example code for leveraging [SSLEngine].

5.2. Functional Design

 The functional design assumes that an authorization system has
 established operational keys for authenticating endpoints. In a
 layered design, this needs to be done for each layer, which may
 operate in two separate authorization domains. Note that Figure 8
 shows a generic setup where TLS/DTLS is used at two layers. In some
 cases, use of TLS/DTLS at the application layer may be sufficient

Friel, et al. Expires May 7, 2020 [Page 13]

Internet-Draft ATLS November 2019

 where lower layer security mechanisms provide protection of the
 transport-specific headers.

 +---+
 | +---+ +---+ |
 | +--------+ |APP| |APP| +--------+ | | |
 | |security| +---+ +---+ |security| |
 | |--------+ ^ ^ |--------+ |
 | |policies| | | |policies| |
 | |LAYER 0 | | | |LAYER 0 | |
 | +--------+ v v +--------+ |
 | + +------+ APP +------+ + |
 | | | TLS- |<--------->| TLS- | | |
 | +----->|SERVER| LAYER |CLIENT|<-----+ |
 | +------+ +------+ |
 | TOP LAYER ^ ^ |
 +-----------------|-------------------|-----------------+
 | BOTTTOM LAYER | | |
 | v v |
 | +------+ TRANSPORT +------+ |
 | | TLS- |<--------->| TLS- | | | |
 | +--------+ |SERVER| LAYER |CLIENT| +--------+ |
 | |security| +------+ +------+ |security| |
 | |--------+ ^ ^ |--------+ |
 | |policies| | | |policies| |
 | |LAYER 1 +-----+ +-----+LAYER 1 | |
 | +--------+ +--------+ |
 | |
 +---+

 Figure 8: Functional Design

 The security policies of one layer are distinct from those of another
 in Figure 8. They may overlap, but that is not necessary or perhaps
 even likely since the key exchanges at the different layers terminate
 at different endpoints and the two often have different authorization
 domains.

 TLS can protect IoT device-to-gateway communications "on the wire"
 using the "bottom layer" of Figure 8, and it can protect application
 data from the device to the application server using the "top layer."
 Application and transport security each have a role to play.
 Transport security restricts access to messages on the networks,
 notably application headers and application-layer TLS restricts
 access to the application payloads.

 As shown in Figure 8, an application-layer message, which gets
 encrypted and integrity protected and, in the generic case, the the

Friel, et al. Expires May 7, 2020 [Page 14]

Internet-Draft ATLS November 2019

 resulting TLS message and headers are passed to a TLS socket at the
 bottom layer, which may have a different security policy than the
 application layer.

5.3. Network Architecture

 An example network deployment is illustrated in Figure 9. It shows a
 constrained client connecting to an application service via an
 internet gateway. The client uses CoAP over DTLS to communicate with
 the gateway. The gateway extracts the messages the client sent over
 CoAP and sends these messages inside HTTP message bodies to the
 application service. It also shows a TLS terminator deployed in
 front of the application service. The client establishes a transport
 layer CoAP/DTLS connection with the gateway (C->G DTLS), the gateway
 in turn opens a transport layer TLS connection with the TLS
 terminator deployed in front of the service (G->T TLS). The client
 can ignore any certificate validation errors when it connects to the
 gateway. CoAP messages are transported between the client and the
 gateway, and HTTP messages are transported between the client and the
 service. Finally, application layer TLS messages are exchanged
 inside the CoAP and HTTP message bodies in order to establish an end-
 to-end TLS session between the client and the service (C->S TLS).

 +----------+ +----------+
 | App Data | | App Data |
 +----------+ +----------+ +----------+
 | C->S TLS | | C->S TLS | | App Data |
 +----------+ +----------+ +----------+
 | CoAP | | HTTP | | C->S TLS |
 +----------+ +----------+ +----------+
 | C->G DTLS| | M->T TLS | | HTTP |
 +----------+ +----------+ +----------+
 | UDP | | TCP | | TCP |
 +----------+ +----------+ +----------+

 +--------+ +-----------+ +----------------+ +---------+
 | Client |----->| Gateway |----->| TLS Terminator |---->| Service |
 +--------+ +-----------+ +----------------+ +---------+
 ^ ^
 | |
 +-------------Client to Service ATLS Connection-------------+

 Figure 9: Constrained Device Gateway Network Architecture

 Another typical network deployment is illustrated in Figure 10. It
 shows a client connecting to a service via a middlebox. It also
 shows a TLS terminator deployed in front of the service. The client
 establishes a transport layer TLS connection with the middlebox (C->M

Friel, et al. Expires May 7, 2020 [Page 15]

Internet-Draft ATLS November 2019

 TLS), the middlebox in turn opens a transport layer TLS connection
 with the TLS terminator deployed in front of the service (M->T TLS).
 The client can ignore any certificate validation errors when it
 connects to the middlebox. HTTP messages are transported over this
 layer between the client and the service. Finally, application layer
 TLS messages are exchanged inside the HTTP message bodies in order to
 establish an end-to-end TLS session between the client and the
 service (C->S TLS).

