
 INTERNET-DRAFT Mandatory H. Frystyk Nielsen, W3C
draft-frystyk-http-extensions-00 P. Leach, Microsoft

 Scott Lawrence, Agranat Systems
 Expires: February 07, 1999 Friday, August 07, 1998

HTTP Extension Framework
for

Mandatory and Optional Extensions

 Status of this Document

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts. Internet-Drafts are draft
 documents valid for a maximum of six months and may be updated,
 replaced, or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference material or to cite
 them other than as "work in progress".

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the <ietf-http-ext@w3.org> mailing list. This list is archived at
 "http://lists.w3.org/Archives/Public/ietf-http-ext/".

 The contribution of World Wide Web Consortium (W3C) staff is part of
 the W3C HTTP Activity (see "http://www.w3.org/Protocols/Activity").

 Abstract

 HTTP is used increasingly in applications that need more facilities
 than the standard version of the protocol provides, ranging from
 distributed authoring, collaboration, and printing, to various remote
 procedure call mechanisms. This document proposes the use of a
 mandatory extension mechanism designed to address the tension between
 private agreement and public specification and to accommodate
 extension of applications such as HTTP clients, servers, and proxies.
 The proposal associates each extension with a URI[2], and use a few
 new RFC 822[1] style header fields to carry the extension identifier
 and related information between the parties involved in an extended
 transaction.

 Table of Contents

https://datatracker.ietf.org/doc/html/draft-frystyk-http-extensions-00
https://datatracker.ietf.org/doc/html/rfc822

1. Introduction...2
2. Notational Conventions...3

Frystyk et al [Page 1]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

3. Extension Declarations...3
3.1 Header Field Prefixes...4

4. Extension Header Fields..4
4.1 End-to-End Extensions...5
4.2 Hop-by-Hop Extensions...5

5. Mandatory HTTP Requests..6
6. Mandatory HTTP Responses...7
7. 102 Extended...7
8. 510 Not Extended...8
9. Publishing an Extension..8
10. Security Considerations...9
11. References..9
12. Acknowledgements...10
13. Authors Addresses..10
14. Summary of Protocol Interactions...............................11
15. Examples...11
15.1 Client Requests Server to use an Extension..................12
15.2 Server proposes the use of an Extension.....................12

1. Introduction

 The mandatory proposal is designed to accommodate dynamic extension of
 HTTP clients and servers by software components; and to address the
 tension between private agreement and public specification. The kind
 of extensions capable of being introduced range from:

 o extending a single HTTP message;
 o introducing new encodings;
 o initiating HTTP-derived protocols for new applications; to...
 o switching to protocols which, once initiated, run independent of
 the original protocol stack.

 The proposal is intended to be used as follows:

 o Some party designs and specifies an extension; the party assigns
 the extension an identifier, which is a URI, and makes one or
 more representations of the extension available at that address
 (see section 9).
 o An HTTP client, server, or proxy that implements the Mandatory
 extension mechanism (hereafter called an agent) declares the use
 of the extension by referencing its URI in an extension
 declaration in an HTTP message (see section 3).
 o The ultimate recipient of the extension declaration which can be
 the origin server, the user agent, or any intermediary in the
 request/response chain can based on the extension declaration
 deduce how to properly interpret the extended message.

 The proposal uses features in HTTP/1.1 but is compatible with both
 HTTP/1.0 and HTTP/1.1 applications in such a way that extended

 applications can coexist with existing HTTP applications.

Frystyk, et al [Page 2]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 By providing a more robust framework for describing extensions, this
 proposal supersedes several existing extension mechanisms like the
 HTTP/1.1 Expect and Upgrade header fields as well as avoids existing
 problems with non-compliant CGI scripts handling unknown HTTP methods.

2. Notational Conventions

 This specification uses the same notational conventions and basic
 parsing constructs as RFC 2068[7]. In particular the BNF constructs
 "token", "quoted-string", "field-name", and "URI" in this document are
 to be interpreted as described in RFC 2068[7].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119[9].

 This proposal does not rely on particular features defined in URLs [3]
 that cannot potentially be expressed using URNs (see section 9).
 Therefore, the more generic term URI[2] is used throughout the
 specification.

3. Extension Declarations

 An extension declaration can be used to indicate that an extension has
 been applied to a message and possibly to reserve a part of the header
 namespace identified by a header field prefix (see 3.1).

