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Abstract

   This document specifies how TLS and DTLS can be used at the
   application layer for the purpose of establishing secure end-to-end
   encrypted communication security.

   Encodings for carrying TLS and DTLS payloads are specified for HTTP
   and CoAP to improve interoperability.  While the use of TLS and DTLS
   is straight forward we present multiple deployment scenarios to
   illustrate the need for end-to-end application layer encryption and
   the benefits of reusing a widely deployed and readily available
   protocol.  Application software architectures for building, and
   network architectures for deploying application layer TLS are
   outlined.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 7, 2020.
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1.  Introduction

   There are multiple scenarios where there is a need for application
   layer end-to-end security between clients and application services.
   Two examples include:

   o  Constrained devices connecting via gateways to application
      services, where different transport layer protocols may be in use
      on either side of the gateway, with the gateway transcoding
      between the different transport layer protocols.

   o  Bootstrapping devices that must connect to HTTP application
      services across untrusted TLS interception middleboxes

   These two scenarios are described in more detail in Section 3.

   This document describes how clients and applications can leverage
   standard TLS software stacks to establish secure end-to-end encrypted
   connections at the application layer.  TLS [RFC5246] [RFC8446] or
   DTLS [RFC6347] [I-D.ietf-tls-dtls13] can be used and this document is
   agnostic to the versions being used.  There are multiple advantages
   to reuse of existing TLS software stacks for establishment of
   application layer secure connections.  These include:

   o  many clients and application services already include a TLS
      software stack, so there is no need to include yet another
      software stack in the software build

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347
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   o  no need to define a new cryptographic negotiation, authentication,
      and key exchange protocol between clients and services

   o  provides standards based PKI mutual authentication between clients
      and services

   o  no need to train software developers on how to use a new
      cryptographic protocols or libraries

   o  automatically benefit from new cipher suites by simply upgrading
      the TLS software stack

   o  automatically benefit from new features, bugfixes, etc. in TLS
      software stack upgrades

   When TLS or DTLS is used at the application layer we refer to it as
   Application-Layer TLS, or ATLS.  There is, however, no difference to
   TLS versions used over connection-oriented transports, such as TCP or
   SCTP.  The same is true for DTLS.  The difference is mainly in its
   use and the requirements placed on the underlying transport.

   This document defines how ATLS can be used over HTTP [RFC7230]
   [RFC7540] and over CoAP [RFC7252].  This document does not preclude
   the use of other transports.  However, defining how ATLS can be
   established over [ZigBee], [Bluetooth], etc. is beyond the scope of
   this document.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Application-Layer TLS is referred to as ATLS throughout this
   document.

3.  Application Layer End-to-End Security Use Cases

   This section describes describes a few end-to-end use cases in more
   detail.

3.1.  Constrained Devices

   Two constrained device use cases are outlined here.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
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3.1.1.  Constrained Device Connecting over a Non-IP Network

   There are industry examples of smart lighting systems where
   luminaires are connected using ZigBee to a gateway.  A server
   connects to the gateway using CoAP over DTLS.  The server can control
   the luminaires by sending messages and commands via the gateway.  The
   gateway has full access to all messages sent between the luminaires
   and the server.

   A generic use case similar to the smart lighting system outlined
   above has an IoT device talking ZigBee, Bluetooth Low Energy,
   LoRaWAN, NB-IoT, etc. to a gateway, with the gateway in turn talking
   CoAP over DTLS or another protocol to a server located in the cloud
   or on-premise.  This is illustrated in Figure 1.

   There are scenarios where certain messages sent between the IoT
   device and the server must not be exposed to the gateway function.
   Additionally, the two endpoints may not have visibility to and no
   guarantees about what transport layer security and encryption is
   enforced across all hops end-to-end as they only have visibility to
   their immediate next hop.  ATLS addresses these concerns.

   +--------+    ZigBee     +---------+  CoAP/DTLS   +------------+
   | Device |-------------->| Gateway |------------->| Server     |
   +--------+               +---------+              +------------+
       ^                                                   ^
       |                                                   |
       +--------          Device to Server          -------+

                   Figure 1: IoT Closed Network Gateway

3.1.2.  Constrained Device Connecting over IP

   In this example an IoT device connecting to a gateway using a
   suitable transport mechanism, such as ZigBee, CoAP, MQTT, etc.  The
   gateway function in turn talks HTTP over TLS (or, for example, HTTP
   over QUIC) to an application service over the Internet.  This is
   illustrated in Figure 2.

   The gateway may not be trusted and all messages between the IoT
   device and the application service must be end-to-end encrypted.
   Similar to the previous use case, the endpoints have no guarantees
   about what level of transport layer security is enforced across all
   hops.  Again, ATLS addresses these concerns.
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   +--------+  CoAP/DTLS    +------------------+  HTTP/TLS   +---------+
   | Device |-------------->| Internet Gateway |------------>| Service |
   +--------+               +------------------+             +---------+
       ^                                                          ^
       |                                                          |
       +---------Device to Cloud Service ATLS Connection----------+

                      Figure 2: IoT Internet Gateway

3.2.  Bootstrapping Devices

   There are far more classes of clients being deployed on today's
   networks than at any time previously.  This poses challenges for
   network administrators who need to manage their network and the
   clients connecting to their network, and poses challenges for client
   vendors and client software developers who must ensure that their
   clients can connect to all required services.

   One common example is where a client is deployed on a local domain
   TCP/IP network that protects its perimeter using a TLS terminating
   middlebox, and the client needs to establish a secure connection to a
   service in a different network via the middlebox.  This is
   illustrated in Figure 3.

   Traditionally, this has been enabled by the network administrator
   deploying the necessary certificate authority trusted roots on the
   client.  This can be achieved at scale using standard tools that
   enable the administrator to automatically push trusted roots out to
   all client machines in the network from a centralized domain
   controller.  This works for personal computers, laptops and servers
   running standard Operating Systems that can be centrally managed.
   This client management process breaks for multiple classes of clients
   that are being deployed today, there is no standard mechanism for
   configuring trusted roots on these clients, and there is no standard
   mechanism for these clients to securely traverse middleboxes.

   +--------+    C->M TLS    +-----------+   M->S TLS   +---------+
   | Client |--------------->| Middlebox |------------->| Service |
   +--------+                +-----------+              +---------+
       ^                                                     ^
       |                                                     |
       +-----------Client to Service ATLS Connection---------+

                      Figure 3: Bootstrapping Devices

   The ATLS mechanism defined in this document enables clients to
   traverse middleboxes and establish secure connections to services
   across network domain boundaries.  The purpose of this connection may
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   simply be to facilitate a bootstrapping process, for example
   [I-D.ietf-anima-bootstrapping-keyinfra], whereby the client securely
   discovers the local domain certificate authorities required to
   establish a trusted network layer TLS connection to the middlebox.