 +----------+ +----------+
 | App Data | | App Data |
 +----------+ +----------+ +----------+
 | C->S TLS | | C->S TLS | | App Data |
 +----------+ +----------+ +----------+
 | HTTP | | HTTP | | C->S TLS |
 +----------+ +----------+ +----------+
 | C->M TLS | | M->T TLS | | HTTP |
 +----------+ +----------+ +----------+
 | TCP | | TCP | | TCP |
 +----------+ +----------+ +----------+

 +--------+ +-----------+ +----------------+ +---------+
 | Client |----->| Middlebox |----->| TLS Terminator |---->| Service |
 +--------+ +-----------+ +----------------+ +---------+
 ^ ^
 | |
 +-------------Client to Service ATLS Connection-------------+

 Figure 10: HTTP Middlebox Network Architecture

6. ATLS Session Establishment

 Figure 11 illustrates how an ATLS session is established using the
 key exporting architectural model shown in Figure 6. The number of
 RTTs that take place when establishing a TLS session depends on the
 version of TLS and what capabilities are enabled on the TLS software
 stack. For example, a 0-RTT exchange is possible with TLS 1.3. If
 applications wish to ensure a predictable number of RTTs when
 establishing an application layer TLS connection, this may be
 achieved by configuring the TLS software stack appropriately.

 The outline is as follows:

 o the client creates an ATLS session object

 o the client initiates a TLS handshake on the session

Friel, et al. Expires May 7, 2020 [Page 16]

Internet-Draft ATLS November 2019

 o the client extracts the TLS records for the first TLS flight (the
 first RTT)

 o the client sends the TLS records over the transport layer to the
 server

 o on receipt of the TLS flight, the server creates an ATLS session
 object

 o the server injects the received TLS flight into the session

 o the server extracts the TLS records for the first TLS flight
 response

 o the server sends the TLS response records over the transport layer
 to the client

 o the client injects the received TLS records into its TLS session
 completing the first full RTT

 o the client and server repeat the above process and complete the
 second RTT

 o once the ATLS session is up, both sides export keying material

 o both sides now can exchange data encrypted using shared keys
 derived from the keying material

 +-------------------------------+ +-------------------------------+
 | Client | | ATLS Server |
 +---------+---+-----+-+---------+ +---------+--+-----+--+---------+
 | ATLS | | App | |Transport| |Transport| | App | | ATLS |
 | Session | +-----+ | Stack | | Stack | +-----+ | Session |
 +---------+ | +---------+ +---------+ | +---------+
 | | | | | |
 | | | | | |
 | | | | | |
 | Create | | | | |
 | Session | | | | |
 + |<---------| | | | |
 | | Start | | | | |
 | | Handshake| | | | |
 | |<---------| | | | |
 | | TLS | | | | |
 | | Records | Pack | | | |
 | |--------->| Records | | | |
 | |-------->| send packet | Unpack | |
 R | | |------------>| Records | Create |

Friel, et al. Expires May 7, 2020 [Page 17]

Internet-Draft ATLS November 2019

 T | | | |--------->| Session |
 T | | | | |--------->|
 | | | | | TLS |
 1 | | | | | Records |
 | | | | |--------->| |
 | | | | | | TLS |
 | | | | | Pack | Records |
 | | | | | Records |<---------|
 | | | Unpack |send response|<---------| |
 | | TLS | Records |<------------| | |
 | | Records |<--------| | | |
 + |<---------| | | | |
 | TLS | | | | |
 | Records | | | | |
 + |--------->|-------->|------------>|--------->|--------->|
 | | | | | | |
 | | | | | Session |
 R | | | | | Up |
 T | | | | |<---------|
 T | | | | | TLS |
 | | | | | Records |
 2 |<---------|<--------|<------------|<---------|<---------|
 | Session | | | | |
 | | Up | | | | |
 + |--------->| | | | |
 | Export | | | | Export |
 | Keys | | | | Keys |
 |--------->| | E2E Session | |<---------|
 | |<--------|-------------|--------->| |

 Figure 11: ATLS Session Establishment

7. ATLS over CoAP Transport

 To carry TLS messages over CoAP [RFC7252] it is recommended to use
 Confirmable messages while DTLS payloads may as well use non-
 confirmable messages. The exchange pattern in CoAP uses the
 following style: A request from the CoAP client to the CoAP server
 uses a POST with the ATLS message contained in the payload of the
 request. An ATLS response is returned by the CoAP server to the CoAP
 client in a 2.04 (Changed) message.

 When DTLS messages are conveyed in CoAP over UDP then the DDoS
 protection offered by DTLS MAY be used instead of replicating the
 functionality at the CoAP layer. If TLS is conveyed in CoAP over UDP
 then DDoS protection by CoAP has to be utilized. Carrying ATLS
 messages in CoAP over TCP does not require any additional DDoS
 protection.

https://datatracker.ietf.org/doc/html/rfc7252

Friel, et al. Expires May 7, 2020 [Page 18]

Internet-Draft ATLS November 2019

 The URI path used by ATLS is "/.well-known/atls".

