
ALTO WG K. Gao
Internet-Draft Tsinghua University
Intended status: Standards Track X. Wang
Expires: January 5, 2018 C. Gu
 Tongji University
 Y. Yang
 Yale University
 G. Chen
 Huawei
 July 4, 2017

A Recommendation for Compressing ALTO Path Vectors
draft-gao-alto-routing-state-abstraction-05.txt

Abstract

 The path vector extension [I-D.ietf-alto-path-vector] has extended
 the original ALTO protocol [RFC7285] with the ability to represent a
 more detailed view of the network, containing not only end-to-end
 metrics but also information about shared bottlenecks.

 However, the view computed by straw man algorithms can contain
 redundant information and result in unnecessary communication
 overhead. The situation gets even worse when certain ALTO extensions
 are enabled, for example, the incremental update extension
 [I-D.ietf-alto-incr-update-sse] which continuously pushes data
 changes to ALTO clients. Redundant information can trigger
 unnecessary updates.

 In this document, an algorithm is described which can effectively
 reduce the redundancy in the network view while still providing the
 same information as in the original path vectors. The algorithm is
 fully compatible with the path vector extension and has several by-
 products which can be leveraged by other extensions to achieve better
 performance.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Gao, et al. Expires January 5, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Compressing Path Vectors July 2017

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Changes Since Version -03 and -04 4
3. Terminology . 4
4. Compressing Path Vectors 5
5. Equivalent Transformation Algorithm 7
5.1. Parameters and Variables 7
5.2. Algorithm Description 8

6. Recommended Redundancy Check Algorithm 10
6.1. Parameters and Variables 10
6.2. Algorithm Description 10

7. Reducing Unnecessary Incremental Updates 11
8. Extension for Customized Input Parameters 11
8.1. Parameters and Variables 11
8.2. Algorithm Description 12
8.3. ALTO Extension for Client Constraint Map 12
8.4. Examples . 14
8.5. Compatibility . 20

9. Security Considerations 20
10. IANA Considerations . 21

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Gao, et al. Expires January 5, 2018 [Page 2]

Internet-Draft Compressing Path Vectors July 2017

11. Acknowledgments . 21
12. References . 21
12.1. Normative References 21
12.2. Informative References 21

 Authors' Addresses . 22

1. Introduction

 The path vector extension [I-D.ietf-alto-path-vector] has extended
 the base ALTO protocol [RFC7285] with the ability to present more
 complex network views than the simple abstraction used by cost map or
 endpoint cost service. This has enabled ALTO clients to query more
 sophisticated information such as shared bottlenecks, by which ALTO
 clients can schedule their flows properly to avoid congestion and to
 utilize the network resources.

 A straw man approach, especially in the context of Software Defined
 Networking (SDN) where network providers have a global view, can
 compute the path vectors by retrieving the paths for all requested
 flows and returning the links on those paths as abstract network
 elements. However, this approach has several drawbacks:

 o The resultant network view may lead to privacy leaks. Since the
 paths constitute a sub-graph of the global view, they might leak
 sensitive information without further processing.

 o The resultant network view contains redundant information. The
 path vector information is primarily used to avoid network
 bottlenecks. Thus, if a link cannot become the bottleneck, as
 demonstrated in Section 4, it is considered as redundant.
 Redundant links not only add to the communication overhead of the
 path vector extension, but also trigger false-positive data change
 events when the incremental update extension is activated.

 This document describes an algorithm that identifies redundant
 abstract network elements and reduces them as much as possible. The
 algorithm, namely the "equivalent transformation" algorithm, can be
 integrated with any implementation of the path vector extension as a
 post-processing step. As the name suggests, this algorithm
 essentially conducts "equivalent" transformations on the original
 path vectors, removes redundant information and obtains a more
 compact view.

 This extension is fully compatible with the path vector extension and
 can be optionally turned on and off without effecting the correctness
 of responses. A crucial part of the equivalent transformation
 algorithm is how to find redundant abstract network elements. By
 tuning the redundancy check algorithm, one can make different trade-

https://datatracker.ietf.org/doc/html/rfc7285

Gao, et al. Expires January 5, 2018 [Page 3]

Internet-Draft Compressing Path Vectors July 2017

 off decisions between efficiency and privacy. A reference
 implementation of redundancy check algorithm is also described in
 this document.

