
Workgroup: Network Working Group

Internet-Draft:

draft-gao-flexible-session-protocol-09

Published: 16 October 2022

Intended Status: Experimental

Expires: 19 April 2023

Authors: J. Gao

Individual

Flexible Session Protocol

Abstract

FSP is a connection-oriented transport layer protocol that provides

mobility and multihoming support by introducing the concept of

'upper layer thread ID', which is associated with some shared secret

that is applied with some authenticated encryption algorithm to

protect authenticity of the origin of the FSP packets. It is able to

provide following services to the upper layer application:

Stream-oriented send-receive with native message boundary

Flexibility to exploit authenticated encryption

On-the-wire compression

Light-weight session management

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Features

1.1.1. Transport Layer Mobility Support

1.1.2. Flexibility to exploit Authenticated Encryption

1.1.3. Transmit Transaction

1.1.4. Light-weight session management

1.1.5. On-the-wire Compression

1.2. Requirements Language

1.3. Conventions

2. Abbreviations and Idioms

3. Key Mechanisms

3.1. Underlying Layer Services Required

3.1.1. Handling of High Mobility

3.1.2. Network Address Change Notification

3.1.3. Network Congestion Control

3.2. Identifying Connection by Local ULTID

3.3. Defending Against Connection Hijacking with ICC

3.4. Synchronizing Key Installation with Transmit Transaction

3.5. 0-RTT Connection Multiplication with OOB Packet

4. Packet Structure

4.1. FSP over UDP/IPv4

4.2. FSP over IPv6

4.3. Generic FSP Header

4.4. FSP Header Signature and Code-Mark-Length Prefix

4.4.1. Operation Code

4.4.2. Major

4.4.3. Mark

4.4.4. Offset

4.4.5. Length

4.5. Preliminary FSP Packets

4.5.1. Connect Initialization

4.5.2. Acknowledgment to Connect Initialization

4.5.3. Connect Request

4.6. Normal Fixed Header

4.7. Sink Parameter

4.8. Selective Negative Acknowledgment

4.9. RESET

¶

https://trustee.ietf.org/license-info

5. The Finite State Machine

5.1. NON_EXISTENT

5.2. LISTENING

5.3. CONNECT_BOOTSTRAP

5.4. CONNECT_AFFIRMING

5.5. CHALLENGING

5.6. ACTIVE

5.7. COMMITTING

5.8. COMMITTED

5.9. PEER_COMMIT

5.10. COMMITTING2

5.11. CLOSABLE

5.12. SHUT_REQUESTED

5.13. PRE_CLOSED

5.14. CLOSED

5.15. CLONING

5.16. Passive Multiplication

5.17. Typical State Transitions

5.17.1. Typical Main Connection

5.17.2. Typical Clone Connection for Get Resource

5.17.3. Typical Clone Connection for Push Message

5.17.4. Simultaneous Shutdown

6. End-to-End Negotiation

6.1. Connect Initialization

6.2. Response to Connect Initialization

6.3. Connection Incarnation Request

6.4. Connection Incarnation Response

6.5. The Last Confirmation

6.6. Retransmission

7. Quad-party Session Key Installation

7.1. API for Session Key Installation

7.2. Time to Call API for Session Key Installation

7.3. Time to Take New Session Key into Effect

7.4. Generating the Initial Session Key

7.5. Internal Rekeying

7.6. Sample Sequence of Installing Session Key

8. Send and Receive

8.1. Packet Integrity Protection

8.1.1. Application of CRC64

8.1.2. Authenticated Encryption with Additional Data

8.1.3. ICC of the Out-of-Band Packet

8.2. Start a New Transmit Transaction

8.3. Send a Pure Data Packet

8.4. Commit a Transmit Transaction

8.4.1. Initiate Transmit Transaction Commitment

8.4.2. Respond to Transmit Transaction Commitment

8.4.3. Finalize Transmit Transaction Commitment

8.4.4. Time-out for Committing Transmit Transaction

8.5. Retransmission

8.5.1. Calculation of RTT

8.5.2. Generation and transmission of SNACK

8.5.3. Negative acknowledgment of Packets Sent

8.5.4. Retransmission Interval

8.6. Flow Control

8.7. Congestion Control

8.8. On-the-Wire Compression

8.9. Milk Like Payload and Minimal Delay Service

9. Graceful Shutdown

9.1. Initiation of Graceful Shutdown

9.2. Acknowledgment of Graceful Shutdown

9.3. Finalization of Graceful Shutdown

9.4. Retransmission of RELEASE Packet

10. Mobility and Multi-home Support

10.1. Heartbeat Signals

10.2. Active Address Change Signaling

10.3. Heuristic Remote Address Change Adaptation

10.4. Heuristic Address Change Acknowledgement

10.5. NAT-traversal and Multihoming

10.6. Explicit Multi-home Informing

11. Connection Multiplication

11.1. Request to Multiply Connection

11.2. Response to Connection Multiplication Request

11.3. Duplicate Detection of Connection Multiplication Request

11.4. Retransmission

11.5. Key Derivation for Branch Connection

12. Timeouts and Abrupt Close

12.1. Timeouts in End-to-End Negotiation

12.2. Timeouts in Multiply

12.3. Timeout of Transmit Transaction Commitment

12.4. Timeout of Graceful Shutdown

12.5. Idle Timeout

12.6. Session Key Timeout

12.7. Abrupt Close

13. Issues for Further Study

13.1. Resolution of ULTID in DNS

13.2. Proxy Pattern for Syndicated Name Resolution

13.3. Asymmetric Transmission

14. Security Considerations

14.1. Deny of Service Attack

14.2. Replay Attack

14.3. Passive Attacks

14.4. Masquerade Attack

14.5. Active Man-In-The-Middle Attack

14.6. Privacy Concerns

15. IANA Considerations

16. References

16.1. Normative References

16.2. Informative References

Appendix A. Acknowledgements

Author's Address

1. Introduction

The dominating transport layer protocols, TCP and UDP that take use

of the IP address to identifying the end node, introduce the

controversial role of IP address both as the identifier and as the

routing locater.

