
INTERNET-DRAFT HTTP Extensions H. Frystyk Nielsen, W3C
draft-frystyk-http-extensions-03 P. Leach, Microsoft
 Scott Lawrence, Agranat Systems
Expires: Sep 15, 1999 Mon, Mar 15, 1999

HTTP Extension Framework

Status of this Document

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft
Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

General information about this document is linked from
"http://www.w3.org/Protocols/HTTP/ietf-http-ext/". Send comments to
the <ietf-http-ext@w3.org> mailing list. This list is archived at
"http://lists.w3.org/Archives/Public/ietf-http-ext/".

Abstract

A wide range of applications have proposed various extensions of the
HTTP protocol. Current efforts span an enormous range, including
distributed authoring, collaboration, printing, and remote procedure
call mechanisms. These HTTP extensions are not coordinated, since
there has been no standard framework for defining extensions and thus,
separation of concerns. This document describes a generic extension
mechanism for HTTP, which is designed to address the tension between
private agreement and public specification and to accommodate
extension of applications using HTTP clients, servers, and proxies.
The proposal associates each extension with a globally unique
identifier, and uses HTTP header fields to carry the extension
identifier and related information between the parties involved in the
extended communication.

Table of Contents
1. Introduction ...2
2. Notational Conventions3

Frystyk et al [Page 1]

https://datatracker.ietf.org/doc/html/draft-frystyk-http-extensions-03
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

3. Extension Declarations3
3.1 Header Field Prefixes4
4. Extension Header Fields6
4.1 End-to-End Extensions6
4.2 Hop-by-Hop Extensions7
4.3 Extension Response Header Fields7
5. Mandatory HTTP Requests8
5.1 Fulfilling a Mandatory Request9
6. Mandatory HTTP Responses10
7. 510 Not Extended ..11
8. Publishing an Extension11
9. Caching Considerations12
10. Security Considerations13
11. References ..13
12. Acknowledgements ..13
13. Authors Addresses ...14
14. Summary of Protocol Interactions14
15. Examples ..15
15.1 User Agent to Origin Server15
15.2 User Agent to Origin Server via HTTP/1.1 Proxy16
15.3 User Agent to Origin Server via HTTP/1.0 Proxy17

1. Introduction

This proposal is designed to address the tension between private
agreement and public specification; and to accommodate dynamic
extension of HTTP clients and servers by software components. The kind
of extensions capable of being introduced range from:

 o extending a single HTTP message;

 o introducing new encodings;

 o initiating HTTP-derived protocols for new applications; to...

 o switching to protocols which, once initiated, run independent of
 the original protocol stack.

The proposal is intended to be used as follows:

 o Some party designs and specifies an extension; the party assigns
 the extension a globally unique URI, and makes one or more
 representations of the extension available at that address (see

section 8).

Frystyk, et al [Page 2]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 o An HTTP client or server that implements this extension mechanism
 (hereafter called an agent) declares the use of the extension by
 referencing its URI in an extension declaration in an HTTP
 message (see section 3).

 o The HTTP application which the extension declaration is intended
 for (hereafter called the ultimate recipient) can deduce how to
 properly interpret the extended message based on the extension
 declaration.

The proposal uses features in HTTP/1.1 but is compatible with HTTP/1.0
applications in such a way that extended applications can coexist with
existing HTTP applications. Applications implementing this proposal
MUST be based on HTTP/1.1 (or later versions of HTTP).

2. Notational Conventions

This specification uses the same notational conventions and basic
parsing constructs as RFC 2068 [5]. In particular the BNF constructs
"token", "quoted-string", "Request-Line", "field-name", and
"absoluteURI" in this document are to be interpreted as described in
RFC 2068 [5].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [6].

This proposal does not rely on particular features defined in URLs [8]
that cannot potentially be expressed using URNs (see section 8).
Therefore, the more generic term URI [8] is used throughout the
specification.

