
Workgroup: Remote ATtestation ProcedureS

Internet-Draft:

draft-frost-rats-eat-collection-02

Published: 8 December 2022

Intended Status: Standards Track

Expires: 11 June 2023

Authors: S. Frost

Arm

Entity Attestation Token (EAT) Collection Type

Abstract

The default top-level definitions for an EAT [I-D.ietf-rats-eat]

assume a hierarchy involving a leading signer within the Attester.

Some token use cases do not match that model. This specification

defines an extension to EAT allowing the top-level of the token to

consist of a collection of otherwise defined tokens.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-frost-rats-eat-collection/.

Discussion of this document takes place on the Remote ATtestation

ProcedureS Working Group mailing list (mailto:rats@ietf.org), which

is archived at https://mailarchive.ietf.org/arch/browse/rats/.

Subscribe at https://www.ietf.org/mailman/listinfo/rats/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 June 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-frost-rats-eat-collection/
https://datatracker.ietf.org/doc/draft-frost-rats-eat-collection/
mailto:rats@ietf.org
https://mailarchive.ietf.org/arch/browse/rats/
https://www.ietf.org/mailman/listinfo/rats/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology and Requirements Language

3. Design Considerations / Use Cases

4. Token Collection

4.1. Binder Definition

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. CDDL

Acknowledgments

Contributors

Author's Address

1. Introduction

An Attestation Token conforming to EAT [I-D.ietf-rats-eat] has a

default top level definition for a token to be constructed

principally as a claim set within a CBOR Web Token (CWT) [RFC8392]

with the associated COSE envelope [STD96] providing at least

integrity and authentication. An equivalent JSON encoding for a JWT

[RFC7519] in a JWS envelope [RFC7515] is supported as an alternative

at the top-level definition. The top level token can be augmented

with related claims in a Detached EAT Bundle.

For the use case of transmitting a claim set through a secure

channel, the top-level definition can be extended to use an

Unprotected CWT Claim Set (UCCS) [I-D.ietf-rats-uccs].

This document outlines an additional top-level extension for which

neither of the above top level definitions match exactly: the

attestation token consists of a collection of objects, each with

¶

¶

¶

¶

https://trustee.ietf.org/license-info

their own integrity and some internally defined relationship through

which the integrity of the whole collection can be determined. i.e.

there is no top-level signer for the set. The objects may all share

the same logical hierarchy in a device or have a hierarchy which is

internally defined within the object set.

2. Terminology and Requirements Language

Readers are also expected to be familiar with the terminology from

[I-D.ietf-rats-eat] and [I-D.ietf-rats-architecture].

In this document, the structure of data is specified in CDDL

[RFC8610] [RFC9165].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Design Considerations / Use Cases

Take a device with an attestation system consisting of a platform

claim set and a workload claim set, each controlled by different

components and with an underlying hardware Root of Trust. The two

claim sets are delivered together to make up the overall attestation

token. Depending upon the implementation and deployment use case,

the signing system can either be entirely centric to the platform

RoT or can have separate signers for the two claim sets. In either

case, a cryptographic binding is established between the two parts

of the token.

A specific manifestation of such a device is one incorporating the

Arm Confidential Compute Architecture (CCA) attestation token

[Arm-CCA]. In trying to prepare the attestation token using EAT,

there were no issues constructing the claim sets or incorporating

them into individual CWTs where appropriate. However, in trying to

design an 'envelope structure' to convey the two parts as a single

report it was found that maintaining EAT compatibility would require

very different shaped compound tokens for different models, for

example one based on a submod arrangement and another based on a

Detached EAT Bundle, though with different 'leading' objects. This

would create extra code and explanation in areas where keeping

things simple is desirable. There was an alternative approach

considered, which stays close to existing thinking on EAT, which

would be to create the wrapper from the UCCS EAT extension

containing only submods for the respective components. This however

stretches the current use case for UCCS beyond its existing

description. The RATS WG approach of separating UCCS from the core

¶

¶

¶

¶

¶

EAT specification to be an extension also encourages proposing this

further extension.

To support the CCA use case, it is also relevant to consider current

attestation technologies which are based on certificate chains (e.g.

SPDM, DICE, several key attestation systems). Here also are multiple

objects with their own integrity and an internally defined

relationship. If attempting to move such a technology to the EAT

world, the same challenges apply.

An additional use case beyond the production of tokens from an

Attester occurs when using EAT to convey Attestation Results from a

Verifier. Attestation results may be separated into different

sections depending upon what aspects of Appraisal Policy are applied

by the Verifier. For example, the set of validated evidence claims

may form one section, while claims reflecting semantic conclusions

drawn by an Appraisal Policy could form another section. Given the

role of different authorities in concluding result sections, each

could have a different signer rather than all results being under a

single signature from the Verifier. In this case, a collection can

be used to collate all result sections into a single response

message. Using a collection simplifies operations if individual

sections from the collated result sections need to be later

dispersed to different Relying Parties.