 As a by-product, the redundancy check algorithm can generate filters
 for incremental updates of path vector queries. It can take some
 customized parameters from ALTO clients to achieve even better
 compression results.

 This document is organized as follows. Section 4 gives a concrete
 example to demonstrate the importance of compressing path vectors.

Section 5 gives the equivalent transformation algorithm and Section 6
 introduces a reference implementation of redundancy check algorithm.

Section 7 discusses how to generate filters for ALTO incremental
 update services and Section 8 introduces an optional extension which
 allows ALTO clients to share certain information and further improves
 the performance of equivalent transformation. Finally, Section 9 and

Section 10 discuss security and IANA considerations.

2. Changes Since Version -03 and -04

 In early versions of this draft, a lot of contents are shared with
 the path vector draft. From version -04, the authors have adjusted
 the structure and target this document as a supplement of the path
 vector extension with

 1. the equivalent transformation algorithm which compresses original
 path vectors and provides a more compact network view,

 2. a reference implementation of redundancy check algorithm which
 provides near-optimal results, and

 3. the client constraint map extension which allows ALTO clients to
 optionally provide client-side information to help further reduce
 the communication overhead.

 The document also discusses how the algorithms and extension
 introduced here can cooperate with existing drafts, such as
 incremental updates, multi-cost and cost calendar.

 The latest version (-05) has fixed some minor issues in -04.

3. Terminology

 This document uses the same terms as in [I-D.ietf-alto-path-vector].

Gao, et al. Expires January 5, 2018 [Page 4]

Internet-Draft Compressing Path Vectors July 2017

4. Compressing Path Vectors

 We use the example shown in Figure 1. The network has 6 switches
 (sw1 to sw6) forming a dumbbell topology. Switches sw1/sw3 provide
 access on one side, s2/s4 provide access on the other side, and sw5/
 sw6 form the backbone. End hosts eh1 to eh4 are connected to access
 switches sw1 to sw4 respectively. Assume that the bandwidth of each
 link is 100 Mbps, and that the network is abstracted with 4 PIDs each
 representing a host at one access switch.

 PID1 +-----+ +-----+ PID2
 eh1__| |_ ____| |__eh2
 | sw1 | \ +------+ +------+ / | sw2 |
 +-----+ \ | | | |/ +-----+
 _| sw5 +---------+ sw6 |
 PID3 +-----+ / | | | |\ +-----+ PID4
 eh3__| |__/ +------+ +------+ ____| |__eh4
 | sw3 | | sw4 |
 +-----+ +-----+

 Figure 1: Raw Network Topology

 +--------+---------------+
 | Link | Description |
 +--------+---------------+
 | link1 | sw1 <==> sw5 |
 | link2 | sw2 <==> sw6 |
 | link3 | sw3 <==> sw5 |
 | link4 | sw4 <==> sw6 |
 | link5 | sw5 <==> sw6 |
 +--------+---------------+

 Table 1: Description of the Links

 Consider an application which schedules the traffic consisting of two
 flows, eh1 -> eh2 and eh3 -> eh4. The application can query the path
 vectors and a straw man implementation will return all 5 links
 (abstract network elements) as shown in Figure 2.

Gao, et al. Expires January 5, 2018 [Page 5]

Internet-Draft Compressing Path Vectors July 2017

 path vectors:
 eh1: [eh2: [ane:l1, ane:l5, ane:l2]]
 eh3: [eh4: [ane:l3, ane:l4, ane:l5]]

 abstract network element property map:
 ane:l1 : 100 Mbps
 ane:l2 : 100 Mbps
 ane:l3 : 100 Mbps
 ane:l4 : 100 Mbps
 ane:l5 : 100 Mbps

 Figure 2: Path Vectors Returned by Straw Man Implementation

 The resultant path vectors represent the following linear constraints
 on the available bandwidth of the two flows:

 bw(eh1->eh2) <= 100 Mbps (ane:l1)
 bw(eh1->eh2) <= 100 Mbps (ane:l2)
 bw(eh3->eh4) <= 100 Mbps (ane:l3)
 bw(eh3->eh4) <= 100 Mbps (ane:l4)
 bw(eh1->eh2) + bw(eh3->eh4) <= 100 Mbps (ane:l5)