3. Extension Declarations

An extension declaration can be used to indicate that an extension has
been applied to a message and possibly to reserve a part of the header
namespace identified by a header field prefix (see 3.1). This section
defines the extension declaration itself; section 4 defines a set of
header fields using the extension declaration.

This specification does not define any ramifications of applying an
extension to a message nor whether two extensions can or cannot
logically coexist within the same message. It is simply a framework
for describing which extensions have been applied and what the
ultimate recipient either must or may do in order to properly
interpret any extension declarations within that message.

Frystyk, et al [Page 3]

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

The grammar for an extension declaration is as follows:

 ext-decl = <"> (absoluteURI | field-name) <">
 [namespace] [decl-extensions]

 namespace = ";" "ns" "=" header-prefix
 header-prefix = 2*DIGIT

 decl-extensions = *(decl-ext)
 decl-ext = ";" token ["=" (token | quoted-string)]

An extension is identified by an absolute, globally unique URI or a
field-name. A field-name MUST specify a header field uniquely defined
in an IETF Standards Track RFC [3]. A URI can unambiguously be
distinguished from a field-name by the presence of a colon (":").

The support for header field names as extension identifiers provides a
transition strategy from decentralized extensions to extensions
defined by IETF Standards Track RFCs until a mapping between the
globally unique URI space and features defined in IETF Standards Track
RFCs has been defined according to the guidelines described in section
8.

Examples of extension declarations are

 "http://www.company.com/extension"; ns=11
 "Range"

An agent MAY use the decl-extensions mechanism to include optional
extension declaration parameters but cannot assume these parameters to
be recognized by the recipient. An agent MUST NOT use decl-extensions
to pass extension instance data, which MAY be passed using header
field prefix values (see section 3.1). Unrecognized decl-ext
parameters SHOULD be ignored and MUST NOT be removed by proxies when
forwarding the extension declaration.

3.1 Header Field Prefixes

The header-prefix is a dynamically generated string. All header fields
in the message that match this string, using string prefix-matching,
belong to that extension declaration. Header field prefixes allow an
extension declaration to dynamically reserve a subspace of the header
space in a protocol message in order to prevent header field name
clashes and to allow multiple declarations using the same extension to
be applied to the same message without conflicting.

Frystyk, et al [Page 4]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

Header fields using a header-prefix are of the form:

 prefixed-header = prefix-match field-name
 prefix-match = header-prefix "-"

Linear white space (LWS) MUST NOT be used between the header-prefix
and the dash ("-") or between the prefix-match and the field-name. The
string prefix matching algorithm is applied to the prefix-match
string.

The format of the prefix using a combination of digits and the dash
("-") guarantees that no extension declaration can reserve the whole
header field name space. The header-prefix mechanism was preferred
over other solutions for exchanging extension instance parameters
because it is header based and therefore allows for easy integration
of new extensions with existing HTTP features.

Agents MUST NOT reuse header-prefix values in the same message unless
explicitly allowed by the extension (see section 4.1 for a discussion
of the ultimate recipient of an extension declaration).

Clients SHOULD be as consistent as possible when generating header-
prefix values as this facilitates use of the Vary header field in
responses that vary as a function of the request extension
declaration(s) (see [5], section 13.6).

Servers including prefixed-header header fields in a Vary header field
value MUST also include the corresponding extension declaration field-
name as part of that value. For example, if a response depends on the
value of the 16-use-transform header field defined by an optional
extension declaration in the request, the Vary header field in the
response could look like this:

 Vary: Opt, 16-use-transform

Note, that header-prefix consistency is no substitute for including an
extension declaration in the message: header fields with header-prefix
values not defined by an extension declaration in the same message are
not defined by this specification.

Examples of header-prefix values are

Frystyk, et al [Page 5]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 12
 15
 23

Old applications may introduce header fields independent of this
extension mechanism, potentially conflicting with header fields
introduced by the prefix mechanism. In order to minimize this risk,
prefixes MUST contain at least 2 digits.