 {{coap-example} shows a TLS 1.3 handshake inside CoAP graphically.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/atls"
 | | Content-Format: application/atls
 | | Payload: ATLS (ClientHello)
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/atls
 | | Payload: ATLS (ServerHello,
 | | {EncryptedExtensions}, {CertificateRequest*}
 | | {Certificate*}, {CertificateVerify*} {Finished})
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/atls"
 | | Content-Format: application/atls
 | | Payload: ATLS ({Certificate*},
 | | {CertificateVerify*}, {Finished})
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 12: Transferring ATLS in CoAP

 Note that application data can already be sent by the server in the
 second message and by the client in the third message, in case of the
 full TLS 1.3 handshake. In case of the 0-RTT handshake application
 data can be sent earlier. To mix different media types in the same
 CoAP payload the application/multipart-core content type is used.

 Note also that CoAP blockwise transfer MAY be used if the payload
 size, for example due to the size of the certificate chain, exceeds
 the MTU size.

8. ATLS over HTTP Transport

 The assumption is that the client will establish a transport layer
 connection to the server for exchange of HTTP messages. The
 underlying transport layer connection could be over TCP or TLS. The
 client will then establish an application layer TLS connection with
 the server by exchanging TLS records with the server inside HTTP
 message request and response bodies.

Friel, et al. Expires May 7, 2020 [Page 19]

Internet-Draft ATLS November 2019

 Note that ATLS over HTTP transport addresses a different deployment
 scenario than HTTP CONNECT proxies. HTTP CONNECT proxy behaviour is
 compared and contrasted with ATLS in Appendix B.

8.1. Protocol Summary

 All ATLS records are transported unmodified as binary data within
 HTTP message bodies. The application simply extracts the TLS records
 from the TLS stack and inserts them directly into HTTP message
 bodies. Each message body contains a full TLS flight, which may
 contain multiple TLS records.

 The client sends all ATLS records to the server in the bodies of POST
 requests.

 The server sends all ATLS records to the client in the bodies of 200
 OK responses to the POST requests.

 The URI path used by ATLS is "/.well-known/atls".

8.2. Content-Type Header

 A new Content-Type header value is defined:

 Content-type: application/atls

 All message bodies containing ATLS records must set this Content-
 Type. This enables middleboxes to readily identify ATLS payloads.

8.3. HTTP Status Codes

 This document does not define any new HTTP status codes, and does not
 specify additional semantics or refine existing semantics for status
 codes. This is the best current practice as outlined in
 [I-D.ietf-httpbis-bcp56bis].

8.4. ATLS Session Tracking

 The application service needs to track multiple client application
 layer TLS sessions so that it can correlate TLS records received in
 HTTP message bodies with the appropriate TLS session. The
 application service should use stateful cookies [RFC6265] in order to
 achieve this as recommended in [I-D.ietf-httpbis-bcp56bis].

https://datatracker.ietf.org/doc/html/rfc6265

Friel, et al. Expires May 7, 2020 [Page 20]

Internet-Draft ATLS November 2019

8.5. Session Establishment and Key Exporting

 It is recommended that applications using ATLS over HTTP transport
 only use ATLS for session establishment and key exchange, resulting
 in only 2 ATLS RTTs between the client and the application service.

 Key exporting must be carried out as described in Section 9.

8.6. Illustrative ATLS over HTTP Session Establishment

 A client initiates an ATLS session by sending the first TLS flight in
 a POST request message body to the ATLS server.

 POST /.well-known/atls
 Content-Type: application/atls

 <binary TLS client flight 1 records>

 The server handles the request, creates an ATLS session object, and
 replies by including its first TLS flight in a 200 OK message body.
 The server also sets a suitable cookie for session tracking purposes.

 200 OK
 Content-Type: application/atls
 Set-Cookie: my-atls-cookie=my-cookie-value

 <binary TLS server flight 1 records>

 The client handles the server first flight TLS records and replies
 with its second flight.

 POST /.well-known/atls
 Content-Type: application/atls
 Cookie: my-atls-cookie=my-cookie-value

 <binary TLS client flight 2 records>

 The server handles the second flight, establishes the ATLS session,
 and replies with its second flight.

 200 OK
 Content-Type: application/atls

 <binary TLS server flight 2 records>

Friel, et al. Expires May 7, 2020 [Page 21]

Internet-Draft ATLS November 2019

9. Key Exporting and Application Data Encryption

 When solutions implement the architecture described in Figure 6, they
 leverage [RFC5705] for exporting keys. This section describes how to
 establish keying material and negotiate algorithms for OSCORE and for
 COSE.

9.1. OSCORE

 When the OSCORE mode has been agreed using the "oscore_connection_id"
 extension defined in this document, different keys are used for DTLS/
 TLS record protection and for OSCORE packet protection. These keys
 are produced using a TLS exporter [RFC5705] and the exporter takes
 three input values:

 o a disambiguating label string,

 o a per-association context value provided by the application using
 the exporter, and

 o a length value.

 The label string for use with this specification is defined as 'atls-
 oscore'. The per-association context value is empty.

 The length value is twice the size of the key size utilized by the
 negotiated algorithm since the lower-half is used for the Master
 Secret and the upper-half is used for the Master Salt.

 For example, if a TLS/DTLS 1.2 handshake negotiated the
 TLS_PSK_WITH_AES_128_CCM_8 ciphersuite then the key size utilized by
 the negotiated algorithm, i.e. AES 128, is 128 bit. Hence, the key
 extractor is requested to produce 2 x 128 bit keying material.