 Figure 3: Linear Constraints Represented by the Path Vectors

 It can be seen that the constraints of ane:l1 and ane:l2 are exactly
 the same, so are ane:l3 and ane:l4. Intuitively, we can replace
 ane:l1 and ane:l2 with an abstract network element "ane:1", and
 similarly replace ane:l3 and ane:l4 with "ane:2". The new path
 vectors are shown in Figure 4.

 path vectors:
 eh1: [eh2: [ane:1, ane:l5]]
 eh3: [eh4: [ane:2, ane:l5]]

 abstract network element property map:
 ane:1 : 100 Mbps
 ane:2 : 100 Mbps
 ane:l5 : 100 Mbps

 Figure 4: Path Vectors after Merging ane:l1/ane:l2 and ane:l3/ane:l4

 Taking a deeper look at Figure 3, it can be seen that constraints of
 ane:1 (ane:l1/ane:l2) and ane:2 (ane:l3/ane:l4) can be implicitly
 derived from that of ane:l5. Thus, these constraints are considered
 redundant and the path vectors in Figure 4 can be further reduced.
 We relabel ane:l5 with "ane:3" and the new path vectors are shown in
 Figure 5.

Gao, et al. Expires January 5, 2018 [Page 6]

Internet-Draft Compressing Path Vectors July 2017

 path vectors:
 eh1: [eh2: [ane:3]]
 eh3: [eh4: [ane:3]]

 abstract network element property map:
 ane:3 : 100 Mbps

 Figure 5: Path Vectors after Removing Redundant Elements

 It can be clearly seen that the new path vectors (Figure 5) are much
 more compact than the original path vectors (Figure 2) but they
 contain just as much information. Meanwhile, the application can
 hardly infer anything about the original topology with the compact
 path vectors.

 Thus, to reduce the communication overhead and to improve the privacy
 protection of the path vector extension, an algorithm is described in
 this document to systematically compute compact path vectors.

5. Equivalent Transformation Algorithm

 This section describes the path vector compression algorithm, namely
 the "equivalent transformation" algorithm.

5.1. Parameters and Variables

 The equivalent transformation algorithm accepts 3 parameters: the
 original path vectors P, the corresponding abstract network element
 property map M, and a redundancy check algorithm R(P,M).

 Original path vectors P: The original path vectors P MUST have the
 format of a cost map or an endpoint cost map, where each cost
 value is a JSONArray of abstract network element names, as defined
 in [I-D.ietf-alto-path-vector].

 Abstract network element property map M: The abstract network
 element property map M MUST contain all the abstract network
 elements whose names are included in the original path vectors P.
 It MUST contain at least one valid ALTO cost type which is
 supported by the corresponding path vector service, but MUST NOT
 contain ordinal values. Unless it is specifically defined in
 another extension, the cost values MUST follow the associative
 addition rule, e.g. cost(ane1) + cost(ane2) = cost(ane1 o ane2) =
 cost(ane2) + cost(ane1) where ne1 o ne2 represents a virtual "ane-
 path" consisting of ane1 and ane2. One exception is bandwidth,
 where the "addition" is actually a "minimum" function.

Gao, et al. Expires January 5, 2018 [Page 7]

Internet-Draft Compressing Path Vectors July 2017

 Redundancy check algorithm R(P,M): The redundancy check algorithm
 R(P,M) MUST accept the two parameters P and M as specified above.
 It MUST return a list of abstract network element names,
 representing those whose corresponding bandwidth constraints are
 redundant.

 In addition to the parameters mentioned above, the algorithm also
 maintains the following variables.

 Temporary path vectors P0: The temporary path vectors store the
 temporary values after each step of equivalent transformation.

 Temporary abstract network element property map M0: The temporary
 abstract network element property map M0 stores the temporary
 value of an abstract network element property map after each step
 of equivalent transformation.

 Reverse abstract network element map RM: The reverse abstract
 network element map RM is a map whose key is an abstract network
 element name with the value being a set of endpoint/PID pairs.

 Redundant abstract network element set S: The redundant abstract
 network element set S contains the result of redundancy check
 algorithm R(P,M).

5.2. Algorithm Description

 The equivalent transformation consists of the following steps:

 1. When the algorithm starts execution, it sets P0 = P and M0 = M

 2. For each abstract network element name "n", find the set of
 endpoint/PID pairs {(a,b)} where "n" appears in the path vector
 of a -> b in P0. Put the resultant set of endpoint/PID pairs in
 RM with "n" as the key.