4.  ATLS Goals

   The high level goals driving the design of this mechanism are:

   o  enable authenticated key exchange at the application layer by
      reusing existing technologies,

   o  ensure that ATLS packets are explicitly identified thus ensuring
      that any middleboxes or gateways at the transport layer are
      content aware,

   o  leverage TLS stacks and handshake protocols thus avoiding
      introducing new software or protocol dependencies in clients and
      applications

   o  reuse TLS [RFC5246] [RFC8446] and DTLS [RFC6347]
      [I-D.ietf-tls-dtls13] specifications,

   o  do not mandate constraints on how the TLS stack is configured or
      used,

   o  be forward compatible with future TLS versions including new
      developments such as compact TLS [I-D.rescorla-tls-ctls], and

   o  ensure that the design is as simple as possible.

5.  Architecture Overview

5.1.  Application Architecture

   TLS software stacks allow application developers to 'unplug' the
   default network socket transport layer and read and write TLS records
   directly from byte buffers.  This enables application developers to
   use ATLS, extract the raw TLS record bytes from the bottom of the TLS
   stack, and transport these bytes over any suitable transport.  The
   TLS software stacks can generate byte streams of full TLS flights,
   which may include multiple TLS records.  Additionally, TLS software
   stacks support Keying Material Exporters [RFC5705] and allow
   applications to export keying material from established TLS sessions.
   This keying material can then be used by the application for
   encryption of data outside the context of the TLS session.  This is
   illustrated in Figure 4 below.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5705
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                       +------------+                    +---------+
    Handshake Records  |            | Handshake Records  |         |
   ------------------->|            |------------------->|         |
                       |            |                    |  Byte   |
    Unencrypted Data   |    TLS     | Encrypted Data     |         |
   ------------------->|            |------------------->| Buffers |
                       |  Software  |                    |         |
    Encrypted Data     |            | Unencrypted Data   |         |
   ------------------->|   Stack    |------------------->|         |
                       |            |                    +---------+
    Keying Material    |            |
   <-------------------|            |
                       + -----------+

                      Figure 4: TLS Stack Interfaces

   These TLS software stack APIs enable application developers to build
   the software architectures illustrated in Figure 5 and Figure 6.

   In both architectures, the application creates and interacts with an
   application layer TLS session in order to generate and consume raw
   TLS records.  The application transports these raw TLS records inside
   transport layer message bodies using whatever standard transport
   layer stack is suitable for the application or architecture.  This
   document does not place any restrictions on the choice of transport
   layer and any suitable protocol such as HTTP, TCP, CoAP, ZigBee,
   Bluetooth, etc. could be used.

   The transport layer will typically encrypt data, and this encryption
   is completely independent from any application layer encryption.  The
   transport stack may create a transport layer TLS session.  The
   application layer TLS session and transport layer TLS session can
   both leverage a shared, common TLS software stack.  This high level
   architecture is applicable to both clients and application services.
   The key differences between the architectures are as follows.

   In the model illustrated in Figure 5, the application sends all
   sensitive data that needs to be securely exchanged with the peer
   application through the Application TLS session in order to be
   encrypted and decrypted.  All sensitive application data is thus
   encoded within TLS records by the TLS stack, and these TLS records
   are transmitted over the transport layer.
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   +-------------+
   |             |    App
   |             |    Data    +---------+
   | Application |<---------->|   App   |      +---------+
   |             |    TLS     |   TLS   |----->|   TLS   |
   |             |  Records   | Session |      |  Stack  |
   |        +--->|<---------->|         |      +---------+
   |        |    |            +---------+           ^
   |        |    |                                  |?
   |        |    | Transport +-----------+    +------------+
   |        |    |  Payload  | Transport |    | Transport  |
   |        +--->|<--------->|   Stack   |--->| Encryption |-->Packets
   +-------------+           +-----------+    +------------+

             Figure 5: TLS Stack used for all data encryption

   In the model illustrated in Figure 6, the application establishes an
   application layer TLS session purely for the purposes of key
   exchange.  Therefore, the only TLS records that are sent or received
   by the application layer are TLS handshake records.  Once the
   application layer TLS session is established, the application uses
   Keying Material Exporter [RFC5705] APIs to export keying material
   from the TLS stack from this application layer TLS session.  The
   application can then use these exported keys to derive suitable
   shared encryption keys with its peer for exchange of encrypted data.
   The application encrypts and decrypts sensitive data using these
   shared encryption keys using any suitable cryptographic library
   (which may be part of the same library that provides the TLS stack),
   and transports the encrypted data directly over the transport layer.

https://datatracker.ietf.org/doc/html/rfc5705
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   +--------------+
   |              |
   | Application  |
   |              |
   | +-------+    |            +---------+
   | | App   |    | Key Export |         |
   | | Data  |<---|<-----------|         |
   | | Crypto|    |            |   App   |
   | +-------+    |    TLS     |   TLS   |      +---------+
   |    ^         | Handshake  | Session |----->|   TLS   |
   |    |         |  Records   |         |      |  Stack  |
   |    |    +--->|<---------->|         |      +---------+
   |    |    |    |            +---------+           ^
   |    |    |    |                                  |?
   |    |    |    | Transport +-----------+    +------------+
   |    |    |    |  Payload  | Transport |    | Transport  |
   |    +----+--->|<--------->|   Stack   |--->| Encryption |-->Packets
   +--------------+           +-----------+    +------------+

         Figure 6: TLS stack used for key agreement and exporting

   The choice of which application architecture to use will depend on
   the overall solution architecture, and the underlying transport layer
   or layers in use.  While the choice of application architecture is
   outside the scope of this document, some considerations are outlined
   here.

   o  in some IoT use cases reducing the number of bytes transmitted is
      important.  [I-D.mattsson-lwig-security-protocol-comparison]
      analyses the overhead of TLS headers compared with OSCORE
      [I-D.ietf-core-object-security] illustrating the additional
      overhead associated with TLS headers.  The overhead varies between
      the different TLS versions and also between TLS and DTLS.  It may
      be more appropriate to use the architecture defined in Figure 6 in
      order to establish shared encryption keys, and then transport
      encrypted data directly without the overhead of unwanted TLS
      record headers.

   o  when using HTTP as a transport layer, it may be more appropriate
      to use the architecture defined in Figure 6 in order to avoid any
      TLS session vs. HTTP session affinity issues.

5.1.1.  Application Architecture Benefits

   There are several benefits to using a standard TLS software stack to
   establish an application layer secure communications channel between
   a client and a service.  These include:
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   o  no need to define a new cryptographic negotiation and exchange
      protocol between client and service

   o  automatically benefit from new cipher suites by simply upgrading
      the TLS software stack

   o  automatically benefit from new features, bugfixes, etc. in TLS
      software stack upgrades

5.1.2.  ATLS Packet Identification

   It is recommended that ATLS packets are explicitly identified by a
   standardized, transport-specific identifier enabling any gateways and
   middleboxes to identify ATLS packets.  Middleboxes have to contend
   with a vast number of applications and network operators have
   difficulty configuring middleboxes to distinguish unencrypted but not
   explicitly identified application data from end-to-end encrypted
   data.  This specification aims to assist network operators by
   explicitly identifying ATLS packets.  The HTTP and CoAP encodings
   documented in Section 8 and Section 7 explicitly identify ATLS
   packets.