A further Attestation Result use case can be seen in the "Below Zero

Trust" system described in [I-D.ietf-rats-ar4si] where the AR-

augmented Evidence credential has compound form.

4. Token Collection

The proposed extension for the top-level definition is to add a

'Token Collection' type. The contents of the type are a map of CWTs

(JWTs). The Detached EAT Bundle top-level entry for EAT is included

for completeness, and the UCCS extension can also be embraced,

though the use cases for these have not been explored. The

identification of collection members and the intra collection

integrity mechanism is considered usage specific. A verifier will be

expected to extract each of the members of the collection and check

their validity both individually and as a set. In addition to

entries which have their own integrity, it is also supported to

include an unsigned Claims Set, provided that the integrity for that

Claims Set is provided within another entry that uses one of the

signed forms.

A map was chosen rather than an unbounded array to give the

opportunity to add identifying map tags to each entry. The

interpretation of the tags will be usage specific, but may

correspond to registered identities of specific token types. To

¶

¶

¶

¶

¶

assist a verifier correlate the expected contents a profile entry

can be added as the 'profile-label' identity in the map.

See Appendix A for a CDDL description of the proposed extension.

While most of the use cases for collections are for scenarios where

there will be at least two entries in a collection, the CDDL allows

for >= 1 entries in a collection to allow for the scenario where

only one entry is currently available even though the normal set is

larger.

4.1. Binder Definition

This specification includes a proposal for a Collection Binder claim

(see Figure 1). This claim would be included within any collection

entry as a definiton of the integrity mechanism that binds that

collection entry to another collection entry. A verifier can use the

information within this claim to drive inter collection entry

integrity checking. This claim would not be mandatory within a

collection entry as a verifier may implement the integrity checking

based upon information in the profile alone.

Figure 1: EAT collection binder

¶

¶

¶

¶

; The Collection Binder is a formal declaration of the inter entry

; binding mechanism. It would be included within the body of one or

; more of the collection entries.

Collection-Binder = [

 binder-function,

 [*binder-source-label],

 destination-collection-entry,

 destination-claim

]

; binder-function is the name/id of a hash algorithm

binder-function = JC<text,int>

; By definition, the binder-function is applied to a concatenation

; of the ordered list of source claims.

; If the array is empty, the function is applied to the whole

; contents of the token.

binder-source-label = Claim-Label

destination-collection-entry = collection-entry-label

destination-claim = Claim-Label

Claim-Label = JC<"text", int>

collection-entry-label = JC<text, int>

JC<J,C> = J .feature "json" / C .feature "cbor"

The attributes within the binder claim are:

binder-function: the identity of the binding cryptographic

function, usually a hash function, applied to the values

identified by the binder-source-label array.

binder-source-label: an array defining the set of claims

providing the binding information within the collection entry. It

is assumed that the values corresponding to this (ordered) list

will be concatenated and have the binder-function applied to

produce a binder value. If the array is empty, the entire source

collection entry is used as input to the binder-function. This

latter condition would normally be applied to a collection entry

consisting of a Claim Set.

destination-collection-entry: this defines the collection entry

that will hold (receive) the binding for this (source) collection

entry.

destination-claim: this defines the claim label within

destination-collection-entry which will store the binder value.

A verifier can check the binding between two collection entries by

computing the binder value for one entry and comparing the result

stored within the value of the destination claim (in the destination

collection entry).

5. Security Considerations

A verifier for an attestation token must apply a verification

process for the full set of entries contained within the Token

Collection. This process will be custom to the relevant profile for

the Token Collection and take into account any individual

verification per entry and/or verification for the objects

considered collectively, including the intra token integrity scheme.

As there is no overall signature for the Collection, protection

against malicious modification must be contained within the entries.

It is expected that there exists a cryptographic binding between

entries, this can for example be one to many or one to one in a

(chain) series. The implementation of creating these bindings may

involve passing data across ABIs. This provides an attack vector on

the integrity of the collection which must be considered within any

threat model. With respect to binder claims, these require integrity

protection. This protection can either be provided by the signature

on the token entry which contains the binder or, in the case where

the entry does not have a signature, by including the binder claim

with any other claims when preparing input into the cryptographic

binding function. Depending upon the use case and associated threat

model, the freshness of entries may need extra consideration.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

[I-D.ietf-rats-eat]

[IANA.cbor-tags]

[RFC2119]

[RFC8174]

[RFC8610]

[RFC9165]

[Arm-CCA]

6. IANA Considerations

In the registry [IANA.cbor-tags], IANA is requested to allocate the

tag in Table 1 from the FCFS space, with the present document as the

specification reference.