 The following parameters are needed for use with OSCORE:

 o Master Secret: The master secret is derived as described above.

 o Sender ID: This values is negotiated using the
 "oscore_connection_id" extension, as described in Section 11.1.

 o Recipient ID: This values is negotiated using the
 "oscore_connection_id" extension, as described in Section 11.1.

 o AEAD Algorithm: This value is negotiated using the ciphersuite
 exchange provided by the TLS/DTLS handshake. For example, if a
 TLS/DTLS 1.2 handshake negotiated the TLS_PSK_WITH_AES_128_CCM_8
 ciphersuite then the AEAD algorithm identifier is AES_128_CCM_8,

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Friel, et al. Expires May 7, 2020 [Page 22]

Internet-Draft ATLS November 2019

 which corresponds to two COSE algorithms, which both use AES-CCM
 mode with a 128-bit key, a 64-bit tag:

 * AES-CCM-64-64-128

 * AES-CCM-16-64-128 The difference between the two is only the
 length of the nonce, which is 7-bytes in the former case and
 13-bytes in the latter. In TLS/DTLS the nonce value is not
 negotiated but fixed instead. Figure 13 provides the mapping
 between the TLS defined ciphersuite and the COSE algorithms.

 o Master Salt: The master salt is derived as described above.

 o HKDF Algorithm: This value is negotiated using the ciphersuite
 exchange provided by the TLS/DTLS handshake. As a default,
 SHA-256 is assumed as a HKDF algorithm for algorithms using
 128-bit key sizes and SHA384 for 256-bit key sizes.

 o Replay Window: A default window size of 32 packets is assumed.

9.2. COSE

 The key exporting procedure for COSE is similiar to the one defined
 for OSCORE. The label string for use with this specification is
 defined as 'atls-cose'. The per-association context value is empty.

 The length value is twice the size of the key size utilized by the
 negotiated algorithm since the lower-half is used for the Master
 Secret and the upper-half is used for the Master Salt.

 The COSE algorithm corresponds to the ciphersuite negotiated during
 the TLS/DTLS handshake with with the mapping provided in Figure 13.
 The HKDF algorithm is negotiated using the the TLS/DTLS handshake.
 As a default, SHA-256 is assumed as a HKDF algorithm for algorithms
 using 128-bit key sizes and SHA384 for 256-bit key sizes.

 COSE uses key ids to allow finding the appropriate security context.
 Those key IDs conceptually correspond to CIDs, as described in

Section 11.2.

10. TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

Friel, et al. Expires May 7, 2020 [Page 23]

Internet-Draft ATLS November 2019

 TLS Ciphersuite | COSE/OSCORE Algorithm
 ------------------+--
 AES_128_CCM_8 | AES-CCM w/128-bit key, 64-bit tag, 13-byte nonce
 AES_256_CCM_8 | AES-CCM w/256-bit key, 64-bit tag, 13-byte nonce
 CHACHA20_POLY1305 | ChaCha20/Poly1305 w/256-bit key, 128-bit tag
 AES_128_CCM | AES-CCM w/128-bit key, 128-bit tag, 13-byte nonce
 AES_256_CCM | AES-CCM w/256-bit key, 128-bit tag, 13-byte nonce
 AES_128_GCM | AES-GCM w/128-bit key, 128-bit tag
 AES_256_GCM | AES-GCM w/256-bit key, 128-bit tag

 Figure 13: TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

11. TLS Extensions

11.1. The "oscore_connection_id" Extension

 This document defines the "oscore_connection_id" extension, which is
 used in ClientHello and ServerHello messages. It is used only for
 establishing the OSCORE Sender ID and the OSCORE Recipient ID. The
 OSCORE Sender ID maps to the CID provided by the server in the
 ServerHello and the OSCORE Recipient ID maps to the CID provided by
 the client in the ClientHello.

 The negotiation mechanism follows the procedure used in
 [I-D.ietf-tls-dtls-connection-id] with the exception that the
 negotiated CIDs agreed with the "oscore_connection_id" extension is
 only used with OSCORE and does not impact the record layer format of
 the DTLS/TLS payloads nor the MAC calculation used by DTLS/TLS. As
 such, this extension can be used with DTLS as well as with TLS when
 those protocols are used at the application layer.

 The extension type is specified as follows.

 enum {
 oscore_connection_id(TBD), (65535)
 } ExtensionType;

 struct {
 opaque cid<0..2^8-1>;
 } ConnectionId;

 Figure 14: The 'oscore_connection_id' Extension

 Note: This extension allows a client and a server to determine
 whether an OSCORE security context should be established.

Friel, et al. Expires May 7, 2020 [Page 24]

Internet-Draft ATLS November 2019

11.2. The "cose_ext" Extension

 This document defines the "cose_ext" extension, which is used in
 ClientHello and ServerHello messages. It is used only for
 establishing the key identifiers, AEAD algorithms, as well as keying
 material for use with application layer protection using COSE. The
 CID provided by the server in the ServerHello maps to the COSE kid
 transmitted from the client to the server and the CID provided by the
 client in the ClientHello maps to the COSE kid transmitted from the
 server to the client.