 3. Group RM by the value sets, i.e. put all (n,v) which have the
 same set of endpoint/PID pairs in the same group. It is
 guaranteed that each abstract network element name only appears
 once in one group. Now use the groups to construct a partition
 of all abstract network element names, where each partition
 contains all the abstract network element names from a single
 group. Each partition is associated with a unique ID, which
 follows the format of an abstract network element name as
 defined in [I-D.ietf-alto-path-vector].

 4. For each endpoint/PID pair in P0, replace the abstract network
 element names with their group IDs. Construct an empty abstract

Gao, et al. Expires January 5, 2018 [Page 8]

Internet-Draft Compressing Path Vectors July 2017

 network element property map M1. For each group, create an
 abstract network element property entry "e" where each abstract
 network element property is the "sum" of the abstract network
 element property values in M0 of all abstract network elements
 in the group. Put "e" in M1 with the group ID as the key and
 also the abstract network element name. Replace M0 with M1.

 5. Pass P0 and M0 to redundancy check algorithm R(P,M), and store
 the result in S.

 6. If only bandwidth is contained in M0, go to 7. Otherwise, go to
 8.

 7. For each endpoint/PID pair, remove the abstract network element
 names in S from the path vectors. Remove the entries in M0
 whose keys are in S. Go to 10.

 8. Construct an empty abstract network element property map M1.
 For each abstract network element property entry in M0, if the
 abstract network element name is not in S, put the entry in M1.
 For each abstract network element name "n" in S, find the
 corresponding set of endpoint/PID pairs in RM. For each pair,
 replace "n" in the corresponding path vector to a new unique
 abstract network element name and put an entry in M1 whose key
 is the new abstract network element name while the value being
 the value of "n" in M0. Replace M0 with M1.

 9. Repeat steps 2-4 and go to 10.

 10. Create a virtual abstract network element "n" with a unique
 abstract network element name and sufficiently large bandwidth
 value. For each endpoint/PID pair in P, if the path vector is
 an empty set (this only happens when only bandwidth is
 requested), put the name of "n" in the path vector and add "n"
 to M0.

 11. Return P0 as the path vector response and M0 as the
 corresponding abstract network element property map.

 The term "sum" in step 4 is in quotes because the exact meaning
 depends on the property types. As stated earlier, the values MUST
 NOT be ordinal and MUST follow the associative addition rule unless
 specifically defined in a later extension. This document defines one
 exception -- bandwidth -- whose addition operator is the "minimum"
 function, which satisfies the associative addition rule.

Gao, et al. Expires January 5, 2018 [Page 9]

Internet-Draft Compressing Path Vectors July 2017

6. Recommended Redundancy Check Algorithm

 In this section, an algorithm is described as a reference
 implementation of redundancy check algorithm R(P,M).

6.1. Parameters and Variables

 The algorithm takes two parameters: the path vectors P and the
 corresponding abstract network element property map M.

 Path vectors P: As specified in Section 5.1.

 Abstract network element property map M: As specified in
Section 5.1.

 In addition to the parameters, this algorithm also maintains the
 following variable.

 Set of linear constraints C: The set of linear constraints which can
 be derived from P and M.

6.2. Algorithm Description

 The algorithm consists of the following steps:

 1. If the abstract network element properties in M do not include
 bandwidth, return the set of all abstract network elements.

 2. Construct the set of linear constraints, C. For each endpoint/
 PID pair, define a variable "x_i" with a unique ID "i".
 Construct RM as specified in step 3 of Section 5.2. For each
 abstract network element "n", find the corresponding set of
 endpoint/PID pairs "p_n" in RM. Construct a linear constraint
 "c_n: A_n X <= b_n". The left hand side is the sum of all the
 variables "{x_i}" whose coefficient "a_i" is 1 if the associated
 pair is in "p_n" and otherwise 0. The right hand side is the
 bandwidth of "n". Put "c_n" in C.

 3. For each "c_i: A_i X <= b_i" in C, construct a new linear
 programming problem:

 max A_i X
 where A_j X <= b_j, j is not equal to i

 4. Solve this linear programming problem, let the maximum value be
 "z". If "z <= b_i", this constraint is redundant. Otherwise the
 constraint is NOT redundant.