5.1.3.  ATLS Session Tracking

   The ATLS application service establishes multiple ATLS sessions with
   multiple clients.  As TLS sessions are stateful, the application
   service must be able to correlate ATLS records from different clients
   across the relevant ATLS sessions.  The details of how session
   tracking is implemented are outside the scope of this document.
   Recommendations are given in Section 8 and Section 7, but session
   tracking is application and implementation specific.

5.1.4.  ATLS Record Inspection

   No constraints are placed on the ContentType contained within the
   transported TLS records.  The TLS records may contain handshake,
   application_data, alert or change_cipher_spec messages.  If new
   ContentType messages are defined in future TLS versions, these may
   also be transported using this protocol.

5.1.5.  ATLS Message Routing

   In many cases ATLS message routing is trival.  However, there are
   potentially cases where the middlebox topology is quite complex and
   an example is shown in Figure 7.  In this scenario multiple devices
   (Client 1-3) are connected using serial communication to a gateway
   (referred as middlebox A).  Middlebox A communicates with another
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   middlebox B over UDP/IP.  Middlebox B then interacts with some
   servers in the backend using CoAP over TCP.

   This scenario raises the question about the ATLS message routing.  In
   particular, there are two questions:

   o  How do the middleboxes know to which IP address to address the
      ATLS packet?  This question arises in scenarios where clients are
      communicating over non-IP transports.

   o  How are response messages demultiplexed?

   In some scenarios it is feasible to pre-configure the destination IP
   address of outgoing packets.  Another other scenarios extra
   information available in the ATLS message or in a shim layer has to
   provide the necessary information.  In the case of ATLS the use of
   the Server Name Indicating (SNI) parameter in the TLS/DTLS
   ClientHello message is a possibility to give middleboxes enough
   information to determine the ATLS communication endpoint.  This
   approach is also compatible with SNI encryption.

   For demultiplexing again different approaches are possible.  The
   simplest approach is to use separate source ports for each ATLS
   session.  In our example, Middlebox A allocates a dedicated socket
   (with a separate source port) for outgoing UDP datagrams in order to
   be able to relay a response message to the respective client.
   Alternatively, it is possible to make use of a shim layer on top of
   the transport that provides this extra demultiplexing capabilities.
   The use of multiple UDP "sessions" (as well as different TCP
   sessions) has the advantage of avoiding head-of-line blocking.



Friel, et al.              Expires May 7, 2020                 [Page 12]



Internet-Draft                    ATLS                     November 2019

        +---------+          +---------+
        | Server 1|----+-----| Server 2|
        +---------+    |     +---------+
                       |
                       |CoAP
                       |over
                       |TCP/TLS
                       |
                 +-----+-----+
                 |Middlebox B|
                 +-----------+
                       |
                       |
                       |CoAP
                       |over
                       |UDP/DTLS
                       |
                 +-----------+
       +---------|Middlebox A|-----------+
       |         +-----------+           |
       |               |                 |
       |CoAP           |CoAP             |CoAP
       |over           |over             |over
       |Serial         |Serial           |Serial
       |               |                 |
   +--------+      +--------+       +--------+
   |Client 1|      |Client 2|       |Client 3|
   +--------+      +--------+       +--------+

                    Figure 7: Message Routing Scenario

5.1.6.  Implementation

   Pseudo code illustrating how to read and write TLS records directly
   from byte buffers using both OpenSSL BIO functions and Java JSSE
   SSLEngine is given in the appendices.  A blog post by [Norrell]
   outlines a similar approach to leveraging OpenSSL BIO functions, and
   Oracle publish example code for leveraging [SSLEngine].

5.2.  Functional Design

   The functional design assumes that an authorization system has
   established operational keys for authenticating endpoints.  In a
   layered design, this needs to be done for each layer, which may
   operate in two separate authorization domains.  Note that Figure 8
   shows a generic setup where TLS/DTLS is used at two layers.  In some
   cases, use of TLS/DTLS at the application layer may be sufficient
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   where lower layer security mechanisms provide protection of the
   transport-specific headers.

             +-------------------------------------------------------+
             |               +---+               +---+               |
             |  +--------+   |APP|               |APP|   +--------+  |
             |  |security|   +---+               +---+   |security|  |
             |  |--------+     ^                   ^     |--------+  |
             |  |policies|     |                   |     |policies|  |
             |  |LAYER 0 |     |                   |     |LAYER 0 |  |
             |  +--------+     v                   v     +--------+  |
             |       +      +------+    APP    +------+      +       |
             |       |      | TLS- |<--------->| TLS- |      |       |
             |       +----->|SERVER|   LAYER   |CLIENT|<-----+       |
             |              +------+           +------+              |
             | TOP LAYER       ^                   ^                 |
             +-----------------|-------------------|-----------------+
             | BOTTTOM LAYER   |                   |                 |
             |                 v                   v                 |
             |              +------+ TRANSPORT +------+              |
             |              | TLS- |<--------->| TLS- |              |
             |  +--------+  |SERVER|   LAYER   |CLIENT|  +--------+  |
             |  |security|  +------+           +------+  |security|  |
             |  |--------+     ^                   ^     |--------+  |
             |  |policies|     |                   |     |policies|  |
             |  |LAYER 1 +-----+                   +-----+LAYER 1 |  |
             |  +--------+                               +--------+  |
             |                                                       |
             +-------------------------------------------------------+

                        Figure 8: Functional Design

   The security policies of one layer are distinct from those of another
   in Figure 8.  They may overlap, but that is not necessary or perhaps
   even likely since the key exchanges at the different layers terminate
   at different endpoints and the two often have different authorization
   domains.

   TLS can protect IoT device-to-gateway communications "on the wire"
   using the "bottom layer" of Figure 8, and it can protect application
   data from the device to the application server using the "top layer."
   Application and transport security each have a role to play.
   Transport security restricts access to messages on the networks,
   notably application headers and application-layer TLS restricts
   access to the application payloads.

   As shown in Figure 8, an application-layer message, which gets
   encrypted and integrity protected and, in the generic case, the the
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   resulting TLS message and headers are passed to a TLS socket at the
   bottom layer, which may have a different security policy than the
   application layer.

5.3.  Network Architecture

   An example network deployment is illustrated in Figure 9.  It shows a
   constrained client connecting to an application service via an
   internet gateway.  The client uses CoAP over DTLS to communicate with
   the gateway.  The gateway extracts the messages the client sent over
   CoAP and sends these messages inside HTTP message bodies to the
   application service.  It also shows a TLS terminator deployed in
   front of the application service.  The client establishes a transport
   layer CoAP/DTLS connection with the gateway (C->G DTLS), the gateway
   in turn opens a transport layer TLS connection with the TLS
   terminator deployed in front of the service (G->T TLS).  The client
   can ignore any certificate validation errors when it connects to the
   gateway.  CoAP messages are transported between the client and the
   gateway, and HTTP messages are transported between the client and the
   service.  Finally, application layer TLS messages are exchanged
   inside the CoAP and HTTP message bodies in order to establish an end-
   to-end TLS session between the client and the service (C->S TLS).

