
 INTERNET-DRAFT Mandatory H. Frystyk Nielsen, W3C
draft-frystyk-http-mandatory P. Leach, Microsoft

 Scott Lawrence, Agranat Systems
 Expires: July 20, 1998 Tuesday, January 20, 1998

Mandatory Extensions in HTTP

 Status of this Document

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts. Internet-Drafts are draft
 documents valid for a maximum of six months and may be updated,
 replaced, or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference material or to cite
 them other than as "work in progress".

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the <ietf-http-ext@w3.org> mailing list. This list is archived at
 "http://lists.w3.org/Archives/Public/ietf-http-ext/".

 The contribution of World Wide Web Consortium (W3C) staff is part of
 the W3C HTTP Activity (see "http://www.w3.org/Protocols/Activity").

 Abstract

 HTTP is used increasingly in applications that need more facilities
 than the standard version of the protocol provides, ranging from
 distributed authoring, collaboration, and printing, to various remote
 procedure call mechanisms. This document proposes the use of a
 mandatory extension mechanism designed to address the tension between
 private agreement and public specification and to accommodate
 extension of applications such as HTTP clients, servers, and proxies.
 The proposal associates each extension with a URI[2], and use a few
 new RFC 822[1] style header fields to carry the extension identifier
 and related information between the parties involved in an extended
 transaction.

 Table of Contents

1. Introduction...2
2. Notational Conventions...2

https://datatracker.ietf.org/doc/html/draft-frystyk-http-mandatory
https://datatracker.ietf.org/doc/html/rfc822

3. Extension Declarations...3
3.1 Header Field Prefixes...3

Frystyk et al [Page 1]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

4. Extension Header Fields..4
4.1 End-to-End Extensions...4
4.2 Hop-by-Hop Extensions...5

5. Mandatory HTTP Requests..5
6. 510 Not Extended...6
7. Publishing an Extension..7
8. Security Considerations..7
9. References...8
10. Acknowledgements..8
11. Authors Addresses...8
12. Summary of Protocol Interactions................................9
13. Examples...10
13.1 Client Queries Server for DAV...............................10
13.2 Server Uses ZipFlate Compression Extension..................10

1. Introduction

 The mandatory proposal is designed to accommodate dynamic extension of
 HTTP clients and servers by software components; and to address the
 tension between private agreement and public specification. The
 proposal uses features in HTTP/1.1 but is compatible with both
 HTTP/1.0 and HTTP/1.1 applications. The kind of extensions capable of
 being introduced range from:

 o extending a single HTTP message;
 o introducing new encodings;
 o initiating HTTP-derived protocols for new applications; to...
 o switching to protocols which, once initiated, run independent of
 the original protocol stack.

 The proposal is intended to be used as follows:

 o Some party designs and specifies an extension; the party assigns
 the extension an identifier, which is a URI, and makes one or
 more representations of the extension available at that address
 (see section 7).
 o A party using an agent implementing the extension wishes to use
 it; the agent declares the use of the extension by referencing
 its URI in an extension declaration (see section 3).

2. Notational Conventions

 This specification uses the same notational conventions and basic
 parsing constructs as RFC 2068[7]. In particular the BNF constructs
 "token", "quoted-string", "field-name", and "URI" in this document are
 to be interpreted as described in RFC 2068[7].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

 document are to be interpreted as described in RFC 2119[8].

Frystyk, et al [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

 This proposal does not rely on particular features defined in URLs [3]
 that cannot potentially be expressed using URNs (see section 7).
 Therefore, the more generic term URI[2] is used throughout the
 specification.

3. Extension Declarations

 An extension declaration can be used to indicate that an extension has
 been applied to a message and possibly to reserve a part of the header
 namespace identified by a header field prefix (see 3.1). The grammar
 for an extension declaration is as follows:

 ext-decl = <"> URI <"> [ext-params]
 ext-params = ";" namespace *(ext-extension)

 namespace = ";" "ns" "=" prefix
 prefix = 1*DIGIT "-"
 ext-extension = ";" token ["=" (token | quoted-string)]

 An extension is identified by a URI. Extension identifier URIs can be
 either relative or absolute. Relative extension identifiers are
 interpreted relative to the IANA registry (see RFC 1808[4]). Examples
 of URIs are

 "http://www.temporary.com/extension"
 "rfc6534"
 "Content-FooBar"

 An extension declaration can be extended through the use of one or
 more ext-extension parameters. Unrecognized ext-extension parameters
 SHOULD be ignored and MUST NOT be removed by proxies when forwarding
 the extension declaration.

