
httpbis Working Group A. Frindell
Internet-Draft Facebook
Intended status: Informational June 28, 2019
Expires: December 30, 2019

HTTP Partial POST Replay
draft-frindell-httpbis-partial-post-replay-00

Abstract

 This memo introduces a method of exchanging HTTP [RFC7230] messages
 between a web server and a cooperating intermediary - such as a
 reverse proxy load balancer - that enables faster restarts for the
 web server with minimal disruption for users.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Frindell Expires December 30, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP-PPR June 2019

1. Introduction

 Web servers need to drain traffic periodically for configuration
 changes, software updates and maintenance. As continuous deployment
 becomes more common, the frequency of such events increases. When a
 server shuts down, it chooses whether to let all existing requests
 run to completion, or abort some or all in-progress requests.
 Aborted requests lead to poor user experiences including error
 messages or additional latency while the request is resent. Partial
 POST Replay makes it possible to eliminate this class of errors by
 handing off in-process requests to another server within a
 deployment.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Partial POST Replay

 This section describes the Partial POST Replay mechanism for handing
 off a request with a partially transferred entity body to another
 server instance.

2.1. Response Message

 When the server begins restarting, it responds to any unprocessed
 requests with incomplete entity bodies with a new 3xx status code
 (TBD). The HTTP/1.1 status message is Partial POST Replay. Once
 this status is sent the server MUST NOT process this request other
 than is specified in this document.

 The server MUST have prior knowledge that the intermediary supports
 Partial POST Replay before sending the 3xx response. If a server
 sends this response to an intermediary that does not understand it,
 the response will likely be forwarded back to the client.

2.1.1. Response Headers

 Each request header is echoed in the response message with the prefix
 "Echo-". For example, the "User-Agent: Foo" request header would be
 included in the response as "Echo-User-Agent: Foo". HTTP/2 [RFC7540]
 and HTTP/3 {{?HTTP3} request pseudo-headers (beginning with ':') are
 echoed in the response message with the prefix "Pseudo-Echo-", and
 with the ':' removed. For example, ":path: /" is echoed as "pseudo-

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7540

Frindell Expires December 30, 2019 [Page 2]

Internet-Draft HTTP-PPR June 2019

 echo-path: /". The server MUST NOT insert any Echo- or Pseudo-Echo
 headers in the response if the corresponding header was not present
 in the request.

 Because there might be request body bytes in flight to the server
 when the 3xx response is generated, the length of the response body
 is unknown. The response SHOULD NOT include a "Content-Length"
 header (but will include a "Echo-Content-Length" header, if the
 request contained "Content-Length"). If the request protocol is
 HTTP/1.1, the server SHOULD use chunked transfer encoding for the
 response.

 HTTP/1.1 server SHOULD include a "Connection: close" header in the
 response to prevent the intermediary from reusing the connection for
 a new request. HTTP/2 and HTTP/3 servers SHOULD emit a GOAWAY frame
 on each open connection when shutdown is initiated.

2.2. Intermediary Processing

 Intermediaries MUST track the number of body bytes forwarded to the
 server for any request that could be replayed by the server. When an
 intermediary receives a 3xx status code from the server, it stops
 forwarding any new HTTP data from the client to this server. The
 intermediary does not forward the 3xx response to the client, but
 instead reconstructs the original HTTP request message from headers
 in the response beginning with the "Echo-" or "Pseudo-Echo" prefixes.
 Alternatively, if the intermediary retained a copy of the request it
 MAY use that and discard the response headers.

 The intermediary can choose to buffer the response before selecting a
 new server, or can immediately select a new server and begin
 forwarding the request there. When the entire replayed request body
 has been sent to the new server, the intermediary can begin
 forwarding new HTTP data from the client to the new server.

 If the intermediary receives more body bytes from the server than it
 forwarded, or if the response is terminated before receiving all
 forwarded bytes, the intermediary MUST fail the request with a 5xx
 status.