          +----------+        +----------+
          | App Data |        | App Data |
          +----------+        +----------+         +----------+
          | C->S TLS |        | C->S TLS |         | App Data |
          +----------+        +----------+         +----------+
          |   CoAP   |        |   HTTP   |         | C->S TLS |
          +----------+        +----------+         +----------+
          | C->G DTLS|        | M->T TLS |         |   HTTP   |
          +----------+        +----------+         +----------+
          |   UDP    |        |   TCP    |         |   TCP    |
          +----------+        +----------+         +----------+

   +--------+      +-----------+      +----------------+     +---------+
   | Client |----->|  Gateway  |----->| TLS Terminator |---->| Service |
   +--------+      +-----------+      +----------------+     +---------+
      ^                                                           ^
      |                                                           |
      +-------------Client to Service ATLS Connection-------------+

         Figure 9: Constrained Device Gateway Network Architecture

   Another typical network deployment is illustrated in Figure 10.  It
   shows a client connecting to a service via a middlebox.  It also
   shows a TLS terminator deployed in front of the service.  The client
   establishes a transport layer TLS connection with the middlebox (C->M
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   TLS), the middlebox in turn opens a transport layer TLS connection
   with the TLS terminator deployed in front of the service (M->T TLS).
   The client can ignore any certificate validation errors when it
   connects to the middlebox.  HTTP messages are transported over this
   layer between the client and the service.  Finally, application layer
   TLS messages are exchanged inside the HTTP message bodies in order to
   establish an end-to-end TLS session between the client and the
   service (C->S TLS).

          +----------+        +----------+
          | App Data |        | App Data |
          +----------+        +----------+         +----------+
          | C->S TLS |        | C->S TLS |         | App Data |
          +----------+        +----------+         +----------+
          |   HTTP   |        |   HTTP   |         | C->S TLS |
          +----------+        +----------+         +----------+
          | C->M TLS |        | M->T TLS |         |   HTTP   |
          +----------+        +----------+         +----------+
          |   TCP    |        |   TCP    |         |   TCP    |
          +----------+        +----------+         +----------+

   +--------+      +-----------+      +----------------+     +---------+
   | Client |----->| Middlebox |----->| TLS Terminator |---->| Service |
   +--------+      +-----------+      +----------------+     +---------+
      ^                                                           ^
      |                                                           |
      +-------------Client to Service ATLS Connection-------------+

              Figure 10: HTTP Middlebox Network Architecture

6.  ATLS Session Establishment

   Figure 11 illustrates how an ATLS session is established using the
   key exporting architectural model shown in Figure 6.  The number of
   RTTs that take place when establishing a TLS session depends on the
   version of TLS and what capabilities are enabled on the TLS software
   stack.  For example, a 0-RTT exchange is possible with TLS 1.3.  If
   applications wish to ensure a predictable number of RTTs when
   establishing an application layer TLS connection, this may be
   achieved by configuring the TLS software stack appropriately.

   The outline is as follows:

   o  the client creates an ATLS session object

   o  the client initiates a TLS handshake on the session
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   o  the client extracts the TLS records for the first TLS flight (the
      first RTT)

   o  the client sends the TLS records over the transport layer to the
      server

   o  on receipt of the TLS flight, the server creates an ATLS session
      object

   o  the server injects the received TLS flight into the session

   o  the server extracts the TLS records for the first TLS flight
      response

   o  the server sends the TLS response records over the transport layer
      to the client

   o  the client injects the received TLS records into its TLS session
      completing the first full RTT

   o  the client and server repeat the above process and complete the
      second RTT

   o  once the ATLS session is up, both sides export keying material

   o  both sides now can exchange data encrypted using shared keys
      derived from the keying material

   +-------------------------------+  +-------------------------------+
   |             Client            |  |           ATLS Server         |
   +---------+---+-----+-+---------+  +---------+--+-----+--+---------+
   |  ATLS   |   | App | |Transport|  |Transport|  | App |  |  ATLS   |
   | Session |   +-----+ |  Stack  |  |  Stack  |  +-----+  | Session |
   +---------+     |     +---------+  +---------+     |     +---------+
        |          |         |             |          |          |
        |          |         |             |          |          |
        |          |         |             |          |          |
        |  Create  |         |             |          |          |
        |  Session |         |             |          |          |
    +   |<---------|         |             |          |          |
    |   |  Start   |         |             |          |          |
    |   | Handshake|         |             |          |          |
    |   |<---------|         |             |          |          |
    |   |   TLS    |         |             |          |          |
    |   | Records  |  Pack   |             |          |          |
    |   |--------->| Records |             |          |          |
        |          |-------->| send packet | Unpack   |          |
    R   |          |         |------------>| Records  | Create   |
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    T   |          |         |             |--------->| Session  |
    T   |          |         |             |          |--------->|
        |          |         |             |          |   TLS    |
    1   |          |         |             |          | Records  |
        |          |         |             |          |--------->|
    |   |          |         |             |          |   TLS    |
    |   |          |         |             |  Pack    | Records  |
    |   |          |         |             | Records  |<---------|
    |   |          | Unpack  |send response|<---------|          |
    |   |   TLS    | Records |<------------|          |          |
    |   | Records  |<--------|             |          |          |
    +   |<---------|         |             |          |          |
        |   TLS    |         |             |          |          |
        | Records  |         |             |          |          |
    +   |--------->|-------->|------------>|--------->|--------->|
    |   |          |         |             |          |          |
        |          |         |             |          | Session  |
    R   |          |         |             |          |    Up    |
    T   |          |         |             |          |<---------|
    T   |          |         |             |          |   TLS    |
        |          |         |             |          | Records  |
    2   |<---------|<--------|<------------|<---------|<---------|
        | Session  |         |             |          |          |
    |   |    Up    |         |             |          |          |
    +   |--------->|         |             |          |          |
        |  Export  |         |             |          |  Export  |
        |   Keys   |         |             |          |   Keys   |
        |--------->|         | E2E Session |          |<---------|
        |          |<--------|-------------|--------->|          |

                   Figure 11: ATLS Session Establishment

7.  ATLS over CoAP Transport

   To carry TLS messages over CoAP [RFC7252] it is recommended to use
   Confirmable messages while DTLS payloads may as well use non-
   confirmable messages.  The exchange pattern in CoAP uses the
   following style: A request from the CoAP client to the CoAP server
   uses a POST with the ATLS message contained in the payload of the
   request.  An ATLS response is returned by the CoAP server to the CoAP
   client in a 2.04 (Changed) message.

   When DTLS messages are conveyed in CoAP over UDP then the DDoS
   protection offered by DTLS MAY be used instead of replicating the
   functionality at the CoAP layer.  If TLS is conveyed in CoAP over UDP
   then DDoS protection by CoAP has to be utilized.  Carrying ATLS
   messages in CoAP over TCP does not require any additional DDoS
   protection.

https://datatracker.ietf.org/doc/html/rfc7252
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   The URI path used by ATLS is "/.well-known/atls".