 This specification does not define any ramifications of applying an
 extension to a message nor whether two extensions can or cannot
 logically coexist within the same message. It is strictly a framework
 for describing which extensions have been applied and what the
 ultimate recipient either must or may do in order to properly
 interpret any extension declarations within that message.

 The grammar for an extension declaration is as follows:

 ext-decl = <"> URI <"> ";" namespace [ext-params]
 ext-params = *(ext-extension)

 namespace = "ns" "=" header-prefix
 header-prefix = 2*DIGIT "-"
 ext-extension = ";" token ["=" (token | quoted-string)]

 An extension is identified by a URI. Extension identifier URIs can be
 either relative or absolute. Relative extension identifiers MUST
 specify header-fields defined in an IETF RFC (see RFC 1808[4]).
 Examples of extension declarations are

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1808

 "Content-FooBar"
 "New-Registered-Header"
 "http://www.temporary.com/extension"; ns=33-

Frystyk, et al [Page 3]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 An extension declaration can be extended through the use of one or
 more ext-extension parameters. Unrecognized ext-extension parameters
 SHOULD be ignored and MUST NOT be removed by proxies when forwarding
 the extension declaration.

3.1 Header Field Prefixes

 The header-prefix are dynamically generated header field prefix
 strings that can be used to indicate that all header fields in the
 message matching the header-prefix value using string prefix-matching
 are introduced by this extension instance. This allows an extension
 instance to dynamically reserve a subspace of the header space in a
 protocol message in order to prevent header field name clashes.

 Linear white space (LWS) MUST NOT be used between the digits and the
 "-". The format of the prefix using a combination of digits and the
 dash "-" guarantees that no extension declaration can reserve the
 whole header field name space.

 Prefixes are primarily intended to avoid header field name conflicts
 and to allow multiple instances of a single extension using its own
 header fields to be applied to the same message without conflicting
 with each other.

 Agents SHOULD NOT reuse header-prefix values in the same message
 unless explicitly allowed by the extension (see section 4.1 for a
 discussion of the ultimate recipient of an extension declaration).

 Examples of header-prefix values are

 1234-
 546-
 234345653-

 Old applications may introduce header fields independent of this
 extension mechanism, potentially conflicting with header fields
 introduced by the prefix mechanism. In order to minimize this risk,
 prefixes MUST contain at least 2 digits.

4. Extension Header Fields

 This proposal introduces two types of extension declaration strength:
 mandatory and optional, and two types of extension declaration scope:
 hop-by-hop and end-to-end (see section 4.1 and 4.2).

 A mandatory extension declaration indicates that the ultimate
 recipient MUST consult and adhere to the rules given by the extension
 when processing the message or report an error (see section 5 and 8).

Frystyk, et al [Page 4]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 An optional extension declaration indicates that the ultimate
 recipient of the extension MAY consult and adhere to the rules given
 by the extension when processing the message, or ignore the extension
 declaration completely. An agent may not be able to distinguish
 whether the ultimate recipient does not understand an extension
 referred to by an optional extension or simply ignores the extension
 declaration.

 The combination of the declaration strength and scope defines a 2x2
 matrix which is distinguished by four new general HTTP header fields:
 Man, Opt, C-Man, and C-Opt. (See section 4.1 and 4.2, and appendix 14
 for a table of interactions with origin servers and proxies.)

 The header fields are general header fields as they describe which
 extensions actually are applied to an HTTP message. Optional
 declarations MAY be applied to any HTTP message without any change to
 existing HTTP semantics. Mandatory declarations MUST be applied to a
 request message as described in section 5 and to a response message as
 described in section 6.

4.1 End-to-End Extensions

 End-to-end declarations MUST be transmitted to the ultimate recipient
 of the declaration. The Man and the Opt general header fields are end-
 to-end header fields and are defined as follows:

 mandatory = "Man" ":" 1#ext-decl
 optional = "Opt" ":" 1#ext-decl

 For example

 HTTP/1.1 200 OK
 Content-Length: 421
 Opt: "http://www.digest.org/Digest"; ns=55-
 55-digest: "snfksjgor2tsajkt52"
 ...

 If a proxy is the ultimate recipient of a mandatory end-to-end
 extension declaration then it MUST handle that extension declaration
 as described in section 5. The proxy SHOULD remove all parts of the
 extension declaration from the message before forwarding it.