4. Extension Header Fields

This proposal introduces two types of extension declaration strength:
mandatory and optional, and two types of extension declaration scope:
hop-by-hop and end-to-end (see section 4.1 and 4.2).

A mandatory extension declaration indicates that the ultimate
recipient MUST consult and adhere to the rules given by the extension
when processing the message or reporting an error (see section 5 and
7).

An optional extension declaration indicates that the ultimate
recipient of the extension MAY consult and adhere to the rules given
by the extension when processing the message, or ignore the extension
declaration completely. An agent may not be able to distinguish
whether the ultimate recipient does not understand an extension
referred to by an optional extension or simply ignores the extension
declaration.

The combination of the declaration strength and scope defines a 2x2
matrix which is distinguished by four new general HTTP header fields:
Man, Opt, C-Man, and C-Opt. (See sections 4.1 and 4.2; also see
appendix 14, which has a table of interactions with origin servers and
proxies.)

The header fields are general header fields as they describe which
extensions actually are applied to an HTTP message. Optional
declarations MAY be applied to any HTTP message if appropriate (see
section 5 for how to apply mandatory extension declarations to
requests and section 6 for how to apply them to responses).

4.1 End-to-End Extensions

End-to-end declarations MUST be transmitted to the ultimate recipient
of the declaration. The Man and the Opt general header fields are end-
to-end header fields and are defined as follows:

Frystyk, et al [Page 6]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 mandatory = "Man" ":" 1#ext-decl
 optional = "Opt" ":" 1#ext-decl

For example

 HTTP/1.1 200 OK
 Content-Length: 421
 Opt: "http://www.digest.org/Digest"; ns=15
 15-digest: "snfksjgor2tsajkt52"
 ...

The ultimate recipient of a mandatory end-to-end extension declaration
MUST handle that extension declaration as described in section 5 and
6.

4.2 Hop-by-Hop Extensions

Hop-by-hop extension declarations are meaningful only for a single
HTTP connection. In HTTP/1.1, C-Man, C-Opt, and all header fields with
matching header-prefix values defined by C-Man and C-Opt MUST be
protected by a Connection header field. That is, these header fields
are to be included as Connection header field directives (see [5],
section 14.10). The two header fields have the following grammar:

 c-mandatory = "C-Man" ":" 1#ext-decl
 c-optional = "C-Opt" ":" 1#ext-decl

For example

 M-GET / HTTP/1.1
 Host: some.host
 C-Man: "http://www.digest.org/ProxyAuth"; ns=14
 14-Credentials="g5gj262jdw@4df"
 Connection: C-Man, 14-Credentials

The ultimate recipient of a mandatory hop-by-hop extension declaration
MUST handle that extension declaration as described in section 5 and
6.

4.3 Extension Response Header Fields

Two extension response header fields are used to indicate that a
request containing mandatory extension declarations has been fulfilled
by the ultimate recipient as described in section 5.1. The extension
response header fields are exclusively intended to serve as extension
acknowledgements, and can not carry any other information.

Frystyk, et al [Page 7]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

The Ext header field is used to indicate that all end-to-end mandatory
extension declarations in the request were fulfilled:

 ext = "Ext" ":"

The C-Ext response header field is used to indicate that all hop-by-
hop mandatory extension declarations in the request were fulfilled.

 c-ext = "C-Ext" ":"

In HTTP/1.1, the C-Ext header fields MUST be protected by a Connection
header (see [5], section 14.10).

The Ext and the C-Ext header fields are not mutually exclusive; they
can both occur within the same message as described in section 5.1.

5. Mandatory HTTP Requests

An HTTP request is called a mandatory request if it includes at least
one mandatory extension declaration (using the Man or the C-Man header
fields). The method name of a mandatory request MUST be prefixed by
"M-". For example, a client might express the binding rights-
management constraints in an HTTP PUT request as follows:

 M-PUT /a-resource HTTP/1.1
 Man: "http://www.copyright.org/rights-management"; ns=16
 16-copyright: http://www.copyright.org/COPYRIGHT.html
 16-contributions: http://www.copyright.org/PATCHES.html
 Host: www.w3.org
 Content-Length: 1203
 Content-Type: text/html

 <!doctype html ...