   {{coap-example} shows a TLS 1.3 handshake inside CoAP graphically.

       Client    Server
         |          |
         +--------->| Header: POST (Code=0.02)
         |   POST   | Uri-Path: "/.well-known/atls"
         |          | Content-Format: application/atls
         |          | Payload: ATLS (ClientHello)
         |          |
         |<---------+ Header: 2.04 Changed
         |   2.04   | Content-Format: application/atls
         |          | Payload: ATLS (ServerHello,
         |          | {EncryptedExtensions}, {CertificateRequest*}
         |          | {Certificate*}, {CertificateVerify*} {Finished})
         |          |
         +--------->| Header: POST (Code=0.02)
         |   POST   | Uri-Path: "/.well-known/atls"
         |          | Content-Format: application/atls
         |          | Payload: ATLS ({Certificate*},
         |          | {CertificateVerify*}, {Finished})
         |          |
         |<---------+ Header: 2.04 Changed
         |   2.04   |
         |          |

                   Figure 12: Transferring ATLS in CoAP

   Note that application data can already be sent by the server in the
   second message and by the client in the third message, in case of the
   full TLS 1.3 handshake.  In case of the 0-RTT handshake application
   data can be sent earlier.  To mix different media types in the same
   CoAP payload the application/multipart-core content type is used.

   Note also that CoAP blockwise transfer MAY be used if the payload
   size, for example due to the size of the certificate chain, exceeds
   the MTU size.

8.  ATLS over HTTP Transport

   The assumption is that the client will establish a transport layer
   connection to the server for exchange of HTTP messages.  The
   underlying transport layer connection could be over TCP or TLS.  The
   client will then establish an application layer TLS connection with
   the server by exchanging TLS records with the server inside HTTP
   message request and response bodies.



Friel, et al.              Expires May 7, 2020                 [Page 19]



Internet-Draft                    ATLS                     November 2019

   Note that ATLS over HTTP transport addresses a different deployment
   scenario than HTTP CONNECT proxies.  HTTP CONNECT proxy behaviour is
   compared and contrasted with ATLS in Appendix B.

8.1.  Protocol Summary

   All ATLS records are transported unmodified as binary data within
   HTTP message bodies.  The application simply extracts the TLS records
   from the TLS stack and inserts them directly into HTTP message
   bodies.  Each message body contains a full TLS flight, which may
   contain multiple TLS records.

   The client sends all ATLS records to the server in the bodies of POST
   requests.

   The server sends all ATLS records to the client in the bodies of 200
   OK responses to the POST requests.

   The URI path used by ATLS is "/.well-known/atls".

8.2.  Content-Type Header

   A new Content-Type header value is defined:

   Content-type: application/atls

   All message bodies containing ATLS records must set this Content-
   Type.  This enables middleboxes to readily identify ATLS payloads.

8.3.  HTTP Status Codes

   This document does not define any new HTTP status codes, and does not
   specify additional semantics or refine existing semantics for status
   codes.  This is the best current practice as outlined in
   [I-D.ietf-httpbis-bcp56bis].

8.4.  ATLS Session Tracking

   The application service needs to track multiple client application
   layer TLS sessions so that it can correlate TLS records received in
   HTTP message bodies with the appropriate TLS session.  The
   application service should use stateful cookies [RFC6265] in order to
   achieve this as recommended in [I-D.ietf-httpbis-bcp56bis].

https://datatracker.ietf.org/doc/html/rfc6265
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8.5.  Session Establishment and Key Exporting

   It is recommended that applications using ATLS over HTTP transport
   only use ATLS for session establishment and key exchange, resulting
   in only 2 ATLS RTTs between the client and the application service.

   Key exporting must be carried out as described in Section 9.

8.6.  Illustrative ATLS over HTTP Session Establishment

   A client initiates an ATLS session by sending the first TLS flight in
   a POST request message body to the ATLS server.

   POST /.well-known/atls
   Content-Type: application/atls

   <binary TLS client flight 1 records>

   The server handles the request, creates an ATLS session object, and
   replies by including its first TLS flight in a 200 OK message body.
   The server also sets a suitable cookie for session tracking purposes.

   200 OK
   Content-Type: application/atls
   Set-Cookie: my-atls-cookie=my-cookie-value

   <binary TLS server flight 1 records>

   The client handles the server first flight TLS records and replies
   with its second flight.

   POST /.well-known/atls
   Content-Type: application/atls
   Cookie: my-atls-cookie=my-cookie-value

   <binary TLS client flight 2 records>

   The server handles the second flight, establishes the ATLS session,
   and replies with its second flight.

   200 OK
   Content-Type: application/atls

   <binary TLS server flight 2 records>
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9.  Key Exporting and Application Data Encryption

   When solutions implement the architecture described in Figure 6, they
   leverage [RFC5705] for exporting keys.  This section describes how to
   establish keying material and negotiate algorithms for OSCORE and for
   COSE.

9.1.  OSCORE

   When the OSCORE mode has been agreed using the "oscore_connection_id"
   extension defined in this document, different keys are used for DTLS/
   TLS record protection and for OSCORE packet protection.  These keys
   are produced using a TLS exporter [RFC5705] and the exporter takes
   three input values:

   o  a disambiguating label string,

   o  a per-association context value provided by the application using
      the exporter, and

   o  a length value.

   The label string for use with this specification is defined as 'atls-
   oscore'.  The per-association context value is empty.

   The length value is twice the size of the key size utilized by the
   negotiated algorithm since the lower-half is used for the Master
   Secret and the upper-half is used for the Master Salt.

   For example, if a TLS/DTLS 1.2 handshake negotiated the
   TLS_PSK_WITH_AES_128_CCM_8 ciphersuite then the key size utilized by
   the negotiated algorithm, i.e. AES 128, is 128 bit.  Hence, the key
   extractor is requested to produce 2 x 128 bit keying material.

   The following parameters are needed for use with OSCORE:

   o  Master Secret: The master secret is derived as described above.

   o  Sender ID: This values is negotiated using the
      "oscore_connection_id" extension, as described in Section 11.1.

   o  Recipient ID: This values is negotiated using the
      "oscore_connection_id" extension, as described in Section 11.1.

   o  AEAD Algorithm: This value is negotiated using the ciphersuite
      exchange provided by the TLS/DTLS handshake.  For example, if a
      TLS/DTLS 1.2 handshake negotiated the TLS_PSK_WITH_AES_128_CCM_8
      ciphersuite then the AEAD algorithm identifier is AES_128_CCM_8,

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
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      which corresponds to two COSE algorithms, which both use AES-CCM
      mode with a 128-bit key, a 64-bit tag:

      *  AES-CCM-64-64-128

      *  AES-CCM-16-64-128 The difference between the two is only the
         length of the nonce, which is 7-bytes in the former case and
         13-bytes in the latter.  In TLS/DTLS the nonce value is not
         negotiated but fixed instead.  Figure 13 provides the mapping
         between the TLS defined ciphersuite and the COSE algorithms.

   o  Master Salt: The master salt is derived as described above.

   o  HKDF Algorithm: This value is negotiated using the ciphersuite
      exchange provided by the TLS/DTLS handshake.  As a default,
      SHA-256 is assumed as a HKDF algorithm for algorithms using
      128-bit key sizes and SHA384 for 256-bit key sizes.

   o  Replay Window: A default window size of 32 packets is assumed.