Gao, et al. Expires January 5, 2018 [Page 10]

Internet-Draft Compressing Path Vectors July 2017

 5. Repeat steps 3-4 until the redundancy of all abstract network
 elements contained in the original path vectors has been
 identified. Return the set of abstract network elements whose
 corresponding linear constraints are redundant.

7. Reducing Unnecessary Incremental Updates

 This section describes how an ALTO server implementation can use the
 results in the redundancy check algorithm described in Section 6 to
 filter certain incremental updates.

 The equivalent transformation algorithm can also help reduce
 unnecessary incremental updates. Consider the example in Section 4
 where the bandwidth of link1 (s1<=>s5) has increased from 100 Mbps to
 150 Mbps. Straw man approaches may push incremental updates to ALTO
 clients without considering how the value changes. On the other
 hand, this link is not included in the path vectors after equivalent
 transformation, and one can conclude from the redundancy check
 algorithm Section 6.2 that it can only be non-redundant if "b_i < z
 <= 100 Mbps". Since the new "b_i" is 150 Mbps, this condition does
 not hold, meaning link1 is still redundant in the updated path
 vector. In that case, ALTO server MAY NOT push the incremental
 updates.

 However, this filter only works for redundant abstract network
 elements, i.e. "z <= b_i". In all other cases, the path vectors have
 to be recomputed to guarantee equivalence.

8. Extension for Customized Input Parameters

 This section introduces an optional extension which can be leveraged
 by ALTO clients to help reduce the communication overhead of path
 vector services. In order to do so, a revised version of Section 6
 must be introduced.

8.1. Parameters and Variables

 The algorithm takes three parameters: the path vectors P, the
 corresponding abstract network element property map M, and client
 constraint map CM.

 Path vectors P: Same as in Section 6.1.

 Abstract network element property map M: Same as in Section 6.1.

 Client constraint map CM: Client constraint map CM has the same
 format as a cost map, where the first key represents the source
 endpoint address/PID name, the second key represents the

Gao, et al. Expires January 5, 2018 [Page 11]

Internet-Draft Compressing Path Vectors July 2017

 destination endpoint address/PID name, and the value is a non-
 negative float number representing the upper bound bandwidth value
 for the given endpoint/PID pair.

 The algorithm also maintains the following variables:

 Set of linear constraints C: The same as C in Section 6.1.

 Set of client constraints CC: The set of linear constraints which
 can be derived from CM.

8.2. Algorithm Description

 The algorithm consists of the following steps:

 1. The same as step 1 in Section 6.2.

 2. The same as step 2 in Section 6.2.

 3. For each endpoint/PID pair in CM, assume the value is a non-
 negative number "u". If the pair is also in the original path
 vector, construct a linear constraint "cc: x_i <= u" and add it
 to CC where "x_i" is the variable associated with the same pair
 in step 2.

 4. For each "c_i: A_i X <= b_i" in C, construct a linear programming
 problem:

 max A_i X
 where A_j X <= b_j in C, j is not equal to i
 x_j <= u_j in CC

 5. The same as step 4 in Section 6.2.

 6. The same as step 5 in Section 6.2.

 Clearly, the feasible region for each linear programming problem in
 step 4 is smaller or equal to the one in Section 6.2. Thus, each
 abstract network element has a higher chance of being redundant.

8.3. ALTO Extension for Client Constraint Map

 This section describes the extensions needed to enable client
 constraint map.

 Any ALTO resource/service that supports client constraint map MUST
 also support the path vector extension and accept the cost type whose
 cost mode is "array" and cost metric "ane-path". This extension does

Gao, et al. Expires January 5, 2018 [Page 12]

Internet-Draft Compressing Path Vectors July 2017

 not change the specifications on "media types", "HTTP methods",
 "uses", and "response".

8.3.1. Capabilities

 The client constraint map extension requires a new capability field
 "client-constraint-map" in the IRD.

 object {
 JSONString cost-type-names<1..*>;
 [JSONBool client-constraint-map;]
 ... capabilities defined by other extensions
 } ClientConstraintMapCapabilities;

 cost-type-names: As defined in Section 11.3.2.4 of [RFC7285].

 client-constraint-map: If present and the value is "true", it means
 the resource/service accepts client constraint map in the
 parameters. Otherwise, the client MUST assume the server does not
 support this extension and MUST NOT include client constraint map
 in input parameters.