An ultimate recipient conforming to this specification receiving a
mandatory request MUST process the request by performing the following
actions in the order listed below:

 1. Identify all mandatory extension declarations (both hop-by-hop
 and end-to-end); the server MAY ignore optional declarations
 without affecting the result of processing the HTTP message;

 2. Examine all extensions identified in 1) and determine if they
 are supported for this message. If not, respond with a 510 (Not
 Extended) status-code (see section 7);

Frystyk, et al [Page 8]

http://www.copyright.org/COPYRIGHT.html
http://www.copyright.org/PATCHES.html

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 3. If 2) did not result in a 510 (Not Extended) status code, then
 process the request according to the semantics of the
 extensions and of the existing HTTP method name as defined in
 HTTP/1.1 [5] or later versions of HTTP. The HTTP method name
 can be obtained by ignoring the "M-" method name prefix.

 4. If the evaluation in 3) was successful and the mandatory
 request fulfilled, the server MUST respond as defined in

section 5.1. A server MUST NOT fulfill a request without
 understanding and obeying all mandatory extension
 declaration(s) in a request.

A proxy that does not act as the ultimate recipient of a mandatory
extension declaration MUST NOT remove the extension declaration or the
"M-" method name prefix when forwarding the message (see section 5.1
for how to detect when a mandatory extension has been fulfilled).

A server receiving an HTTP/1.0 (or earlier versions of HTTP) message
that includes a Connection header MUST, for each connection-token in
this field, remove and ignore any header field(s) from the message
with the same name as the connection-token.

A server receiving a mandatory request including the "M-" method name
prefix without any mandatory extension declarations to follow MUST
return a 510 (Not Extended) response.

The "M-" prefix is reserved by this proposal and MUST NOT be used by
other HTTP extensions.

5.1 Fulfilling a Mandatory Request

A server MUST NOT claim to have fulfilled any mandatory request unless
it understood and obeyed all the mandatory extension declarations in
the request. This section defines a mechanism for conveying this
information to the client in such a way that it interoperates with
existing HTTP applications and prevents broken servers from giving the
false impression that an extended request was fulfilled by responding
with a 200 (Ok) response without understanding the method.

If any end-to-end mandatory extension declarations were among the
fulfilled extensions then the server MUST include an Ext response
header field in the response. In order to avoid that the Ext header
field inadvertently is cached in an HTTP/1.1 cache, the response MUST
contain a no-cache cache-control directive. If the response is
otherwise cachable, the no-cache cache-control directive SHOULD be
limited to only affect the Ext header field:

Frystyk, et al [Page 9]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 HTTP/1.1 200 OK
 Ext:
 Cache-Control: no-cache="Ext"
 ...

If the mandatory request has been forwarded by an HTTP/1.0
intermediary proxy then this is indicated either directly in the
Request-Line or by the presence of an HTTP/1.1 Via header field. In
this case, the server MUST include an Expires header field with a date
equal to or earlier than the value of the Date header field (see
section 9 for a discussion on caching considerations):

 HTTP/1.1 200 OK
 Date: Sun, 25 Oct 1998 08:12:31 GMT
 Expires: Sun, 25 Oct 1998 08:12:31 GMT
 Ext:
 Cache-Control: no-cache="Ext", max-age=3600
 ...

If any hop-by-hop mandatory extension declarations were among the
fulfilled extensions then the server MUST include a C-Ext response
header field in the response. The C-Ext header field MUST be protected
by a Connection header field (see [5], section 14.10).

 HTTP/1.1 200 OK
 C-Ext:
 Connection: C-Ext

Note, that the Ext and C-Ext header fields are not mutually exclusive;
they can be both be present in a response when fulfilling mandatory
request containing both hop-by-hop as well as end-to-end mandatory
extension declarations.