9.2.  COSE

   The key exporting procedure for COSE is similiar to the one defined
   for OSCORE.  The label string for use with this specification is
   defined as 'atls-cose'.  The per-association context value is empty.

   The length value is twice the size of the key size utilized by the
   negotiated algorithm since the lower-half is used for the Master
   Secret and the upper-half is used for the Master Salt.

   The COSE algorithm corresponds to the ciphersuite negotiated during
   the TLS/DTLS handshake with with the mapping provided in Figure 13.
   The HKDF algorithm is negotiated using the the TLS/DTLS handshake.
   As a default, SHA-256 is assumed as a HKDF algorithm for algorithms
   using 128-bit key sizes and SHA384 for 256-bit key sizes.

   COSE uses key ids to allow finding the appropriate security context.
   Those key IDs conceptually correspond to CIDs, as described in

Section 11.2.

10.  TLS Ciphersuite to COSE/OSCORE Algorithm Mapping
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   TLS Ciphersuite   | COSE/OSCORE Algorithm
   ------------------+--------------------------------------------------
   AES_128_CCM_8     | AES-CCM w/128-bit key, 64-bit tag, 13-byte nonce
   AES_256_CCM_8     | AES-CCM w/256-bit key, 64-bit tag, 13-byte nonce
   CHACHA20_POLY1305 | ChaCha20/Poly1305 w/256-bit key, 128-bit tag
   AES_128_CCM       | AES-CCM w/128-bit key, 128-bit tag, 13-byte nonce
   AES_256_CCM       | AES-CCM w/256-bit key, 128-bit tag, 13-byte nonce
   AES_128_GCM       | AES-GCM w/128-bit key, 128-bit tag
   AES_256_GCM       | AES-GCM w/256-bit key, 128-bit tag

        Figure 13: TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

11.  TLS Extensions

11.1.  The "oscore_connection_id" Extension

   This document defines the "oscore_connection_id" extension, which is
   used in ClientHello and ServerHello messages.  It is used only for
   establishing the OSCORE Sender ID and the OSCORE Recipient ID.  The
   OSCORE Sender ID maps to the CID provided by the server in the
   ServerHello and the OSCORE Recipient ID maps to the CID provided by
   the client in the ClientHello.

   The negotiation mechanism follows the procedure used in
   [I-D.ietf-tls-dtls-connection-id] with the exception that the
   negotiated CIDs agreed with the "oscore_connection_id" extension is
   only used with OSCORE and does not impact the record layer format of
   the DTLS/TLS payloads nor the MAC calculation used by DTLS/TLS.  As
   such, this extension can be used with DTLS as well as with TLS when
   those protocols are used at the application layer.

   The extension type is specified as follows.

   enum {
      oscore_connection_id(TBD), (65535)
   } ExtensionType;

   struct {
      opaque cid<0..2^8-1>;
   } ConnectionId;

              Figure 14: The 'oscore_connection_id' Extension

   Note: This extension allows a client and a server to determine
   whether an OSCORE security context should be established.
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11.2.  The "cose_ext" Extension

   This document defines the "cose_ext" extension, which is used in
   ClientHello and ServerHello messages.  It is used only for
   establishing the key identifiers, AEAD algorithms, as well as keying
   material for use with application layer protection using COSE.  The
   CID provided by the server in the ServerHello maps to the COSE kid
   transmitted from the client to the server and the CID provided by the
   client in the ClientHello maps to the COSE kid transmitted from the
   server to the client.

   The negotiation mechanism follows the procedure used in
   [I-D.ietf-tls-dtls-connection-id] with the exception that the
   negotiated CIDs agreed with the "cose_ext" extension is only used
   with COSE and does not impact the record layer format of the DTLS/TLS
   payloads nor the MAC calculation used by DTLS/TLS.  As such, this
   extension can be used with DTLS as well as with TLS when those
   protocols are used at the application layer.

   The extension type is specified as follows.

   enum {
      oscore_connection_id(TBD), (65535)
   } ExtensionType;

   struct {
      opaque cid<0..2^8-1>;
   } ConnectionId;

                    Figure 15: The 'cose_ext' Extension

   Note: This extension allows a client and a server to determine
   whether an COSE security context should be established.

12.  IANA Considerations

12.1.  "oscore_connection_id" TLS extension

   IANA is requested to allocate two entries to the existing TLS
   "ExtensionType Values" registry, defined in [RFC5246], for
   oscore_connection_id(TBD1) and cose_ext(TBD2) defined in this
   document, as described in the table below.

Value Extension Name       TLS 1.3  DTLS Only  Recommended  Reference
-----------------------------------------------------------------------
TBD1   oscore_connection_id   Y          N          N       [[This doc]]
TBD2   cose_ext               Y          N          N       [[This doc]]

https://datatracker.ietf.org/doc/html/rfc5246
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   Note: The "N" values in the Recommended column are set because these
   extensions are intended only for specific use cases.

12.2.  TLS Ciphersuite to OSCORE/COSE Algorithm Mapping

   IANA is requested to create a new registry for mapping TLS
   ciphersuites to SCORE/COSE algorithms

   An initial mapping can be found in Figure 13.

   Registration requests are evaluated after a three-week review period
   on the tls-reg-review@ietf.or mailing list, on the advice of one or
   more Designated Experts [RFC8126].  However, to allow for the
   allocation of values prior to publication, the Designated Experts may
   approve registration once they are satisfied that such a
   specification will be published.

   Registration requests sent to the mailing list for review should use
   an appropriate subject (e.g., "Request to register an TLS - OSCORE/
   COSE algorithm mapping: example").  Registration requests that are
   undetermined for a period longer than 21 days can be brought to the
   IESG's attention (using the iesg@ietf.org mailing list) for
   resolution.

   Criteria that should be applied by the Designated Experts includes
   determining whether the proposed registration duplicates existing
   functionality, whether it is likely to be of general applicability or
   whether it is useful only for a single extension, and whether the
   registration description is clear.

   IANA must only accept registry updates from the Designated Experts
   and should direct all requests for registration to the review mailing
   list.