2.3. Original Request Termination

 When the intermediary has received in the response body all of the
 request bytes forwarded to the original server, it completes the
 request message to the original server, according to the semantics of
 the transport protocol:

 o For HTTP/1.0, the intermediary half-closes the connection

Frindell Expires December 30, 2019 [Page 3]

Internet-Draft HTTP-PPR June 2019

 o For HTTP/1.1, the intermediary sends the final chunk terminator,
 or half-closes the connection if the request did not use chunked
 transfer encoding.

 o For HTTP/2, the intermediary sends a DATA frame with the
 END_STREAM flag set on the request stream

 o For HTTP/3, the intermediary sends a FIN on the request stream

 When the server processes the end of the request, it completes the
 response message according to the semantics of the transport
 protocol.

 Note that some HTTP server implementations treat the termination of
 the request with fewer bytes than specified in the Content-Length
 header as an error. Because all required information has been
 transferred to the intermediary before this error occurs, the server
 can abort the response and ignore the error without impacting the
 final status of the request.

 It is possible that the entire entity body was sent by the
 intermediary before it received the Partial POST Replay status
 message. In this case the intermediary will receive the entire
 entity body in the response.

2.4. Preventing Loops

 To prevent the intermediary from becoming stuck in an infinite
 redirect loop, it SHOULD add a 'Partial-Post-Replay: 1' header
 whenever forwarding to a new server. An intermediary that receives a
 redirect response with more "Echo-Partial-Post-Replay" headers than
 it supports SHOULD fail original request with a 5xx response.

3. Existing Solutions

 There are several existing solutions to handling requests while
 draining traffic from a web server, but each has drawbacks that
 Partial POST Replay does not.

3.1. Drain Timeout

 When servers stop accepting new connections, they often set a timeout
 during which existing requests can continue processing. At the end
 of the timeout, the server will abort any unfinished requests.
 During this phase, the server is not operating at full capacity, and
 requests that exceed the timeout are still terminated with error.

Frindell Expires December 30, 2019 [Page 4]

Internet-Draft HTTP-PPR June 2019

3.2. GOAWAY

 HTTP/2 introduced the GOAWAY frame which a server can use to indicate
 which requests will not be processed, and which can be safely retried
 by the client. There are two problems with this mechanism.

 First, the server cannot use this mechanism to refuse requests with
 stream IDs lower than the highest stream ID it has already processed.
 For example, if the server has received a partial request on stream
 ID=3, but has already begun processing a request on stream ID=5, it
 cannot send a GOAWAY with a Last-Stream-ID lower than 5. HTTP/2 does
 not have a status code that indicates an individual request is
 retryable

 Second, an intermediary cannot seamlessly retry a POST request unless
 it has buffered the entire request body. Buffering all request
 bodies presents an enormous scalability challenge for intermediaries.

3.3. State Handover

 Another possible technique is to pass state from a draining web
 server to a new instance. Such deployments start a new instance to
 handle new work in parallel with the instance that is shutting down.
 This requires that the system have enough resources to run two
 instances of the server simultaneously, for a potentially very long
 time.

4. Security Considerations

 An intermediary must trust the server to echo back the headers and
 body of the original request. A malicious server could replay a
 different request to the intermediary, who would then send it to
 another server. The response to this forged request would be
 interpreted as a response to the original request.

5. IANA Considerations

 This document has no IANA actions.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Frindell Expires December 30, 2019 [Page 5]

Internet-Draft HTTP-PPR June 2019

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [HTTP3] Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-latest (work in progress).

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

Acknowledgments

 This draft evolved from a feature developed at Facebook. Thanks to
 Mohammad Husain, Woo Xie and David Langevin who worked on the initial
 implementation and deployment of this feature.

Author's Address

 Alan Frindell
 Facebook

 Email: afrind@fb.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-latest
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540

Frindell Expires December 30, 2019 [Page 6]