 Note: In layered implementations, unknown ext-extension parameters
 should be passed to the upper layers as they may have other mechanisms
 of knowing the semantics of the parameters.

3.1 Header Field Prefixes

 The header-prefix can be used to indicate that all header fields in
 the message matching the header-prefix value using string prefix-
 matching are introduced by this extension instance. This allows an
 extension instance to dynamically reserve a subspace of the header
 space in a protocol message in order to prevent header field name
 clashes. Agents SHOULD NOT reuse header-prefix values in the same
 message.

 Examples of header-prefix values are

https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc6534

 1234-
 546-
 234345653-

Frystyk, et al [Page 3]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

 Linear white space (LWS) MUST NOT be used between the 1*DIGIT and the
 "-". The format of the prefix using a combination of digits and the
 dash "-" guarantees that no extension declaration can reserve the
 whole header field name space.

 Note: Old applications may introduce header fields independent of this
 extension mechanism, potentially conflicting with header fields
 introduced by the prefix mechanism. In order to minimize this risk,
 prefixes should contain at least 3 digits.

4. Extension Header Fields

 This proposal introduces two types of extension declarations:
 mandatory and optional declarations. A mandatory extension declaration
 indicates that the ultimate recipient MUST consult and adhere to the
 rules given by the extension when processing the message or report an
 error (see section 5 and 6).

 An optional extension declaration indicates that the ultimate
 recipient of the extension MAY consult and adhere to the rules given
 by the extension when processing the message, or ignore the extension
 declaration completely. An agent may not be able to distinguish
 whether the ultimate recipient does not understand an extension
 referred to by an optional extension or simply ignores the extension
 declaration.

 There are two scopes for extensions declarations: Hop-by-hop and end-
 to-end. The scopes are distinguished by separate header field names so
 that multiple extensions with different scopes can be applied to the
 same message.

4.1 End-to-End Extensions

 End-to-end and hop-by-hop. End-to-end declarations MUST be transmitted
 to the ultimate recipient of the declaration. The Man and the Opt
 general header fields are end-to-end header fields and are defined as
 follows:

 mandatory = "Man" ":" 1#ext-decl
 optional = "Opt" ":" 1#ext-decl

 For example

 HTTP/1.1 200 OK
 Content-Length: 421
 Opt: "http://www.digest.org/Digest"; ns=54-
 54-digest: "4525dct344v@fsdfsg"
 ...

 Proxies MAY act as both the initiator and the ultimate recipient of
 end-to-end extension declarations. It is outside the scope of this

Frystyk, et al [Page 4]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

 specification to define how an agreement is reached between a party
 representing the proxy and the party on which behalf it can act, but
 for example, the parties may be within the same trust domain.

 If a proxy is the ultimate recipient of a mandatory end-to-end
 extension declaration then it MUST handle that extension declaration
 as described in section 5. The proxy SHOULD remove all parts of the
 extension declaration from the message before forwarding it.

4.2 Hop-by-Hop Extensions

 Hop-by-hop extension declarations are meaningful only for a single
 transport-level connection. The C-Man and the C-Opt general header
 field are hop-by-hop header fields and MUST NOT be communicated by
 proxies over further connections. The two headers have the following
 grammar:

 c-mandatory = "C-Man" ":" 1#ext-decl
 c-optional = "C-Opt" ":" 1#ext-decl

 For example

 GET / HTTP/1.1
 Host: some.host
 C-Man: "http://www.digest.org/ProxyAuth"; ns=23-
 23-Credentials: "g5gj262jdw@4df"
 Connection: C-Man, 23-Credentials

 In HTTP/1.1, the C-Man and the C-Opt header field MUST be protected by
 a Connection header. That is, the header fields are to be included as
 Connection header directives (see section [7], section 14.10).

 An agent MUST NOT send the C-Man or the C-Opt header field to an
 HTTP/1.0 proxy as it does not obey the HTTP/1.1 rules for parsing the
 Connection header field (see [7], section 19.7.1).

5. Mandatory HTTP Requests

 An HTTP request is called a mandatory request if it includes at least
 one mandatory extension declaration (using the Man or the C-Man header
 fields). The method name of a mandatory request MUST be prefixed by
 "M-". For example, a client might express the binding rights-
 management constraints in an HTTP PUT request as follows:

 M-PUT /a-resource HTTP/1.1
 Man: "http://www.copyright.org/rights-management"; ns=43-
 43-copyright: http://www.copyright.org/COPYRIGHT.html-
 43-contributions: http://www.copyright.org/PATCHES.html

http://www.copyright.org/COPYRIGHT.html-
http://www.copyright.org/PATCHES.html

 Host: www.w3.org
 Content-Length: 1203
 Content-Type: text/html

Frystyk, et al [Page 5]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

 <!doctype html ...