12.3.  .well-known URI Registry

   IANA is requested to add the well-known URI 'atls' to the Well-Known
   URIs registry.

   o  URI suffix: atls

   o  Change controller: IETF

   o  Specification document(s): [[this document]]

   o  Related information: None

https://datatracker.ietf.org/doc/html/rfc8126
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12.4.  Media Types Registry

   IANA is requested to add the media type 'application/atls' to the
   Media Types registry.

   o  Type name: application

   o  Subtype name: atls

   o  Required parameters: N/A

   o  Optional parameters: N/A

   o  Encoding considerations: binary

   o  Security considerations: See Security Considerations section of
      this document.

   o  Interoperability considerations: N/A

   o  Published specification: [[this document]] (this document)

   o  Applications that use this media type: Potentially any

   o  Fragment identifier considerations: N/A

   o  Additional information:

      *  Magic number(s): N/A

      *  File extension(s): N/A

      *  Macintosh file type code(s): N/A

   o  Person & email address to contact for further information: See
      "Authors' Addresses" section.

   o  Intended usage: COMMON

   o  Restrictions on usage: N/A

   o  Author: See "Authors' Addresses" section.

   o  Change Controller: IESG
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12.5.  HTTP Content-Formats Registry

   IANA is requested to add the media type 'application/atls' to the
   HTTP Content-Formats registry.

   o  Media Type: application/atls

   o  Encoding: binary

   o  ID: TBD

   o  Reference: [[this document]]

12.6.  CoAP Content-Formats Registry

   IANA is requested to add the media type 'application/atls' to the
   CoAP Content-Formats registry.

   o  Media Type: application/atls

   o  Encoding: binary

   o  ID: TBD

   o  Reference: [[this document]]

12.7.  TLS Key Extractor Label

   IANA is requested to register the "application-layer-tls" label in
   the TLS Extractor Label Registry to correspond to this specification.

13.  Security Considerations

   This specification re-uses the TLS and DTLS and hence the security
   considerations of the respective TLS/DTLS version applies.  As
   described in Section 5.2, implementers need to take the policy
   configuration into account when applying security protection at
   various layers of the stack even if the same protocol is used since
   the communiation endpoints and the security requirements are likely
   going to vary.

   For use in the IoT environment the considerations described in
   [RFC7925] apply and other environments the guidelines in [RFC7525]
   are applicable.

https://datatracker.ietf.org/doc/html/rfc7925
https://datatracker.ietf.org/doc/html/rfc7525
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Appendix A.  Pseudo Code

   This appendix gives both C and Java pseudo code illustrating how to
   inject and extract raw TLS records from a TLS software stack.  Please
   note that this is illustrative, non-functional pseudo code that does
   not compile.

A.1.  OpenSSL

   OpenSSL provides a set of Basic Input/Output (BIO) APIs that can be
   used to build a custom transport layer for TLS connections.  This
   appendix gives pseudo code on how BIO APIs could be used to build a
   client application that completes a TLS handshake and exchanges
   application data with a service.
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   char inbound[MAX];
   char outbound[MAX];
   int rx_bytes;
   SSL_CTX *ctx = SSL_CTX_new();
   SSL *ssl = SSL_new(ctx);

   // Create in-memory BIOs and plug in to the SSL session
   BOI* bio_in = BIO_new(BIO_s_mem());
   BOI* bio_out = BIO_new(BIO_s_mem());
   SSL_set_bio(ssl, bio_in, bio_out);

   // We are a client
   SSL_set_connect_state(ssl);

   // Loop through TLS flights until we are done
   do {
     // Calling SSL_do_handshake() will result in a full
     // TLS flight being written to the BIO buffer
     SSL_do_handshake(ssl);

     // Read the client flight that the TLS session
     // has written to memory
     BIO_read(bio_out, outbound, MAX);

     // POST the outbound bytes to the server using a suitable
     // function. Lets assume that the server response will be
     // written to the 'inbound' buffer
     num_bytes = postTlsRecords(outbound, inbound);

     // Write the server flight to the memory BIO so the TLS session
     // can read it. The next call to SSL_do_handshake() will handle
     // this received server flight
     BIO_write(bio_in, inbound, num_bytes);

   } while (!SSL_is_init_finished(ssl));

   // Send a message to the server. Calling SSL_write() will run the
   // plaintext through the TLS session and write the encrypted TLS
   // records to the BIO buffer
   SSL_write(ssl, "Hello World", strlen("Hello World"));

   // Read the TLS records from the BIO buffer and
   // POST them to the server
   BIO_read(bio_out, outbound, MAX);
   num_bytes = postTlsRecords(outbound, inbound);
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A.2.  Java JSSE

   The Java SSLEngine class "enables secure communications using
   protocols such as the Secure Sockets Layer (SSL) or IETF RFC 2246
   "Transport Layer Security" (TLS) protocols, but is transport
   independent".  This pseudo code illustrates how a server could use
   the SSLEngine class to handle an inbound client TLS flight and
   generate an outbound server TLS flight response.
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   SSLEngine sslEngine = SSLContext.getDefault().createSSLEngine();
   sslEngine.setUseClientMode(false);
   sslEngine.beginHandshake();

   // Lets assume 'inbound' has been populated with
   // the Client 1st Flight
   ByteBuffer inbound;

   // 'outbound' will be populated with the
   // Server 1st Flight response
   ByteBuffer outbound;

   // SSLEngine handles one TLS Record per call to unwrap().
   // Loop until the engine is finished unwrapping.
   while (sslEngine.getHandshakeStatus() ==
          HandshakeStatus.NEED_UNWRAP) {
     SSLEngineResult res = sslEngine.unwrap(inbound, outbound);

     // SSLEngine may need additional tasks run
     if (res.getHandshakeStatus() == NEED_TASK) {
       Runnable run = sslEngine.getDelegatedTask();
       run.run();
     }
   }

   // The SSLEngine has now finished handling all inbound TLS Records.
   // Check if it wants to generate outbound TLS Records. SSLEngine
   // generates one TLS Record per call to wrap().
   // Loop until the engine is finished wrapping.
   while (sslEngine.getHandshakeStatus() ==
          HandshakeStatus.NEED_WRAP) {
     SSLEngineResult res = sslEngine.wrap(inbound, outbound);

     // SSLEngine may need additional tasks run
     if (res.getHandshakeStatus() == NEED_TASK) {
       Runnable run = sslEngine.getDelegatedTask();
       run.run();
     }
   }

   // outbound ByteBuffer now contains a complete server flight
   // containing multiple TLS Records
   // Rinse and repeat!
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Appendix B.  ATLS and HTTP CONNECT

   It is worthwhile comparing and contrasting ATLS with HTTP CONNECT
   tunneling.

   First, let us introduce some terminology:

   o  HTTP Proxy: A HTTP Proxy operates at the application layer,
      handles HTTP CONNECT messages from clients, and opens tunnels to
      remote origin servers on behalf of clients.  If a client
      establishes a tunneled TLS connection to the origin server, the
      HTTP Proxy does not attempt to intercept or inspect the HTTP
      messages exchanged between the client and the server

   o  middlebox: A middlebox operates at the transport layer, terminates
      TLS connections from clients, and originates new TLS connections
      to services.  A middlebox inspects all messages sent between
      clients and services.  Middleboxes are generally completely
      transparent to applications, provided that the necessary PKI root
      Certificate Authority is installed in the client's trust store.

   HTTP Proxies and middleboxes are logically separate entities and one
   or both of these may be deployed in a network.