 The negotiation mechanism follows the procedure used in
 [I-D.ietf-tls-dtls-connection-id] with the exception that the
 negotiated CIDs agreed with the "cose_ext" extension is only used
 with COSE and does not impact the record layer format of the DTLS/TLS
 payloads nor the MAC calculation used by DTLS/TLS. As such, this
 extension can be used with DTLS as well as with TLS when those
 protocols are used at the application layer.

 The extension type is specified as follows.

 enum {
 oscore_connection_id(TBD), (65535)
 } ExtensionType;

 struct {
 opaque cid<0..2^8-1>;
 } ConnectionId;

 Figure 15: The 'cose_ext' Extension

 Note: This extension allows a client and a server to determine
 whether an COSE security context should be established.

12. IANA Considerations

12.1. "oscore_connection_id" TLS extension

 IANA is requested to allocate two entries to the existing TLS
 "ExtensionType Values" registry, defined in [RFC5246], for
 oscore_connection_id(TBD1) and cose_ext(TBD2) defined in this
 document, as described in the table below.

Value Extension Name TLS 1.3 DTLS Only Recommended Reference

TBD1 oscore_connection_id Y N N [[This doc]]
TBD2 cose_ext Y N N [[This doc]]

https://datatracker.ietf.org/doc/html/rfc5246

Friel, et al. Expires May 7, 2020 [Page 25]

Internet-Draft ATLS November 2019

 Note: The "N" values in the Recommended column are set because these
 extensions are intended only for specific use cases.

12.2. TLS Ciphersuite to OSCORE/COSE Algorithm Mapping

 IANA is requested to create a new registry for mapping TLS
 ciphersuites to SCORE/COSE algorithms

 An initial mapping can be found in Figure 13.

 Registration requests are evaluated after a three-week review period
 on the tls-reg-review@ietf.or mailing list, on the advice of one or
 more Designated Experts [RFC8126]. However, to allow for the
 allocation of values prior to publication, the Designated Experts may
 approve registration once they are satisfied that such a
 specification will be published.

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register an TLS - OSCORE/
 COSE algorithm mapping: example"). Registration requests that are
 undetermined for a period longer than 21 days can be brought to the
 IESG's attention (using the iesg@ietf.org mailing list) for
 resolution.

 Criteria that should be applied by the Designated Experts includes
 determining whether the proposed registration duplicates existing
 functionality, whether it is likely to be of general applicability or
 whether it is useful only for a single extension, and whether the
 registration description is clear.

 IANA must only accept registry updates from the Designated Experts
 and should direct all requests for registration to the review mailing
 list.

12.3. .well-known URI Registry

 IANA is requested to add the well-known URI 'atls' to the Well-Known
 URIs registry.

 o URI suffix: atls

 o Change controller: IETF

 o Specification document(s): [[this document]]

 o Related information: None

https://datatracker.ietf.org/doc/html/rfc8126

Friel, et al. Expires May 7, 2020 [Page 26]

Internet-Draft ATLS November 2019

12.4. Media Types Registry

 IANA is requested to add the media type 'application/atls' to the
 Media Types registry.

 o Type name: application

 o Subtype name: atls

 o Required parameters: N/A

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See Security Considerations section of
 this document.

 o Interoperability considerations: N/A

 o Published specification: [[this document]] (this document)

 o Applications that use this media type: Potentially any

 o Fragment identifier considerations: N/A

 o Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 o Person & email address to contact for further information: See
 "Authors' Addresses" section.

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: See "Authors' Addresses" section.

 o Change Controller: IESG

Friel, et al. Expires May 7, 2020 [Page 27]

Internet-Draft ATLS November 2019

12.5. HTTP Content-Formats Registry

 IANA is requested to add the media type 'application/atls' to the
 HTTP Content-Formats registry.

 o Media Type: application/atls

 o Encoding: binary

 o ID: TBD

 o Reference: [[this document]]

12.6. CoAP Content-Formats Registry

 IANA is requested to add the media type 'application/atls' to the
 CoAP Content-Formats registry.

 o Media Type: application/atls

 o Encoding: binary

 o ID: TBD

 o Reference: [[this document]]

12.7. TLS Key Extractor Label

 IANA is requested to register the "application-layer-tls" label in
 the TLS Extractor Label Registry to correspond to this specification.

13. Security Considerations

 This specification re-uses the TLS and DTLS and hence the security
 considerations of the respective TLS/DTLS version applies. As
 described in Section 5.2, implementers need to take the policy
 configuration into account when applying security protection at
 various layers of the stack even if the same protocol is used since
 the communiation endpoints and the security requirements are likely
 going to vary.

 For use in the IoT environment the considerations described in
 [RFC7925] apply and other environments the guidelines in [RFC7525]
 are applicable.

https://datatracker.ietf.org/doc/html/rfc7925
https://datatracker.ietf.org/doc/html/rfc7525

Friel, et al. Expires May 7, 2020 [Page 28]

Internet-Draft ATLS November 2019

14. References

14.1. Normative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-16 (work in
 progress), March 2019.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-33 (work in progress), October
 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-33
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252

Friel, et al. Expires May 7, 2020 [Page 29]

Internet-Draft ATLS November 2019

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

 [ALTS] Google, "Application Layer Transport Security", December
 2017, <https://cloud.google.com/security/encryption-in-

transit/application-layer-transport-security/>.