8.3.2. Accept Input Parameters

 For filtered cost map with client constraint map extension, it MUST
 accept the following parameters:

 object {
 [CostType cost-type;]
 [PIDFilter pids;]
 [ClientConstraintPIDMap client-constraint-map;]
 ... input parameters defined by other extensions
 } ReqFilteredCostMap;

 object {
 PIDName -> ClientConstraintPIDGroup;
 } ClientConstriantPIDMap;

 object {
 PIDName -> JSONNumber;
 } ClientConstraintPIDGroup;

 cost-type: As defined in Section 11.3.2.3 in [RFC7285]. It MUST
 have the cost mode "array" and cost metric "ane-path" if the field
 "client-constraint-map" is present. Otherwise, the ALTO server
 MUST return an error with error code "E_INVALID_FIELD_VALUE".

 pids: As defined in Section 11.3.2.3 in [RFC7285].

https://datatracker.ietf.org/doc/html/rfc7285#section-11.3.2.4
https://datatracker.ietf.org/doc/html/rfc7285#section-11.3.2.3
https://datatracker.ietf.org/doc/html/rfc7285#section-11.3.2.3

Gao, et al. Expires January 5, 2018 [Page 13]

Internet-Draft Compressing Path Vectors July 2017

 client-constraint-map: The client constraint map MUST have the
 format as a JSON object "ClientConstraintPIDMap". All the PID
 names in the client constraint map MUST also be included in
 "pids", otherwise the ALTO server MUST return an error with error
 code "E_INVALID_FIELD_VALUE". If the value for a given PID pair
 is 0, ALTO server MUST not included this pair in the path vector.

 Similarly, the input parameters for endpoint cost services with
 client constraint map MUST have the following format:

 object {
 [CostType cost-type;]
 EndpointFilter endpoints;
 [ClientConstraintEndpointMap client-constraint-map;]
 ... input parameters defined by other extensions
 } ReqEndpointCostMap;

 object {
 TypedEndpointAddr -> ClientConstraintEndpointGroup;
 } ClientConstriantEndpointMap;

 object {
 TypedEndpointAddr -> JSONNumber;
 } ClientConstraintEndpointGroup;

 cost-type: Same as above.

 endpoints: As defined in Section 11.5.1.3 of [RFC7285].

 client-constraint-map: The client constraint map contained in the
 parameter MUST have the format of a JSON object
 "ClientConstriantEndpointMap". All the endpoint addresses MUST
 also appear in the "endpoints", otherwise the ALTO server MUST
 return an error with an error code "E_INVALID_FIELD_VALUE". If
 the value for a given endpoint pair is 0, ALTO server MUST NOT
 included this pair in the path vector.

8.4. Examples

 This section contains a series of examples for the client constraint
 map extension.

8.4.1. Information Resource Directory Example

https://datatracker.ietf.org/doc/html/rfc7285#section-11.5.1.3

Gao, et al. Expires January 5, 2018 [Page 14]

Internet-Draft Compressing Path Vectors July 2017

 {
 "meta": {
 "cost-types": {
 "pv-ane": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 }
 },
 "resource": {
 "default-network-map": {
 "uri": "http://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json"
 },
 "filtered-multi-cost-map": {
 "uri": "http://alto.example.com/costmap/filtered",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["default-network-map"],
 "capabilities": {
 "cost-type-names": ["pv-ane"],
 "property-map": "default-prop-map",
 "client-constraint-map": true
 }
 },
 "default-endpoint-cost-map": {
 "uri": "http://alto.example.com/endpointcost/lookup",
 "media-type": "application/alto-endpointcostmap+json",
 "accepts": "application/alto-endpointcostparams+json",
 "capabilities": {
 "cost-type-names": ["pv-ane"],
 "client-constraint-map": true
 }
 },
 "default-prop-map": {
 "uri": "http://alto.example.com/default-prop-map",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "capabilities": {
 "domain-types": ["ane"],
 "prop-types": ["availbw"]
 }
 }
 }
 }

Gao, et al. Expires January 5, 2018 [Page 15]

Internet-Draft Compressing Path Vectors July 2017

8.4.2. Filtered Cost Map Example

 Assume we use the example in Section 4 and PID1-PID4 are mapped to
 eh1-eh4 respectively.

