
Secure Shell Working Group J. Galbraith
Internet-Draft J. Van Dyke
Expires: December 22, 2003 B. McClure
 VanDyke Software
 June 23, 2003

Secure Shell Public-Key Subsystem
draft-galb-secsh-publickey-subsystem-02.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 22, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 SECSH defines an authentication mechanism that is based on public
 keys, but does not define any mechanism for key distribution. No
 common key management solution exists in current implementations.
 This document describes a protocol that can be used to configure
 public keys in an implementation-independent fashion, allowing client
 software to take on the burden of this configuration.

 This protocol is intended to be used from the Secure Shell Connection
 Protocol [4] as a subsystem, as described in Section ``Starting a
 Shell or a Command''. The subsystem name used with this protocol is
 "publickey@vandyke.com".

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Galbraith, et al. Expires December 22, 2003 [Page 1]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

 The public-key subsystem provides a server-independent mechanism for
 clients to add public keys, remove public keys, and list the current
 public keys known by the server. Rights to manage public keys are
 specific and limited to the authenticated user.

 A public key may also be associated with a mandatory command.

Table of Contents

1. Introduction . 3
2. Public-Key Subsystem Overview 4
2.1 Opening the Public-Key Subsystem 4
2.2 Requests . 5
2.3 Responses . 5
2.3.1 The Status Response . 5
3. Public-Key Subsystem Operations 7
3.1 Version Packet . 7
3.2 Adding a public key . 7
3.3 Removing a public key 7
3.4 Listing public keys . 8
3.5 Associate public key with a mandatory command 8

 References . 9
 Authors' Addresses . 9
 Intellectual Property and Copyright Statements 11

Galbraith, et al. Expires December 22, 2003 [Page 2]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

1. Introduction

 SECSH is a protocol for secure remote login and other secure network
 services over an insecure network. SECSH defines an authentication
 mechanism that is based on public keys, but does not define any
 mechanism for key distribution. Common practice is to authenticate
 once with password authentication and transfer the public key to the
 server. However, to date no two implementations use the same
 mechanism to configure a public key for use.

 This document describes a subsystem that can be used to configure
 public keys in an implementation-independent fashion. This approach
 allows client software to take on the burden of this configuration.
 The public-key subsystem protocol is designed for extreme simplicity
 in implementation. It is not intended as a PKIX replacement.

 The Secure Shell Public-Key subsystem has been designed to run on top
 of the SECSH transport layer [2] and user authentication protocols
 [3]. It provides a simple mechanism for the client to manage public
 keys on the server.

 This document should be read only after reading the SECSH
 architecture [1] and SECSH connection [4] documents.

 This protocol requires that the user be able to authenticate in some
 fashion before it can be used. If password authentication is used,
 servers SHOULD provide a configuration option to disable the use of
 password authentication after the first public key is added.

Galbraith, et al. Expires December 22, 2003 [Page 3]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

2. Public-Key Subsystem Overview

 The public-key subsystem provides a server-independent mechanism for
 clients to add public keys, remove public keys, and list the current
 public keys known by the server. The subsystem name is
 "publickey@vandyke.com".

 The public keys added, removed, and listed using this protocol are
 specific and limited to those of the authenticated user.

 The operations to add, remove and list the authenticated user's
 public keys are performed as request packets sent to the server. The
 server sends response packets that indicate success or failure as
 well as provide specific response data.

 The format of public-key blobs are detailed in the SSH Transport
 Protocol document [2].

2.1 Opening the Public-Key Subsystem

 The public-key subsystem is opened when the clients sends a
 SSH_MSG_CHANNEL_REQUEST over an existing session.

 The details of how a session is opened are described in the SSH
 Connection Protocol document [4] in the section "Opening a Session".

 To open the public-key subsystem, the client sends:

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "subsystem"
 boolean want reply
 string "publickey@vandyke.com"

 Client implementations SHOULD reject this request; it is normally
 only sent by the client.

 If want reply is TRUE, the server MUST respond with
 SSH_MSG_CHANNEL_SUCCESS if the public-key subsystem was successfully
 started or SSH_MSG_CHANNEL_FAILURE if the server failed to start or
 does not support the public-key subsystem.

 The server SHOULD respond with SSH_MSG_CHANNEL_FAILURE if the user
 authenticated with a restricted public key that does not allow access
 to the publickey subsystem.

 It is RECOMMENDED that clients request and check the reply for this
 request.

Galbraith, et al. Expires December 22, 2003 [Page 4]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

2.2 Requests

 All public-key subsystem requests are sent in the following form:

 uint32 length
 string request-name
 ... request specific data follows

 The length field describes the length of the request-name field and
 the request-specific data, but not of the length field itself. The
 client MUST receive a response to each request prior to sending a
 new request.