   HTTP CONNECT is used by clients to instruct a HTTP Forward Proxy
   deployed in the local domain to open up a tunnel to a remote origin
   server that is typically deployed in a different domain.  Assuming
   that TLS transport is used between both client and proxy, and proxy
   and origin server, the network architecture is as illustrated in
   Figure 16.  Once the proxy opens the transport tunnel to the service,
   the client establishes an end-to-end TLS session with the service,
   and the proxy is blindly transporting TLS records (the C->S TLS
   session records) between the client and the service.  From the client
   perspective, it is tunneling a TLS session to the service inside the
   TLS session it has established to the proxy (the C->P TLS session).
   No middlebox is attempting to intercept or inspect the HTTP messages
   between the client and the service.
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          +----------+        +----------+
          | C->S HTTP|        | C->S HTTP|
          +----------+        +----------+
          | C->S TLS |        | C->S TLS |
          +----------+        +----------+
          | C->P TLS |        | P->S TCP |
          +----------+        +----------+
          | C->P TCP |
          +----------+

   +--------+      +------------+      +---------+
   | Client |----->| HTTP Proxy |----->| Service |
   +--------+      +------------+      +---------+

                  Figure 16: HTTP Proxy transport layers

   A more complex network topology where the network operator has both a
   HTTP Proxy and a middlebox deployed is illustrated in Figure 17.  In
   this scenario, the proxy has tunneled the TLS session from the client
   towards the origin server, however the middlebox is intercepting and
   terminating this TLS session.  A TLS session is established between
   the client and the middlebox (C->M TLS), and not end-to-end between
   the client and the server.  It can clearly be seen that HTTP CONNECT
   and HTTP Proxies serve completely different functions than
   middleboxes.

   Additionally, the fact that the TLS session is established between
   the client and the middlebox can be problematic for two reasons:

   o  the middle box is inspecting traffic that is sent between the
      client and the service

   o  the client may not have the necessary PKI root Certificate
      Authority installed that would enable it to validate the TLS
      connection to the middlebox.  This is the scenario outlined in

Section 3.2.
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          +----------+        +----------+       +----------+
          | C->S HTTP|        | C->S HTTP|       | C->S HTTP|
          +----------+        +----------+       +----------+
          | C->M TLS |        | C->M TLS |       | M->S TLS |
          +----------+        +----------+       +----------+
          | C->P TLS |        | P->M TCP |       | M->S TCP |
          +----------+        +----------+       +----------+
          | C->P TCP |
          +----------+

   +--------+      +------------+      +-----------+      +---------+
   | Client |----->| HTTP Proxy |----->| Middlebox |----->| Service |
   +--------+      +------------+      +-----------+      +---------+

           Figure 17: HTTP Proxy and middlebox transport layers

   As HTTP CONNECT can be used to establish a tunneled TLS connection,
   one hypothetical solution to this middlebox issue is for the client
   to issue a HTTP CONNECT command to a HTTP Reverse Proxy deployed in
   front of the origin server.  This solution is not practical for
   several reasons:

   o  if there is a local domain HTTP Forward Proxy deployed, this would
      result in the client doing a first HTTP CONNECT to get past the
      Forward Proxy, and then a second HTTP CONNECT to get past the
      Reverse Proxy.  No client or client library supports the concept
      of HTTP CONNECT inside HTTP CONNECT.

   o  if there is no local domain HTTP Proxy deployed, the client still
      has to do a HTTP CONNECT to the HTTP Reverse Proxy.  This breaks
      with standard and expected HTTP CONNECT operation, as HTTP CONNECT
      is only ever called if there is a local domain proxy.

   o  clients cannot generate CONNECT from XHR in web applications.

   o  this would require the deployment of a Reverse Proxy in front of
      the origin server, or else support of the HTTP CONNECT method in
      standard web frameworks.  This is not an elegant design.

   o  using HTTP CONNECT with HTTP 1.1 to a Reverse Proxy will break
      middleboxes inspecting HTTP traffic, as the middlebox would see
      TLS records when it expects to see HTTP payloads.

   In contrast to trying to force HTTP CONNECT to address a problem for
   which it was not designed to address, and having to address all the
   issues just outlined; ATLS is specifically designed to address the
   middlebox issue in a simple, easy to develop, and easy to deploy
   fashion.
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   o  ATLS works seamlessly with HTTP Proxy deployments

   o  no changes are required to HTTP CONNECT semantics

   o  no changes are required to HTTP libraries or stacks

   o  no additional Reverse Proxy is required to be deployed in front of
      origin servers

   It is also worth noting that if HTTP CONNECT to a Reverse Proxy were
   a conceptually sound solution, the solution still ultimately results
   in encrypted traffic traversing the middlebox that the middlebox
   cannot intercept and inspect.  That is ultimately what ATLS results
   in - traffic traversing the middle box that the middlebox cannot
   intercept and inspect.  Therefore, from a middlebox perspective, the
   differences between the two solutions are in the areas of solution
   complexity and protocol semantics.  It is clear that ATLS is a
   simpler, more elegant solution that HTTP CONNECT.

Appendix C.  Alternative Approaches to Application Layer End-to-End
             Security

   End-to-end security at the application layer is increasing seen as a
   key requirement across multiple applications and services.  Some
   examples of end-to-end security mechanisms are outlined here.  All
   the solutions outlined here have some common characteristics.  The
   solutions:

   o  do not rely on transport layer security

   o  define a new handshake protocol for establishment of a secure end-
      to-end session

C.1.  Noise

   [Noise] is a framework for cryptographic protocols based on Elliptic
   Curve Diffie-Hellman (ECDH) key agreement, AEAD encryption, and
   BLAKE2 and SHA2 hash functions.  Noise is currently used by WhatsApp,
   WireGuard, and Lightning.

   The current Noise protocol framework defines mechanisms for proving
   possession of a private key, but does not define authentication
   mechanisms.  Section 14 "Security Considerations" of Noise states:
   ~~~ it's up to the application to determine whether the remote
   party's static public key is acceptable ~~~
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C.2.  Signal

   The [Signal] protocol provides end-to-end encryption and uses EdDSA
   signatures, Triple Diffie-Hellman handshake for shared secret
   establishment, and the Double Ratchet Algorithm for key management.
   It is used by Open Whisper Systems, WhatsApp and Google.

   Similar to Noise, Signal does not define an authentication mechanism.
   The current [X3DH] specification states in Section 4.1
   "Authentication":

   Methods for doing this are outside the scope of this document

C.3.  Google ALTS

   Google's Application Layer Transport Security [ALTS] is a mutual
   authentication and transport encryption system used for securing
   Remote Procedure Call (RPC) communications within Google's
   infrastructure.  ALTS uses an ECDH handshake protocol and a record
   protocol containing AES encrypted payloads.

C.4.  Ephemeral Diffie-Hellman Over COSE (EDHOC)

   There is ongoing work to standardise EDHOC
   [I-D.selander-ace-cose-ecdhe], which defines a SIGMA-I based
   authenticated key exchange protocol using COSE and CBOR.
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