Tag Data Item Semantics

TBD399 map EAT Collection RFCthis

Table 1: EAT Collection

7. References

7.1. Normative References

Lundblade, L., Mandyam, G., O'Donoghue, J., and

C. Wallace, "The Entity Attestation Token (EAT)", Work in

Progress, Internet-Draft, draft-ietf-rats-eat-18, 4

December 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-rats-eat-18>.

IANA, "Concise Binary Object Representation (CBOR)

Tags", <https://www.iana.org/assignments/cbor-tags>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C., "Additional Control Operators for the

Concise Data Definition Language (CDDL)", RFC 9165, DOI

10.17487/RFC9165, December 2021, <https://www.rfc-

editor.org/rfc/rfc9165>.

7.2. Informative References

Arm Ltd, "Confidential Compute Architecture", 2022,

<https://www.arm.com/architecture/security-features/arm-

confidential-compute-architecture>.

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-18
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-18
https://www.iana.org/assignments/cbor-tags
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc9165
https://www.rfc-editor.org/rfc/rfc9165
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

[I-D.ietf-rats-ar4si]

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-uccs]

[RFC7515]

[RFC7519]

[RFC8392]

[STD96]

Voit, E., Birkholz, H., Hardjono, T., Fossati,

T., and V. Scarlata, "Attestation Results for Secure

Interactions", Work in Progress, Internet-Draft, draft-

ietf-rats-ar4si-03, 6 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-03>.

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-22, 28 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-

architecture-22>.

Birkholz, H., O'Donoghue, J., Cam-Winget, N.,

and C. Bormann, "A CBOR Tag for Unprotected CWT Claims

Sets", Work in Progress, Internet-Draft, draft-ietf-rats-

uccs-03, 11 July 2022, <https://datatracker.ietf.org/doc/

html/draft-ietf-rats-uccs-03>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/rfc/rfc7515>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/rfc/rfc7519>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

rfc/rfc8392>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", STD 96, RFC 9052, DOI 10.17487/

RFC9052, August 2022, <https://www.rfc-editor.org/rfc/

rfc9052>.

https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-03
https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-03
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-22
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-22
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-22
https://datatracker.ietf.org/doc/html/draft-ietf-rats-uccs-03
https://datatracker.ietf.org/doc/html/draft-ietf-rats-uccs-03
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc8392
https://www.rfc-editor.org/rfc/rfc8392
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052

Appendix A. CDDL

$$EAT-CBOR-Tagged-Token /= Tagged-Collection

$$EAT-CBOR-Untagged-Token /= TL-Collection

Tagged-Collection = #6.TBD399(TL-Collection)

TL-Collection = {

 ? eat-collection-identifier,

 + all-collection-types

}

eat-collection-identifier = (

 profile-label => general-uri / general-oid

)

all-collection-types = (

 cwt-collection-entries //

 jwt-collection-entries //

 claim-set-collection-entries //

 detatched-eat-bundle-collection-entries

)

cwt-collection-entries = (

 collection-entry-label => CWT-Messages

)

jwt-collection-entries = (

 collection-entry-label => JWT-Messages

)

claim-set-collection-entries = (

 collection-entry-label => JC<json-wrapped-claims-set,

 cbor-wrapped-claims-set>

)

detatched-eat-bundle-collection-entries = (

 collection-entry-label => BUNDLE-Messages

)

collection-entry-label = JC<text, int>

; The Collection Binder is a formal declaration of the inter entry

; binding mechanism. It would be included within the body of one or

; more of the collection entries.

Tagged-Collection-Binder = #6.TBD99(Collection-Binder)

Collection-Binder = [

 binder-function,

 [*binder-source-label],

 destination-collection-entry,

 destination-claim

]

; binder function is normally the name/id of a hash algorithm

binder-function = JC<text,int>

; by definition, the binder-function is applied to a concatenation

; of the ordered list of source claims

; If the array is empty, the function is applied to the whole

; contents of the token

binder-source-label = Claim-Label

destination-collection-entry = collection-entry-label

destination-claim = Claim-Label

¶

Acknowledgments

Thomas Fossati proposed the inclusion of the Binder definiton and

collaborated on the CDDL. Yogesh Deshpande provided insightful

comments and review for this proposal.

Contributors

Thomas Fossati

Arm Limited

Email: thomas.fossati@arm.com

Author's Address

Simon Frost

Arm

Email: Simon.Frost@arm.com

¶

mailto:thomas.fossati@arm.com
mailto:Simon.Frost@arm.com

	Entity Attestation Token (EAT) Collection Type
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Requirements Language
	3. Design Considerations / Use Cases
	4. Token Collection
	4.1. Binder Definition

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. CDDL
	Acknowledgments
	Contributors
	Author's Address