 All requests described in Section 3 are a description of the
 'request-name' and 'data' portions of the packet.

2.3 Responses

 All public-key subsystem responses are sent in the following form:

 uint32 length
 string response-name
 ... response specific data follows

2.3.1 The Status Response

 A request is acknowledged by sending a status packet. If there is
 data in response to the request, the status packet is sent after all
 data has been sent.

 string "status"
 uint32 status code
 string description [RFC-2279]
 string language tag [RFC-1766]

 A status message MUST be sent for any unrecognized packets and the
 request SHOULD NOT close the subsystem.

2.3.1.1 Status Codes

 The status code gives the status in a more machine-readable format
 (suitable for localization), and can have the following values:

 SSH_PUBLICKEY_SUCCESS 0
 SSH_PUBLICKEY_ACCESS_DENIED 1
 SSH_PUBLICKEY_STORAGE_EXCEEDED 2
 SSH_PUBLICKEY_REQUEST_NOT_SUPPORTED 3
 SSH_PUBLICKEY_KEY_NOT_FOUND 4

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

 SSH_PUBLICKEY_KEY_NOT_SUPPORTED 5
 SSH_PUBLICKEY_KEY_ALREADY_PRESENT 6

Galbraith, et al. Expires December 22, 2003 [Page 5]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

 SSH_PUBLICKEY_GENERAL_FAILURE 7

Galbraith, et al. Expires December 22, 2003 [Page 6]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

3. Public-Key Subsystem Operations

 The public-key subsystem currently defines four operations: add,
 remove, list, and command.

3.1 Version Packet

 Both sides MUST start by sending a version packet that indicates the
 version of the protocol they are using.

 string "version"
 uint32 protocol-version-number

 The version of the protocol described by this document is version 1.

 Both sides send the highest version that they implement. The lower of
 the version numbers is the version of the protocol to use. If either
 side can't support the lower version, it should close the subsystem
 and notify the other side by sending an SSH_MSG_CHANNEL_CLOSE message.

 Both sides MUST wait to receive this version before continuing.

3.2 Adding a public key

 If the client wishes to add a public key, the client sends:

 string "add"
 string public-key algorithm name
 string public-key blob
 boolean overwrite
 uint32 attribute-count
 string attrib-name
 string attrib-value
 bool mandatory
 repeated attribute-count times

 The server MUST attempt to store the public key for the user in the
 appropriate location so the public key can be used for subsequent
 public-key authentications. If the overwrite field is false and the
 specified key already exists, the server MUST return
 SSH_PUBLICKEY_KEY_ALREADY_PRESENT. If the server returns this, the
 client SHOULD provide an option to the user to overwrite the key.
 If the overwrite field is true and the specified key already exists
 but cannot be overwritten, the server MUST return
 SSH_PUBLICKEY_ACCESS_DENIED.

 Attribute names are defined following the same scheme laid out for
 algorithm names in [SSH-ARCH] (section 5). If the server does not
 implement a mandatory attribute, it MUST fail the add. For the

 purposes of a mandatory attribute, storage of the attribute is not
 sufficient, but requires that the server understand and implement
 the intent of the attribute.

 The following attributes are currently defined:

 "comment"
 The comment field contains user-specified text about the
 public key. The server SHOULD make every effort to preserve
 this value and return it with the key during a list operation.
 The server MUST NOT attempt to interpret or act upon the content
 of the comment field in any way.

 The comment field is useful so the user can identify the key
 without resorting to comparing its fingerprint.

 This attribute SHOULD NOT be mandatory.

 "comment-language"
 If this attribute is specified, it MUST immediately follow a
 "comment" attribute and specifies the language for that attribute
 [RFC1766]. The client MAY specify more than comment if it
 additionally specifies a different language for each of those
 comments. The server SHOULD attempt to store each comment,
 together with that comment's lanuage attribute.

 This attribute SHOULD NOT be mandatory.

 "command"
 "command" bypasses the session channel "exec" and "shell" requests
 by always executing the specified command (as if it had been
 executed using an "exec" request).

 This attribute SHOULD be mandatory. This attribute MUST NOT be
 specified if the "subsystem" attribute is specified.

 "subsystem"
 "subsystem" specifies that the specified subsystem should be started
 when this key is used (as if it had been started using a "subsystem"
 request.

 This attribute SHOULD be mandatory. This attribute MUST NOT be
 specified if the "command" attribute is specified.