4.2 Hop-by-Hop Extensions

 Hop-by-hop extension declarations are meaningful only for a single
 transport-level connection. The C-Man and the C-Opt general header
 field are hop-by-hop header fields and MUST NOT be communicated by
 proxies over further connections. The two headers have the following

 grammar:

 c-mandatory = "C-Man" ":" 1#ext-decl
 c-optional = "C-Opt" ":" 1#ext-decl

Frystyk, et al [Page 5]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 For example

 GET / HTTP/1.1
 Host: some.host
 C-Man: "http://www.digest.org/ProxyAuth";
 Credentials="g5gj262jdw@4df"
 Connection: C-Man

 In HTTP/1.1, the C-Man and the C-Opt header field MUST be protected by
 a Connection header. That is, the header fields are to be included as
 Connection header directives (see section [7], section 14.10).

 An agent MUST NOT send the C-Man or the C-Opt header field to an
 HTTP/1.0 proxy as it does not obey the HTTP/1.1 rules for parsing the
 Connection header field (see [7]).

5. Mandatory HTTP Requests

 An HTTP request is called a mandatory request if it includes at least
 one mandatory extension declaration (using the Man or the C-Man header
 fields). The method name of a mandatory request MUST be prefixed by
 "M-". For example, a client might express the binding rights-
 management constraints in an HTTP PUT request as follows:

 M-PUT /a-resource HTTP/1.1
 Man: "http://www.copyright.org/rights-management"; ns=43-
 43-copyright: http://www.copyright.org/COPYRIGHT.html
 43-contributions: http://www.copyright.org/PATCHES.html
 Host: www.w3.org
 Content-Length: 1203
 Content-Type: text/html

 <!doctype html ...

 An HTTP server MUST NOT return a 2xx status-code without understanding
 and obeying all mandatory extension declaration(s) in a mandatory
 request. A mandatory HTTP request invalidates cached entries as
 described in [7], section 13.10.

 The ultimate recipient of a mandatory HTTP request with the "M-"
 prefix on the method name MUST process the request by performing the
 following actions in the order they are listed below:

 1. Identify all mandatory extension declarations (both hop-by-hop
 and end-to-end); the server MAY ignore optional declarations
 without affecting the result of the transaction;
 2. If one or more mandatory extension declarations are present and
 the following is not true then respond with a 505 (HTTP Version
 Not Supported):

http://www.copyright.org/COPYRIGHT.html
http://www.copyright.org/PATCHES.html

 o The request MUST NOT come from a HTTP/1.0 client; and
 o The request MUST NOT have any HTTP/1.0 clients indicated by
 the HTTP/1.1 Via header field.

Frystyk, et al [Page 6]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 3. If 2) is fulfilled then evaluate and process the extensions
 identified in 1) or if the extension declarations do not match
 the policy for accessing the resource then respond with a 510
 (Not Extended) status-code (see section 8);
 4. If the evaluation in 3) is successful (not resulting in a 510
 (Not Extended) status code) then strip the "M-" prefix from the
 method name and process the reminder of the request according
 to the semantics of the existing HTTP/1.1 method name as
 defined in [7].
 5. If one or more mandatory extension declarations were present in
 the original request and the evaluation in 3) was successful
 then the server MUST reply by sending a 102 (Extended) followed
 by a HTTP/1.1 response containing the appropriate HTTP header
 fields.

 An "M-" aware proxy that does not act as the ultimate recipient of a
 mandatory extension declaration MUST NOT remove the declaration or the
 "M-" method name prefix when forwarding the message.

 An agent receiving an HTTP/1.0 (or lower-version) message that
 includes a Connection header MUST, for each connection-token in this
 field, remove and ignore any header field(s) from the message with the
 same name as the connection-token. Any "M-" method name prefix
 introduced as a result of discarded hop-by-hop extensions MUST be
 ignored and removed by a proxy when forwarding the message.

 HTTP proxies that do not understand the "M-" method name prefix SHOULD
 return 501 (Not Implemented) or turn themselves into a tunnel ([7]) in
 which case they do not take any part in the communication.

 The "M-" prefix is reserved by this proposal and MUST NOT be used by
 other HTTP extensions.

6. Mandatory HTTP Responses

 A server SHOULD NOT include mandatory extension declarations in an
 HTTP response unless it is responding to a mandatory HTTP request. A
 server MAY include optional extension declarations in any HTTP
 response (see section 4).