6. Mandatory HTTP Responses

A server MUST NOT include mandatory extension declarations in an HTTP
response unless it is responding to a mandatory HTTP request whose
definition allowed for the mandatory response or the server has some a
priori knowledge that the recipient can handle the extended response.
A server MAY include optional extension declarations in any HTTP
response (see section 4).

If a client is the ultimate recipient of a mandatory HTTP response
containing mandatory extension declarations that either the client
does not understand or does not want to use, then it SHOULD discard

Frystyk, et al [Page 10]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

the complete response as if it were a 500 (Internal Server Error)
response.

7. 510 Not Extended

The policy for accessing the resource has not been met in the request.
The server should send back all the information necessary for the
client to issue an extended request. It is outside the scope of this
specification to specify how the extensions inform the client.

If the 510 response contains information about extensions that were
not present in the initial request then the client MAY repeat the
request if it has reason to believe it can fulfill the extension
policy by modifying the request according to the information provided
in the 510 response. Otherwise the client MAY present any entity
included in the 510 response to the user, since that entity may
include relevant diagnostic information.

8. Publishing an Extension

While the protocol extension definition should be published at the
address of the extension identifier, this specification does not
require it. The only absolute requirement is that extension
identifiers MUST be globally unique identifiers, and that distinct
names be used for distinct semantics.

Likewise, applications are not required to attempt resolving extension
identifiers included in an extension declaration. The only absolute
requirement is that an application MUST NOT claim conformance with an
extension that it does not recognize (regardless of whether it has
tried to resolve the extension identifier or not). This document does
not provide any policy for how long or how often an application may
attempt to resolve an extension identifier.

The association between the extension identifier and the specification
might be made by distributing a specification, which references the
extension identifier.

It is strongly recommended that the integrity and persistence of the
extension identifier be maintained and kept unquestioned throughout
the lifetime of the extension. Care should be taken not to distribute
conflicting specifications that reference the same name. Even when an
extension specification is made available at the address of the URI,
care must be taken that the specification made available at that
address does not change over time. One agent may associate the

Frystyk, et al [Page 11]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

identifier with the old semantics, while another might associate it
with the new semantics.

The extension definition may be made available in different
representations ranging from

 o a human-readable specification defining the extension semantics
 (see for example [7]),

 o downloadable code which implements the semantics defined by the
 extension,

 o a formal interface description provided by the extension, to

 o a machine-readable specification defining the extension
 semantics.

For example, a software component that implements the specification
may reside at the same address as a human-readable specification
(distinguished by content negotiation). The human-readable
representation serves to document the extension and encourage
deployment, while the software component would allow clients and
servers to be dynamically extended.

9. Caching Considerations

Use of extensions using the syntax defined by this document may have
additional implications on the cachability of HTTP response messages
other than the ones described in section 5.1.

The originator of an extended message should be able to determine from
the semantics of the extension whether or not the extension's presence
impacts the caching constraints of the response message. If an
extension does require tighter constraints on the cachebility of the
response, the originator MUST include the appropriate combination of
cache header fields (Cache-Control, Vary, Expires) corresponding to
the required level of constraints of the extended semantics.

10. Security Considerations

Dynamic installation of extension facilities as described in the
introduction involves software written by one party (the provider of
the implementation) to be executed under the authority of another (the
party operating the host software). This opens the host party to a
variety of "Trojan horse" attacks by the provider, or a malicious
third party that forges implementations under a provider's name. See,

Frystyk, et al [Page 12]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

for example RFC2046 [4], section 4.5.2 for a discussion of these
risks.