 "restrict"
 The value of this attribute contains server functions that may
 not be performed when this key is used. It is a comma seperated
 list. Element names are specified in the same way as attribute
 names, above. The following restrictions are currently defined:

 Currently defined restrictions are:

https://datatracker.ietf.org/doc/html/rfc1766

 "x11"
 "shell"
 "exec"
 "agent"
 "env"
 "subsystem"

 The "x11" restriction specifies that X11 forwarding may not be
 performed when this key is in use. The "shell" restriction
 specifies that session channel "shell" requests should be denied
 when this key is in use. The "exec" restriction specifies that
 session channel "exec" requests should be denied when this key
 is in use. The "agent" restriction specifies that session channel
 "auth-agent-req" requests should be denied when this key is in use.
 The "env" restriction specifies that session channel "env" requests
 should be denied when this key is in use. The "subsystem"
 restriction specifies that subsystems may not be started when this
 public key is in use (if the "subsystem" attribute is also specified,
 the subsystem specified in that attribute is exempted from this
 restriction).

 This attribute SHOULD be mandatory.

 "port-forward"
 "port-forward" specifies that no "direct-tcpip" requests should be
 accepted, except to those hosts specified in the comma-separated
 list supplied as a value to this attribute. If the value of this
 attribute is empty, all "direct-tcpip" requests should be refused
 when using this key.

 This attribute SHOULD be mandatory.

 "reverse-forward"
 "reverse-forward" specifies that no "tcpip-forward" requests should
 be accepted, accept for the port numbers in the comma-separated
 list supplied as a value to this attribute. If the value of this
 attribute is empty, all "tcpip-forward" requests should be refused
 when using this key.

 This attribute SHOULD be mandatory.

 In addition to the attributes and restrictions specified by the client,
 the server MAY provide a method for administrators to compulsorily enforce
 certain attributes or restrictions.

3.3 Removing a public key

 If the client wishes to remove a public key, the client sends:

 string "remove"
 string public-key algorithm name
 string public-key blob

 The server MUST attempt to remove the public key for the user from
 the appropriate location, so that the public key cannot be used for
 subsequent authentications.

Galbraith, et al. Expires December 22, 2003 [Page 7]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

3.4 Listing public keys

 If the client wishes to list the known public keys, the client sends:

 string "list"

 The server will respond with zero or more of the following responses:

 string "publickey"
 string public-key algorithm name
 string public-key blob
 uint32 attribute-count
 string attrib-name
 string attrib-value
 repeated attribute-count times

 Following the last "publickey" response, a status packet MUST be
 sent.

 An implementation MAY choose not to support this request.

3.5 Listing server capabilities

 If the client wishes to know which restrictions the server supports,
 it sends:

 string "listattributes"

 The server will respond with zero or more of the following responses:

 string "attribute"
 string attribute name
 boolean compulsory

 The server will then respond with zero or more of the following
 responses:

 string "restriction"
 string restriction name
 boolean compulsory

 The server MAY include "restrict" in the list of attributes it supports.
 The client SHOULD NOT require the server to do so in order to accept
 that the server supports the list of restrictions returned by the
 server.

 Following the last "restriction" response, a status packet MUST be
 sent.

 An implementation MAY choose not to support this request.

Galbraith, et al. Expires December 22, 2003 [Page 8]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

References

 [1] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T. and S.
 Lehtinen, "SSH Protocol Architecture",

draft-ietf-secsh-architecture-13 (work in progress), January
 2002.

 [2] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T. and S.
 Lehtinen, "SSH Transport Layer Protocol",

draft-ietf-secsh-transport-15 (work in progress), March 2002.

 [3] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T. and S.
 Lehtinen, "SSH Authentication Protocol",

draft-ietf-secsh-userauth-16 (work in progress), February 2002.

 [4] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T. and S.
 Lehtinen, "SSH Connection Protocol", draft-ietf-secsh-connect-16
 (work in progress), January 2002.

 [5] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
2279, January 1998.

Authors' Addresses

 Joseph Galbraith
 VanDyke Software
 4848 Tramway Ridge Blvd
 Suite 101
 Albuquerque, NM 87111
 US

 Phone: +1 505 332 5700
 EMail: galb-list@vandyke.com

 Jeff P. Van Dyke
 VanDyke Software
 4848 Tramway Ridge Blvd
 Suite 101
 Albuquerque, NM 87111
 US

 Phone: +1 505 332 5700
 EMail: jpv@vandyke.com

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-13
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-transport-15
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-userauth-16
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-connect-16
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

Galbraith, et al. Expires December 22, 2003 [Page 9]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

 Brent McClure
 VanDyke Software
 4848 Tramway Ridge Blvd
 Suite 101
 Albuquerque, NM 87111
 US

 Phone: +1 505 332 5700
 EMail: bdm@vandyke.com

Galbraith, et al. Expires December 22, 2003 [Page 10]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Galbraith, et al. Expires December 22, 2003 [Page 11]

Internet-Draft Secure Shell Public-Key Subsystem June 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Galbraith, et al. Expires December 22, 2003 [Page 12]