 If a client receives an HTTP response which contains a Mandatory
 extension declaration which it does not understand or does not want to
 use, it SHOULD treat it as if the message was of type
 "application/octet-stream".

7. 102 Extended

 The server understands and is willing to comply with the client s

 extended request using mandatory extension declarations (section 4).
 The 102 (Extended) response is followed by a normal HTTP/1.1 style

Frystyk, et al [Page 7]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 response indicating the final status code and parameters of the
 response.

 The 102 (Extended) status code prevents that existing HTTP/1.1 servers
 using non-conformant CGI scripts mistakenly give the false impression
 that the extended request was fulfilled by responding with a 200 (Ok)
 response.

8. 510 Not Extended

 The policy for accessing the resource has not been met in the request.
 The server SHOULD send back all the information necessary for the
 client to issue an extended request. It is outside the scope of this
 specification to specify how the extensions inform the client.

 If the 510 response contains information about extensions that were
 not present in the initial request then the client MAY repeat the
 request if it has reason to believe it can fulfill the extension
 policy by modifying the request according to the information provided
 in the 510 response. Otherwise the client MAY present any entity
 included in the 510 response to the user, since that entity may
 include relevant diagnostic information.

9. Publishing an Extension

 While the protocol extension definition should be published at the
 address of the extension identifier, this is not a requirement of this
 specification. The only absolute requirement is that extension
 identifiers MUST be globally unique identifiers and that distinct
 names be used for distinct semantics. For example, one way to achieve
 this is to use a mid, cid[8], or uuid[12] URI.

 Likewise, applications are not required to attempt resolving extension
 identifiers included in extension declarations. The only absolute
 requirement is that an application MUST NOT claim conformance with an
 extension that it does not recognize regardless of whether it has
 tried to resolve the extension identifier or not. This document does
 not provide any policy for how long or how often an application should
 attempt to resolve an extension identifier.

 The association between the extension identifier and the specification
 might be made by distributing a specification, which references the
 extension identifier.

Frystyk, et al [Page 8]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 It is strongly recommended that the integrity and persistence of the
 extension identifier be maintained and kept unquestioned throughout
 the lifetime of the extension. Care should be taken not to distribute
 conflicting specifications that reference the same name. Even when an
 extension specification is made available at the address of the URI,
 care must be taken that the specification made available at that
 address does not change significantly over time. One agent may
 associate the identifier with the old semantics, and another might
 associate it with the new semantics.

 The extension definition may be made available in different
 representations ranging from

 o a human-readable specification defining the extension semantics,
 o downloadable code which implements the semantics defined by the
 extension,
 o a formal interface description provided by the extension, to
 o a machine-readable specification defining the extension
 semantics.

 For example, a software component that implements the specification
 may reside at the same address as a human-readable specification
 (distinguished by content negotiation). The human-readable
 representation serves to document the extension and encourage
 deployment, while the software component allows clients and servers to
 be dynamically extended.

10. Security Considerations

 o Dynamic installation of extension facilities as described in the
 introduction involves software written by one party (the provider
 of the implementation) to be executed under the authority of
 another (the party operating the host software). This opens the
 host party to a variety of "Trojan horse" attacks by the
 provider, or a malicious third party that forges implementations
 under a provider's name. See, for example RFC2046[6], section

4.5.2 for a discussion of these risks.

11. References

 [1] D. H. Crocker. "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982
 [2] T. Berners-Lee, "Universal Resource Identifiers in WWW. A
 Unifying Syntax for the Expression of Names and Addresses of
 Objects on the Network as used in the World-Wide Web", RFC 1630,
 CERN, June 1994.
 [3] T. Berners-Lee, L. Masinter, M. McCahill. "Uniform Resource
 Locators (URL)" RFC 1738, CERN, Xerox PARC, University of

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1738

 Minnesota, December 1994.
 [4] R. Fielding, "Relative Uniform Resource Locators", RFC 1808, UC
 Irvine, June 1995.