11. References

[1] D. H. Crocker. "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982
[2] T. Berners-Lee, R. Fielding, H. Frystyk, "Hypertext Transfer
 Protocol -- HTTP/1.0", RFC 1945, W3C/MIT, UC Irvine, W3C/MIT, May
 1996.
[3] S. Bradner, "The Internet Standards Process -- Revision 3", RFC

2026, Harvard University, October 1996
[4] N. Freed, N. Borenstein, "Multipurpose Internet Mail Extensions
 (MIME) Part Two: Media Types", RFC 2046, Innosoft, First Virtual,
 November 1996.
[5] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C. Irvine,
 DEC W3C/MIT, DEC, W3C/MIT, W3C/MIT, January 1997
[6] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, Harvard University, March 1997
[7] L. Masinter, "Hyper Text Coffee Pot Control Protocol
 (HTCPCP/1.0)", RFC 2324, Xerox PARC, 1 April 1998
[8] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 12, 1998
[9] H. F. Nielsen, D. Connolly, R. Khare, "PEP - an extension
 mechanism for HTTP", draft-http-pep-05.txt, November 21, 1997.
 This work has expired

12. Acknowledgements

Roy Fielding, Rohit Khare, Yaron Y. Goland, and Koen Holtman, deserve
special recognition for their efforts in commenting in all phases of
this specification. Also thanks to Josh Cohen, Ross Patterson, Jim
Gettys, Larry Masinter, and to the people involved in PEP [9].

The contribution of World Wide Web Consortium (W3C) staff is part of
the W3C HTTP Activity (see "http://www.w3.org/Protocols/Activity").

Frystyk, et al [Page 13]

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2324
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/draft-http-pep-05.txt

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

13. Authors Addresses

Henrik Frystyk Nielsen
Technical Staff, World Wide Web Consortium
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139, USA
Email: frystyk@w3.org

Paul J. Leach
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052, USA
Email: paulle@microsoft.com

Scott Lawrence
Agranat Systems, Inc.
1345 Main Street
Waltham, MA 02154, USA
Email: lawrence@agranat.com

Appendices

14. Summary of Protocol Interactions

The following tables summarize the outcome of strength and scope rules
of the mandatory proposal of compliant and non-compliant HTTP proxies
and origin servers. The summary is intended as a guide and index to
the text, but is necessarily cryptic and incomplete. This summary
should never be used or referenced separately from the complete
specification.

 Table 1: Origin Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Standard 501 (Not Standard 501 (Not
 unsupported processing Implemented) processing Implemented)

 Extension Standard 510 (Not Standard 510 (Not
 unsupported processing Extended) processing Extended)

Frystyk, et al [Page 14]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 Extension Extended Extended Extended Extended
 supported processing processing processing processing

 Table 2: Proxy Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Strip 501 (Not Forward 501 (Not
 unsupported extension Implemented) extension Implemented)
 or tunnel or tunnel

 Extension Strip 510 (Not Forward Forward
 unsupported extension Extended) extension extension

 Extension Extended Extended Extended Extended
 supported processing processing processing, processing,
 and strip and strip may strip may strip

15. Examples

The following examples show various scenarios using mandatory in
HTTP/1.1 requests and responses. Information not essential for
illustrating the examples is left out (referred to as "...")

15.1 User Agent to Origin Server

 Table 3: User Agent directly to origin server

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and Opt: "http://www.my.com/tracking"
 one mandatory extension Man: "http://www.foo.com/privacy"
 ...

 Origin server accepts HTTP/1.1 200 OK
 the mandatory extension Ext:
 but ignores the Cache-Control: max-age=120, no-cache="Ext"
 optional one. The ...
 client can not see in
 this case that the

Frystyk, et al [Page 15]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 optional extension was
 ignored.

 Table 4: Origin server with Vary header field

 Client issues a request M-GET /p/q HTTP/1.1
 with one mandatory Man: "http://www.x.y/transform"; ns=16
 extension 16-use-transform: xyzzy
 ...

 Origin server accepts HTTP/1.1 200 OK
 the mandatory but Ext:
 indicates that the Vary: Man, 16-use-transform
 response varies on the Date: Sun, 25 Oct 1998 08:12:31 GMT
 request extension Expires: Sun, 25 Oct 1998 08:12:31 GMT
 declaration Cache-Control: no-cache="Ext", max-age=1000
 ...