 [Bluetooth]
 Bluetooth, "Bluetooth Core Specification v5.0", 2016,
 <https://www.bluetooth.com/>.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-29 (work in progress), October 2019.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://www.bluetooth.com/
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-29
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-29

Friel, et al. Expires May 7, 2020 [Page 30]

Internet-Draft ATLS November 2019

 [I-D.ietf-httpbis-bcp56bis]
 Nottingham, M., "Building Protocols with HTTP", draft-

ietf-httpbis-bcp56bis-09 (work in progress), November
 2019.

 [I-D.ietf-tls-dtls-connection-id]
 Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
 Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-

id-07 (work in progress), October 2019.

 [I-D.mattsson-lwig-security-protocol-comparison]
 Mattsson, J. and F. Palombini, "Comparison of CoAP
 Security Protocols", draft-mattsson-lwig-security-

protocol-comparison-01 (work in progress), March 2018.

 [I-D.rescorla-tls-ctls]
 Rescorla, E. and R. Barnes, "Compact TLS 1.3", draft-

rescorla-tls-ctls-02 (work in progress), July 2019.

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-

cose-ecdhe-14 (work in progress), September 2019.

 [LwM2M] Open Mobile Alliance, "Lightweight Machine to Machine
 Requirements", December 2017,
 <http://www.openmobilealliance.org/>.

 [Noise] Perrin, T., "Noise Protocol Framework", October 2017,
 <http://noiseprotocol.org/>.

 [Norrell] Norrell, ., "Use SSL/TLS within a different protocol with
 BIO pairs", 2016,
 <https://thekerneldiaries.com/2016/06/13/openssl-ssltls-

within-a-different-protocol/>.

 [Signal] Open Whisper Systems, "Signal Protocol", 2016,
 <https://signal.org/>.

 [SSLEngine]
 Oracle, "SSLEngineSimpleDemo.java", 2004, <https://docs.or

acle.com/javase/7/docs/technotes/guides/security/jsse/
samples/sslengine/SSLEngineSimpleDemo.java>.

 [ZigBee] ZigBee Alliance, "ZigBee Specification", 2012,
 <http://www.zigbee.org>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/draft-mattsson-lwig-security-protocol-comparison-01
https://datatracker.ietf.org/doc/html/draft-mattsson-lwig-security-protocol-comparison-01
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-02
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-14
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-14
http://www.openmobilealliance.org/
http://noiseprotocol.org/
https://thekerneldiaries.com/2016/06/13/openssl-ssltls-within-a-different-protocol/
https://thekerneldiaries.com/2016/06/13/openssl-ssltls-within-a-different-protocol/
https://signal.org/
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
http://www.zigbee.org

Friel, et al. Expires May 7, 2020 [Page 31]

Internet-Draft ATLS November 2019

Appendix A. Pseudo Code

 This appendix gives both C and Java pseudo code illustrating how to
 inject and extract raw TLS records from a TLS software stack. Please
 note that this is illustrative, non-functional pseudo code that does
 not compile.

A.1. OpenSSL

 OpenSSL provides a set of Basic Input/Output (BIO) APIs that can be
 used to build a custom transport layer for TLS connections. This
 appendix gives pseudo code on how BIO APIs could be used to build a
 client application that completes a TLS handshake and exchanges
 application data with a service.

Friel, et al. Expires May 7, 2020 [Page 32]

Internet-Draft ATLS November 2019

 char inbound[MAX];
 char outbound[MAX];
 int rx_bytes;
 SSL_CTX *ctx = SSL_CTX_new();
 SSL *ssl = SSL_new(ctx);

 // Create in-memory BIOs and plug in to the SSL session
 BOI* bio_in = BIO_new(BIO_s_mem());
 BOI* bio_out = BIO_new(BIO_s_mem());
 SSL_set_bio(ssl, bio_in, bio_out);

 // We are a client
 SSL_set_connect_state(ssl);

 // Loop through TLS flights until we are done
 do {
 // Calling SSL_do_handshake() will result in a full
 // TLS flight being written to the BIO buffer
 SSL_do_handshake(ssl);

 // Read the client flight that the TLS session
 // has written to memory
 BIO_read(bio_out, outbound, MAX);

 // POST the outbound bytes to the server using a suitable
 // function. Lets assume that the server response will be
 // written to the 'inbound' buffer
 num_bytes = postTlsRecords(outbound, inbound);

 // Write the server flight to the memory BIO so the TLS session
 // can read it. The next call to SSL_do_handshake() will handle
 // this received server flight
 BIO_write(bio_in, inbound, num_bytes);

 } while (!SSL_is_init_finished(ssl));

 // Send a message to the server. Calling SSL_write() will run the
 // plaintext through the TLS session and write the encrypted TLS
 // records to the BIO buffer
 SSL_write(ssl, "Hello World", strlen("Hello World"));

 // Read the TLS records from the BIO buffer and
 // POST them to the server
 BIO_read(bio_out, outbound, MAX);
 num_bytes = postTlsRecords(outbound, inbound);

Friel, et al. Expires May 7, 2020 [Page 33]

Internet-Draft ATLS November 2019

A.2. Java JSSE

 The Java SSLEngine class "enables secure communications using
 protocols such as the Secure Sockets Layer (SSL) or IETF RFC 2246
 "Transport Layer Security" (TLS) protocols, but is transport
 independent". This pseudo code illustrates how a server could use
 the SSLEngine class to handle an inbound client TLS flight and
 generate an outbound server TLS flight response.