 POST /costmap/filtered HTTP/1.1
 Host: alto.example.com
 Accept: multipart/related, application/alto-costmap+json,
 application/alto-propmap+json, application/alto-error+json
 Content-Length: [TBD]
 Content-Type: application/alto-costmapfilter+json

 {
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 },
 "pids": {
 "srcs": ["PID1", "PID3"],
 "dsts": ["PID2", "PID4"]
 },
 "client-constraint-map": {
 "PID1": { "PID2": 40, "PID4": 0 },
 "PID3": { "PID2": 50, "PID4": 50 }
 }
 }

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: multipart/related; boundary=31415926

Gao, et al. Expires January 5, 2018 [Page 16]

Internet-Draft Compressing Path Vectors July 2017

 --31415926
 Content-Type: application/alto-costmap+json

 {
 "meta": {
 "dependent-vtags": [
 {
 "resource-id": "default-network-map",
 "tag": "75ed013b3cb58f896e839582504f622838ce670f"
 }
],
 "vtag": {
 "resource-id": "cost-map-pv",
 "tag": "27612897acf278ffu3287c284dd28841da78213",
 "query-id": "query-cost-map-pv-276128"
 },
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 },
 "cost-map": {
 "PID1": {
 "PID2": ["ane:1"]
 },
 "PID3": {
 "PID2": ["ane:1"],
 "PID4": ["ane:1"]
 }
 }
 }

 --31415926
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "ane:1": { "availbw": 100 }
 }
 }

 --31415926--

 Since the bandwidth of all links is 100 Mbps, it can be easily
 concluded that only link5 can potentially become a bottleneck with
 the given client constraints. Thus, only one abstract network
 element is returned.

Gao, et al. Expires January 5, 2018 [Page 17]

Internet-Draft Compressing Path Vectors July 2017

8.4.3. Endpoint Cost Service Example

 Assume we use the example in Section 4 and eh1-eh4 are associated
 with IP addresses 192.0.2.1-192.0.2.4 respectively.

 POST /endpointcost/lookup HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-endpointcost+json,
 application/alto-error+json
 Content-Length: [TBD]
 Content-Type: application/alto-endpointcostparams+json

 {
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 },
 "endpoints": {
 "srcs": ["ipv4:192.0.2.1", "ipv4:192.0.2.3"],
 "dsts": ["ipv4:192.0.2.2", "ipv4:192.0.2.4"]
 },
 "client-constraint-map": {
 "ipv4:192.0.2.1": { "ipv4:192.0.2.2": 40, "ipv4:192.0.2.4": 0 },
 "ipv4:192.0.2.3": { "ipv4:192.0.2.2": 50, "ipv4:192.0.2.4": 50 }
 }
 }

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: application/alto-endpointcost+json

Gao, et al. Expires January 5, 2018 [Page 18]

Internet-Draft Compressing Path Vectors July 2017

 {
 "meta": {
 "vtag": {
 "resource-id": "default-prop-map",
 "tag": "a911354dfd1ef6555bfe7af07d3af0bfebe7c8a9",
 "query-id": "query-ecs-a91135"
 },
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 },
 "endpoint-cost-map": {
 "ipv4:192.0.2.1": {
 "ipv4:192.0.2.2": ["ane:1"]
 },
 "ipv4:192.0.2.3": {
 "ipv4:192.0.2.2": ["ane:1"],
 "ipv4:192.0.2.4": ["ane:1"]
 }
 }
 }

 Since the bandwidth for all links is 100 Mbps, it can be easily
 concluded that only link5 can potentially become a bottleneck with
 the given client constraints. Thus, only one abstract network
 element is returned.

 In this example, the abstract network element property map is not
 attached so the client SHOULD send another request to fetch the
 details about the abstract network elements.

 POST /default-prop-map HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json, application/alto-error+json
 Content-Length: [TBD]
 Content-Type: application/alto-propmapparams+json

 {
 "query-id": "query-ecs-a91135",
 "entities": ["ane:1"],
 "properties": ["availbw"]
 }

Gao, et al. Expires January 5, 2018 [Page 19]

Internet-Draft Compressing Path Vectors July 2017

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "ane:1": { "availbw": 100 }
 }
 }

8.5. Compatibility

 The client constraint map is fully compatible with the path vector
 extension. For other extensions such as multi-cost
 [I-D.ietf-alto-multi-cost] and cost calendar
 [I-D.ietf-alto-cost-calendar], the input parameters MUST still follow
 the definition of "client-constraint-map" but can adjust the
 requirements for other fields.