 An HTTP server MUST NOT return a 2xx status-code without obeying all
 mandatory extension declaration(s) in a mandatory request. A mandatory
 HTTP request invalidates cached entries as described in [7], section
 13.10.

 The ultimate recipient of a mandatory HTTP request with the "M-"
 prefix on the method name MUST process the request by performing the
 following actions in the order they occur:

 1. Identify all mandatory extension declarations (both hop-by-hop
 and end-to-end); the server MAY ignore optional declarations
 without affecting the result of the transaction;
 2. Evaluate and process the extensions identified in 1) or if the
 extension declarations do not match the policy for accessing
 the resource then respond with a 510 (Not Extended) status-code
 (see section 6);
 3. Strip the "M-" prefix from the method name and process the
 reminder of the request according to the semantics of the
 existing HTTP/1.1 method name as defined in [7].

 An "M-" aware proxy that does not act as the ultimate recipient of a
 mandatory extension declaration MUST NOT remove the declaration or the
 "M-" method name prefix when forwarding the message.

 The "M-" prefix is reserved by this proposal and MUST NOT be used by
 other HTTP extensions.

 Note: Applications that do not understand the "M-" method name prefix
 should return 501 (Not Implemented) or turn themselves into a tunnel
 ([7]) in which case they do not take any part in the communication.

6. 510 Not Extended

 The policy for accessing the resource has not been met in the request.
 The server SHOULD send back all the information necessary for the
 client to issue an extended request. It is outside the scope of this
 specification to specify how the extensions inform the client.

 If the initial request already included the extensions requested in
 the 510 response, then the response indicates that access has been
 refused for those extension declarations.

 If the 510 response contains the same set of extension policies as the
 prior response, then the client MAY present any entity included in the
 response to the user, since that entity may include relevant
 diagnostic information.

Frystyk, et al [Page 6]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

7. Publishing an Extension

 While the protocol extension definition should be published at the
 address of the extension identifier, this is not a requirement of this
 specification. The only absolute requirement is that distinct names be
 used for distinct semantics. For example, one way to achieve this is
 to use a mid, cid, or uuid URI. The association between the extension
 identifier and the specification might be made by distributing a
 specification, which references the extension identifier.

 It is strongly recommended that the integrity and persistence of the
 extension identifier is maintained and kept unquestioned throughout
 the lifetime of the extension. Care should be taken not to distribute
 conflicting specifications that reference the same name. Even when a
 URI is used to publish extension specifications, care must be taken
 that the specification made available at that address does not change
 significantly over time. One agent may associate the identifier with
 the old semantics, and another might associate it with the new
 semantics.

 The extension definition may be made available in different
 representations ranging from

 o a human-readable specification defining the extension semantics,
 o downloadable code which implements the semantics defined by the
 extension,
 o a formal interface description provided by the extension, to
 o a machine-readable specification defining the extension
 semantics.

 For example, a software component that implements the specification
 may reside at the same address as a human-readable specification
 (distinguished by content negotiation). The human-readable
 representation serves to document the extension and encourage
 deployment, while the software component allows clients and servers to
 be dynamically extended.

8. Security Considerations

 o Dynamic installation of extension facilities as described in the
 introduction involves software written by one party (the provider
 of the implementation) to be executed under the authority of
 another (the party operating the host software). This opens the
 host party to a variety of "Trojan horse" attacks by the
 provider, or a malicious third party that forges implementations
 under a provider's name. See, for example RFC2046[6], section

4.5.2 for a discussion of these risks.