Friel, et al. Expires May 7, 2020 [Page 34]

https://datatracker.ietf.org/doc/html/rfc2246

Internet-Draft ATLS November 2019

 SSLEngine sslEngine = SSLContext.getDefault().createSSLEngine();
 sslEngine.setUseClientMode(false);
 sslEngine.beginHandshake();

 // Lets assume 'inbound' has been populated with
 // the Client 1st Flight
 ByteBuffer inbound;

 // 'outbound' will be populated with the
 // Server 1st Flight response
 ByteBuffer outbound;

 // SSLEngine handles one TLS Record per call to unwrap().
 // Loop until the engine is finished unwrapping.
 while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_UNWRAP) {
 SSLEngineResult res = sslEngine.unwrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
 }

 // The SSLEngine has now finished handling all inbound TLS Records.
 // Check if it wants to generate outbound TLS Records. SSLEngine
 // generates one TLS Record per call to wrap().
 // Loop until the engine is finished wrapping.
 while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_WRAP) {
 SSLEngineResult res = sslEngine.wrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
 }

 // outbound ByteBuffer now contains a complete server flight
 // containing multiple TLS Records
 // Rinse and repeat!

Friel, et al. Expires May 7, 2020 [Page 35]

Internet-Draft ATLS November 2019

Appendix B. ATLS and HTTP CONNECT

 It is worthwhile comparing and contrasting ATLS with HTTP CONNECT
 tunneling.

 First, let us introduce some terminology:

 o HTTP Proxy: A HTTP Proxy operates at the application layer,
 handles HTTP CONNECT messages from clients, and opens tunnels to
 remote origin servers on behalf of clients. If a client
 establishes a tunneled TLS connection to the origin server, the
 HTTP Proxy does not attempt to intercept or inspect the HTTP
 messages exchanged between the client and the server

 o middlebox: A middlebox operates at the transport layer, terminates
 TLS connections from clients, and originates new TLS connections
 to services. A middlebox inspects all messages sent between
 clients and services. Middleboxes are generally completely
 transparent to applications, provided that the necessary PKI root
 Certificate Authority is installed in the client's trust store.

 HTTP Proxies and middleboxes are logically separate entities and one
 or both of these may be deployed in a network.

 HTTP CONNECT is used by clients to instruct a HTTP Forward Proxy
 deployed in the local domain to open up a tunnel to a remote origin
 server that is typically deployed in a different domain. Assuming
 that TLS transport is used between both client and proxy, and proxy
 and origin server, the network architecture is as illustrated in
 Figure 16. Once the proxy opens the transport tunnel to the service,
 the client establishes an end-to-end TLS session with the service,
 and the proxy is blindly transporting TLS records (the C->S TLS
 session records) between the client and the service. From the client
 perspective, it is tunneling a TLS session to the service inside the
 TLS session it has established to the proxy (the C->P TLS session).
 No middlebox is attempting to intercept or inspect the HTTP messages
 between the client and the service.

Friel, et al. Expires May 7, 2020 [Page 36]

Internet-Draft ATLS November 2019

 +----------+ +----------+
 | C->S HTTP| | C->S HTTP|
 +----------+ +----------+
 | C->S TLS | | C->S TLS |
 +----------+ +----------+
 | C->P TLS | | P->S TCP |
 +----------+ +----------+
 | C->P TCP |
 +----------+

 +--------+ +------------+ +---------+
 | Client |----->| HTTP Proxy |----->| Service |
 +--------+ +------------+ +---------+

 Figure 16: HTTP Proxy transport layers

 A more complex network topology where the network operator has both a
 HTTP Proxy and a middlebox deployed is illustrated in Figure 17. In
 this scenario, the proxy has tunneled the TLS session from the client
 towards the origin server, however the middlebox is intercepting and
 terminating this TLS session. A TLS session is established between
 the client and the middlebox (C->M TLS), and not end-to-end between
 the client and the server. It can clearly be seen that HTTP CONNECT
 and HTTP Proxies serve completely different functions than
 middleboxes.

 Additionally, the fact that the TLS session is established between
 the client and the middlebox can be problematic for two reasons:

 o the middle box is inspecting traffic that is sent between the
 client and the service

 o the client may not have the necessary PKI root Certificate
 Authority installed that would enable it to validate the TLS
 connection to the middlebox. This is the scenario outlined in

Section 3.2.