15.2 User Agent to Origin Server via HTTP/1.1 Proxy

These two examples show how an extended request interacts with an
HTTP/1.1 proxy.

 Table 5: HTTP/1.1 Proxy forwards extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and C-Opt: "http://www.meter.org/hits"
 one mandatory hop-by- C-Man: "http://www.copy.org/rights"
 hop extension Connection: C-Opt, C-Man
 ...

 HTTP/1.1 proxy forwards M-GET /some-document HTTP/1.1
 the request and takes Via: 1.1 new
 out the connection ...
 headers

 Origin server fails as HTTP/1.1 510 Not Extended
 the request does not ...
 contain any information
 belonging to the M-GET
 method

Frystyk, et al [Page 16]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 Table 6: HTTP/1.1 Proxy does not forward extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and C-Opt: "http://www.meter.org/hits"
 one mandatory hop-by- C-Man: "http://www.copy.org/rights"
 hop extension Connection: C-Opt, C-Man
 ...

 HTTP/1.1 proxy refuses HTTP/1.1 501 Not Implemented
 to forward the M-GET ...
 method and returns an
 error

 Origin server never
 sees the extended
 request

15.3 User Agent to Origin Server via HTTP/1.0 Proxy

These two examples show how an extended request interacts with an
HTTP/1.0 proxy in the message path

 Table 7: HTTP/1.0 Proxy forwards extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one mandatory Man: "http://www.price.com/sale"
 extension ...

 HTTP/1.0 proxy forwards M-GET /some-document HTTP/1.0
 the request as a Man: "http://www.price.com/sale"
 HTTP/1.0 request ...
 without changing the
 method

 Origin server accepts HTTP/1.1 200 OK
 declaration and returns Ext:
 a 200 response and an Date: Sun, 25 Oct 1998 08:12:31 GMT
 extension Expires: Sun, 25 Oct 1998 08:12:31 GMT
 acknowledgement. The Cache-Control: no-cache="Ext", max-age=600
 response can be cached ...
 by HTTP/1.1 caches for
 10 minutes.

Frystyk, et al [Page 17]

INTERNET-DRAFT HTTP Extensions Mon, Mar 15, 1999

 Table 8: HTTP/1.0 and HTTP/1.1 Proxy Chain

 Client issues request M-GET /some-document HTTP/1.1
 with one mandatory and Man: "http://www.copy.org/rights"
 one hop-by-hop optional C-Opt: "http://www.ads.org/noads"
 extension Connection: C-Opt
 ...

 HTTP/1.0 proxy forwards M-GET /some-document HTTP/1.0
 request as HTTP/1.0 Man: "http://www.copy.org/rights"
 request without C-Opt: "http://www.ads.org/noads"
 changing the method and Connection: C-Man
 without honoring the ...
 Connection directives

 HTTP/1.1 proxy deletes M-GET /some-document HTTP/1.1
 (and ignores) optional Man: "http://www.copy.org/rights"
 extension and forwards C-Man: "http://www.ads.org/givemeads"
 the rest including a Connection: C-Man
 via header field. It Via: 1.0 new
 also add a hop-by-hop ...
 mandatory extension

 Origin server accepts HTTP/1.1 200 OK
 both mandatory Ext:
 extensions. The C-Ext
 response is not Connection: C-Ext
 cachable by the Date: Sun, 25 Oct 1998 08:12:31 GMT
 HTTP/1.0 cache but can Expires: Sun, 25 Oct 1998 08:12:31 GMT
 be cached for 1 hour by Cache-Control: no-cache="Ext", max-age=3600
 HTTP/1.1 caches. ...

 HTTP/1.1 proxy removes HTTP/1.1 200 OK
 the hop-by-hop Ext:
 extension Date: Sun, 25 Oct 1998 08:12:31 GMT
 acknowledgement and Expires: Sun, 25 Oct 1998 08:12:31 GMT
 forwards the remainder Cache-Control: no-cache="Ext", max-age=3600
 of the response. ...

Frystyk, et al [Page 18]