 Since the client constraint map extension is fully compatible with
 the path vector extension, it does not alter the compatibility with
 other extensions such as multi-cost and cost calendar.

9. Security Considerations

 This document does not introduce any privacy or security issue on
 ALTO servers not already present in the base ALTO protocol or in the
 path vector extension.

 The algorithms specified in this document can even help protect the
 privacy of network providers by conducting irreversible
 transformations on the original path vector.

 The client constraint map extension defined in Section 8.3 can
 potentially leak client-side information to ALTO servers. ALTO
 client implementations MUST take information security into
 consideration when using this extension, for example, only activating
 this extension when the ALTO server is considered a trusted party.

 ALTO clients can also obfuscate the information contained in a
 request, for example, providing larger values than actual upper
 bounds. Such obfuscation will not affect the correctness of the
 response, but can potentially affect the reduction effect of client
 constraint map.

Gao, et al. Expires January 5, 2018 [Page 20]

Internet-Draft Compressing Path Vectors July 2017

10. IANA Considerations

 This document does not define any new media type or introduce any new
 IANA consideration.

11. Acknowledgments

 The authors would like to thank Dr. Qiao Xiang, Mr. Jingxuan Zhang
 (Tongji University), Prof. Jun Bi (Tsinghua University) and Dr.
 Andreas Voellmy (Yale University) for their early engagement and
 discussions.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [I-D.ietf-alto-cost-calendar]
 Randriamasy, S., Yang, Y., Wu, Q., Lingli, D., and N.
 Schwan, "ALTO Cost Calendar", draft-ietf-alto-cost-

calendar-01 (work in progress), February 2017.

 [I-D.ietf-alto-incr-update-sse]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", draft-ietf-alto-incr-update-

sse-02 (work in progress), April 2016.

 [I-D.ietf-alto-multi-cost]
 Randriamasy, S., Roome, W., and N. Schwan, "Multi-Cost
 ALTO", draft-ietf-alto-multi-cost-10 (work in progress),
 April 2017.

 [I-D.ietf-alto-path-vector]
 Bernstein, G., Chen, S., Gao, K., Lee, Y., Roome, W.,
 Scharf, M., Yang, Y., and J. Zhang, "ALTO Extension: Path
 Vector Cost Mode", draft-ietf-alto-path-vector-00 (work in
 progress), May 2017.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-alto-cost-calendar-01
https://datatracker.ietf.org/doc/html/draft-ietf-alto-cost-calendar-01
https://datatracker.ietf.org/doc/html/draft-ietf-alto-incr-update-sse-02
https://datatracker.ietf.org/doc/html/draft-ietf-alto-incr-update-sse-02
https://datatracker.ietf.org/doc/html/draft-ietf-alto-multi-cost-10
https://datatracker.ietf.org/doc/html/draft-ietf-alto-path-vector-00

Gao, et al. Expires January 5, 2018 [Page 21]

Internet-Draft Compressing Path Vectors July 2017

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <http://www.rfc-editor.org/info/rfc7285>.

Authors' Addresses

 Kai Gao
 Tsinghua University
 30 Shuangqinglu Street
 Beijing 100084
 China

 Email: gaok12@mails.tsinghua.edu.cn

 Xin (Tony) Wang
 Tongji University
 4800 CaoAn Road
 Shanghai 210000
 China

 Email: xinwang2014@hotmail.com

 Chen Gu
 Tongji University
 4800 CaoAn Road
 Shanghai 210000
 China

 Email: gc19931011jy@gmail.com

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yry@cs.yale.edu

https://datatracker.ietf.org/doc/html/rfc7285
http://www.rfc-editor.org/info/rfc7285

Gao, et al. Expires January 5, 2018 [Page 22]

Internet-Draft Compressing Path Vectors July 2017

 G. Robert Chen
 Huawei
 Nanjing
 China

 Email: chenguohai@huawei.com

Gao, et al. Expires January 5, 2018 [Page 23]