https://datatracker.ietf.org/doc/html/rfc2046

Frystyk, et al [Page 7]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

9. References

 [1] D. H. Crocker. "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, UDEL, August 1982
 [2] T. Berners-Lee, "Universal Resource Identifiers in WWW. A
 Unifying Syntax for the Expression of Names and Addresses of
 Objects on the Network as used in the World-Wide Web", RFC 1630,
 CERN, June 1994.
 [3] T. Berners-Lee, L. Masinter, M. McCahill. "Uniform Resource
 Locators (URL)" RFC 1738, CERN, Xerox PARC, University of
 Minnesota, December 1994.
 [4] R. Fielding, "Relative Uniform Resource Locators", RFC 1808, UC
 Irvine, June 1995.
 [5] T. Berners-Lee, R. Fielding, H. Frystyk, "Hypertext Transfer
 Protocol -- HTTP/1.0", RFC 1945, W3C/MIT, UC Irvine, W3C/MIT, May
 1996.
 [6] N. Freed, N. Borenstein, "Multipurpose Internet Mail Extensions
 (MIME) Part Two: Media Types", RFC 2046, Innosoft, First Virtual,
 November 1996.
 [7] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C. Irvine,
 DEC W3C/MIT, DEC, W3C/MIT, W3C/MIT, January 1997
 [8] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, Harvard University, March 1997
 [9] Y. Goland et al, "Extensions for Distributed Authoring and
 Versioning", Internet Draft, draft-jensen-webdav-ext-01, 26 March
 1997. This is work in progress.
 [10] H. F. Nielsen, D. Connolly, R. Khare, "PEP - an extension
 mechanism for HTTP", draft-http-pep-05.txt, November 21, 1997

10. Acknowledgements

 Rohit Khare deserves special recognition for his efforts in commenting
 in the design phase of the protocol. Also thanks to Josh Cohen, Jim
 Gettys and all the people who have been involved in PEP.

11. Authors Addresses

 Henrik Frystyk Nielsen
 Technical Staff, World Wide Web Consortium
 MIT Laboratory for Computer Science

545 Technology Square
 Cambridge, MA 02139, USA
 Email: frystyk@w3.org

 Paul J. Leach
 Microsoft Corporation

1 Microsoft Way

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-jensen-webdav-ext-01
https://datatracker.ietf.org/doc/html/draft-http-pep-05.txt

 Redmond, WA 98052, USA
 Email: paulle@microsoft.com

Frystyk, et al [Page 8]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

 Scott Lawrence
 Agranat Systems, Inc.

1345 Main Street
 Waltham, MA 02154, USA
 Email: lawrence@agranat.com

 Appendices

12. Summary of Protocol Interactions

 The following tables summarize the outcome of strength and scope rules
 of the mandatory proposal of compliant and non-compliant HTTP proxies
 and origin servers. The summary is intended as a guide and index to
 the text, but is necessarily cryptic and incomplete. This summary
 should never be used or referenced separately from the complete
 specification.

 Table 1: Origin Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Standard 501 (Not Standard 501 (Not
 unsupported processing Implemented)processing Implemented)

 Extension Standard 510 (Not Standard 510 (Not
 unsupported processing Extended) processing Extended)

 Extension Extended Extended Extended Extended
 supported processing processing processing processing

 Table 2: Proxy Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Strip 501 (Not Forward 501 (Not
 unsupported extension Implemented)extension Implemented)
 or tunnel

 Extension Strip 510 (Not Forward Forward
 unsupported extension Extended) extension extension

 Extension Extended Extended Extended Extended
 supported processing processing processing, processing,
 and strip and strip may strip may strip

Frystyk, et al [Page 9]

INTERNET-DRAFT Mandatory Tuesday, January 20, 1998

13. Examples

 The following examples show various scenarios using mandatory in
 HTTP/1.1 requests and responses. Information not essential for
 illustrating the examples is left out (referred to as " ")

13.1 Client Queries Server for DAV

 In this example, the purpose is to determine whether a server
 understands and supports the Distributed Authoring and Versioning
 (DAV) protocol extension [9]. By making the request mandatory (see

section 5), the client forces the server to process the extension
 declaration and obey the extension or report an error.

 M-GET /some.url HTTP/1.1
 Host: some.host
 Man: "http://www.dav.org"
 ...

 HTTP/1.1 200 OK
 ...

 The response shows that the server does understand. It is not possible
 to distinguish between querying about or using an extension - the
 extension declaration is identical. Whether it in fact is a query may
 depend on the request method name and request modifiers.

13.2 Server Uses ZipFlate Compression Extension

 This example shows a server using the zipflate compression extension
 in a response:

 GET /Index HTTP/1.1
 Host: some.host

 HTTP/1.1 200 OK
 Man: "http://www.encoding.com/zipflate"
 Cache-Control: no-transform
 Vary: *
 ...

 The response shows that the server uses the extension the response.
 The response includes the no-transform cache-control directive in
 order to avoid that proxies add their own content-coding to the
 message and a Vary header field indicating that a cache may not use
 the response to reply to a subsequent request without revalidation.

 Frystyk, et al [Page 10]