Frystyk, et al [Page 9]

https://datatracker.ietf.org/doc/html/rfc1808

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 [5] T. Berners-Lee, R. Fielding, H. Frystyk, "Hypertext Transfer
 Protocol -- HTTP/1.0", RFC 1945, W3C/MIT, UC Irvine, W3C/MIT, May
 1996.
 [6] N. Freed, N. Borenstein, "Multipurpose Internet Mail Extensions
 (MIME) Part Two: Media Types", RFC 2046, Innosoft, First Virtual,
 November 1996.
 [7] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C. Irvine,
 DEC W3C/MIT, DEC, W3C/MIT, W3C/MIT, January 1997
 [8] E. Levinson, "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2111, March 1997
 [9] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, Harvard University, March 1997
 [10] Y. Y. Goland et al, "Extensions for Distributed Authoring and
 Versioning", Internet Draft, draft-jensen-webdav-ext-01, 26 March
 1997. This is work in progress.
 [11] H. F. Nielsen, D. Connolly, R. Khare, "PEP - an extension
 mechanism for HTTP", draft-http-pep-05.txt, November 21, 1997
 [12] Charlie Kindel, "The uuid: URI scheme", draft-kindel-uuid-uri-

00.txt, November, 24 1997. This is work in progress

12. Acknowledgements

 Rohit Khare deserves special recognition for his efforts in commenting
 in the design phase of the protocol. Also thanks to Josh Cohen, Ross
 Patterson, Jim Gettys and all the people who have been involved in
 PEP.

13. Authors Addresses

 Henrik Frystyk Nielsen
 Technical Staff, World Wide Web Consortium
 MIT Laboratory for Computer Science

545 Technology Square
 Cambridge, MA 02139, USA
 Email: frystyk@w3.org

 Paul J. Leach
 Microsoft Corporation

1 Microsoft Way
 Redmond, WA 98052, USA
 Email: paulle@microsoft.com

 Scott Lawrence
 Agranat Systems, Inc.

1345 Main Street
 Waltham, MA 02154, USA
 Email: lawrence@agranat.com

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2111
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-jensen-webdav-ext-01
https://datatracker.ietf.org/doc/html/draft-http-pep-05.txt
https://datatracker.ietf.org/doc/html/draft-kindel-uuid-uri-00.txt
https://datatracker.ietf.org/doc/html/draft-kindel-uuid-uri-00.txt

Frystyk, et al [Page 10]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

 Appendices

14. Summary of Protocol Interactions

 The following tables summarize the outcome of strength and scope rules
 of the mandatory proposal of compliant and non-compliant HTTP proxies
 and origin servers. The summary is intended as a guide and index to
 the text, but is necessarily cryptic and incomplete. This summary
 should never be used or referenced separately from the complete
 specification.

 Table 1: Origin Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Standard 501 (Not Standard 501 (Not
 unsupported processing Implemented)processing Implemented)

 Extension Standard 510 (Not Standard 510 (Not
 unsupported processing Extended) processing Extended)

 Extension Extended Extended Extended Extended
 supported processing processing processing processing

 Table 2: Proxy Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Strip 501 (Not Forward 501 (Not
 unsupported extension Implemented)extension Implemented)
 or tunnel or tunnel

 Extension Strip 510 (Not Forward Forward
 unsupported extension Extended) extension extension

 Extension Extended Extended Extended Extended
 supported processing processing processing, processing,
 and strip and strip may strip may strip

15. Examples

 The following examples show various scenarios using mandatory in
 HTTP/1.1 requests and responses. Information not essential for
 illustrating the examples is left out (referred to as " ")

Frystyk, et al [Page 11]

INTERNET-DRAFT Mandatory Friday, August 07, 1998

15.1 Client Requests Server to use an Extension

 In this example, the client requires that the server supports and uses
 the extension identified by the URI "

http://www.distributed.org/some.extension". By making the request
 mandatory (see section 5), the client forces the server to process the
 extension declaration and obey the extension or report an error.

 M-GET /some.url HTTP/1.1
 Host: some.host
 Man: "http://www.distributed.org/some.extension"
 ...

 HTTP/1.1 102 Extended

 HTTP/1.1 200 OK
 ...

 The response shows that the server does understand the requested
 extension.

15.2 Server proposes the use of an Extension

 By including an optional extension declaration in the response, the
 server indicates that the response has been extended but that it is OK
 if the client ignores the extension:

 GET /Index HTTP/1.1
 Host: some.host

 HTTP/1.1 200 OK
 Opt: "http://www.cache.com/cache-index", ns=23-
 23-index: "http://some.host/index"
 ...

 The server has no direct mechanism of knowing whether the client
 accepted and used the optional extension declaration.

http://www.distributed.org/some

 Frystyk, et al [Page 12]