Friel, et al. Expires May 7, 2020 [Page 37]

Internet-Draft ATLS November 2019

 +----------+ +----------+ +----------+
 | C->S HTTP| | C->S HTTP| | C->S HTTP|
 +----------+ +----------+ +----------+
 | C->M TLS | | C->M TLS | | M->S TLS |
 +----------+ +----------+ +----------+
 | C->P TLS | | P->M TCP | | M->S TCP |
 +----------+ +----------+ +----------+
 | C->P TCP |
 +----------+

 +--------+ +------------+ +-----------+ +---------+
 | Client |----->| HTTP Proxy |----->| Middlebox |----->| Service |
 +--------+ +------------+ +-----------+ +---------+

 Figure 17: HTTP Proxy and middlebox transport layers

 As HTTP CONNECT can be used to establish a tunneled TLS connection,
 one hypothetical solution to this middlebox issue is for the client
 to issue a HTTP CONNECT command to a HTTP Reverse Proxy deployed in
 front of the origin server. This solution is not practical for
 several reasons:

 o if there is a local domain HTTP Forward Proxy deployed, this would
 result in the client doing a first HTTP CONNECT to get past the
 Forward Proxy, and then a second HTTP CONNECT to get past the
 Reverse Proxy. No client or client library supports the concept
 of HTTP CONNECT inside HTTP CONNECT.

 o if there is no local domain HTTP Proxy deployed, the client still
 has to do a HTTP CONNECT to the HTTP Reverse Proxy. This breaks
 with standard and expected HTTP CONNECT operation, as HTTP CONNECT
 is only ever called if there is a local domain proxy.

 o clients cannot generate CONNECT from XHR in web applications.

 o this would require the deployment of a Reverse Proxy in front of
 the origin server, or else support of the HTTP CONNECT method in
 standard web frameworks. This is not an elegant design.

 o using HTTP CONNECT with HTTP 1.1 to a Reverse Proxy will break
 middleboxes inspecting HTTP traffic, as the middlebox would see
 TLS records when it expects to see HTTP payloads.

 In contrast to trying to force HTTP CONNECT to address a problem for
 which it was not designed to address, and having to address all the
 issues just outlined; ATLS is specifically designed to address the
 middlebox issue in a simple, easy to develop, and easy to deploy
 fashion.

Friel, et al. Expires May 7, 2020 [Page 38]

Internet-Draft ATLS November 2019

 o ATLS works seamlessly with HTTP Proxy deployments

 o no changes are required to HTTP CONNECT semantics

 o no changes are required to HTTP libraries or stacks

 o no additional Reverse Proxy is required to be deployed in front of
 origin servers

 It is also worth noting that if HTTP CONNECT to a Reverse Proxy were
 a conceptually sound solution, the solution still ultimately results
 in encrypted traffic traversing the middlebox that the middlebox
 cannot intercept and inspect. That is ultimately what ATLS results
 in - traffic traversing the middle box that the middlebox cannot
 intercept and inspect. Therefore, from a middlebox perspective, the
 differences between the two solutions are in the areas of solution
 complexity and protocol semantics. It is clear that ATLS is a
 simpler, more elegant solution that HTTP CONNECT.

Appendix C. Alternative Approaches to Application Layer End-to-End
 Security

 End-to-end security at the application layer is increasing seen as a
 key requirement across multiple applications and services. Some
 examples of end-to-end security mechanisms are outlined here. All
 the solutions outlined here have some common characteristics. The
 solutions:

 o do not rely on transport layer security

 o define a new handshake protocol for establishment of a secure end-
 to-end session

C.1. Noise

 [Noise] is a framework for cryptographic protocols based on Elliptic
 Curve Diffie-Hellman (ECDH) key agreement, AEAD encryption, and
 BLAKE2 and SHA2 hash functions. Noise is currently used by WhatsApp,
 WireGuard, and Lightning.

 The current Noise protocol framework defines mechanisms for proving
 possession of a private key, but does not define authentication
 mechanisms. Section 14 "Security Considerations" of Noise states:
   ~~~ it's up to the application to determine whether the remote
   party's static public key is acceptable ~~~



Friel, et al.              Expires May 7, 2020                 [Page 39]



Internet-Draft                    ATLS                     November 2019

C.2.  Signal

   The [Signal] protocol provides end-to-end encryption and uses EdDSA
   signatures, Triple Diffie-Hellman handshake for shared secret
   establishment, and the Double Ratchet Algorithm for key management.
   It is used by Open Whisper Systems, WhatsApp and Google.

   Similar to Noise, Signal does not define an authentication mechanism.
   The current [X3DH] specification states in Section 4.1
   "Authentication":

   Methods for doing this are outside the scope of this document

C.3.  Google ALTS

   Google's Application Layer Transport Security [ALTS] is a mutual
   authentication and transport encryption system used for securing
   Remote Procedure Call (RPC) communications within Google's
   infrastructure.  ALTS uses an ECDH handshake protocol and a record
   protocol containing AES encrypted payloads.

C.4.  Ephemeral Diffie-Hellman Over COSE (EDHOC)

   There is ongoing work to standardise EDHOC
   [I-D.selander-ace-cose-ecdhe], which defines a SIGMA-I based
   authenticated key exchange protocol using COSE and CBOR.

Authors' Addresses

   Owen Friel
   Cisco

   Email: ofriel@cisco.com

   Richard Barnes
   Cisco

   Email: rlb@ipv.sx

   Max Pritikin
   Cisco

   Email: pritikin@cisco.com



Friel, et al.              Expires May 7, 2020                 [Page 40]



Internet-Draft                    ATLS                     November 2019

   Hannes Tschofenig
   Arm Ltd.

   Email: hannes.tschofenig@gmx.net

   Mark Baugher
   Consultant

   Email: mark@mbaugher.com

Friel, et al.              Expires May 7, 2020                 [Page 41]