Flexible Session Protocol, introduces the concept of 'upper layer

thread ID' (ULTID), which was firstly suggested in [Gao2002]. The

ULTID is unique in the local context of the FSP node. Its

significance may be compared with the Security Parameter Index (SPI)

in MOBIKE [RFC4555].

An integrity check code (ICC) field is designed in the FSP packet

header to protect authenticity and optionally privacy of the FSP

packet. The ICC field is designed to be associated with some shared

secret indexed by the source or destination ULTID in the local

context of the source or destination node, respectively. An FSP

packet is assumed to originate from the same source if the ICC value

associated the ULTID passes validation, regardless of the full

source or destination address. In such a way FSP provides provides

mobility, multi-homing and multi-path support.

ICC is either calculated by [CRC64] which protects FSP against

unintended modification, or cryptographically calculated with some

Authenticated Encryption with Additional Data [R01] algorithm, each

of which requires a shared secret key.

In the former case a weak key meant to obfuscate the CRC64 checksum

is agreed by the FSP participants. In the latter two cases, the

shared secret key is assumed to be installed by the upper layer

application (ULA).

Either the weak key or the shared secret key is indexed by the

source or destination ULTID in the local context of the sender or

the receiver, respectively.

FSP facilitates secret key installation by introducing the concept

of transmit transaction. Mechanism of transmit transaction also

provides the session-connection synchronization service to the upper

layer.

FSP is a transport layer protocol as specified in [RFC1122],

provides services alike TCP [STD5] to ULA, with session layer

features as suggested in [OSI_RM], most noticeably session-

¶

¶

¶

¶

¶

¶

¶

connection synchronization by introducing the concept of transmit

transaction.

1.1. Features

1.1.1. Transport Layer Mobility Support

FSP is meant to be transport layer protocol that keeps the IP

address as the routing locater but keeps it from being the key

constituent of the end point identifier of FSP or any upper layer

protocol built upon FSP.

1.1.2. Flexibility to exploit Authenticated Encryption

By optionally applying authenticated encryption with additional data

on each FSP packet, FSP provides both authentication of message

origin and privacy protection service to the upper layer

application.

The shared key required by the authenticated encryption algorithm is

supposed to be established and installed onto the FSP layer by the

upper layer application (ULA), and by introducing the concept of

transmit tranaction FSP provides mechanism for the connected ULAs to

synchronize installation of the shared key. Thus FSP makes it

flexible to test, try or apply new key establish algorithms.

1.1.3. Transmit Transaction

FSP introduces the concept of transmit transaction, which makes it

able to mark end of message inherently at the transport layer,

effectively eliminate the requirement of message delimiters at the

application layer. Besides, it still provides byte-stream-oriented

transfer service to its upper layer application which is familiar

and friendly to application developers.

1.1.4. Light-weight session management

In addition to transmit transaction mechanism, which is arguably a

feature of session-connection synchronization, the FSP upper layer

application is able to fork branch connections of an established

connection in zero round-trip mode without compromising security. In

this way FSP provides light-weight session management service to

ULA.

1.1.5. On-the-wire Compression

FSP provides on-the-wire compression service through the on-the-wire

compression and fragmentation function module.

¶

¶

¶

¶

¶

¶

¶

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

1.3. Conventions

Conventions in describing the finite state machine (FSM) of FSP are:

2. Abbreviations and Idioms

Connection An FSP connection is the binding of two network nodes

established through some end-to-end negotiation process. It is

identified by the ULTID in the local context of each network

node, respectively.

EoT End of Transaction. A transmit transaction is said to reach

EoT if the EoT flag is set in a legitimate ACK_CONNECT_REQ,

PURE_DATA, PERSIST or MULTIPLY packet. We said that the packet

terminates the transmit transaction if the EoT flag is set. An

FSP end node SHALL NOT send further data if it has initiated EoT

of its transmit direction unless the packet with EoT flag set,

together with all of the packets before this particular packet

have all been acknowledged. EoT, i.e. termination of transmit

transaction is unilateral.

FREWS

¶

¶

¶

ESTABLISHED The string of alphabetic characters designates

 the name of the state

[API: Reset] Upper Layer Application Programming Interface

 Call

{Notify} Call back/notify the upper layer application

{new context} Additional action before or after state

 transition

[Send Send some FSP packet

OPCODE_OF_FSP_PACKET]

[Retransmit Retransmit some FSP packet

OPCODE_OF_FSP_PACKET]

{On transient state Timed-out event

Timeout}

{&& additional Together with some additional condition

condition}

--> state transition

|-- branch

¶

*

¶

*

¶

* ¶

The Flags and advertised REceive Window Size. It is the 32-bit

combined word next to the ICC field in the normal FSP fixed

header.

ICC The Identity Check Code. It is a 64-bit value that depends on

both the session key and all of the headers of the FSP packet to

include the ICC, calculated with the same algorithm in the

context of each FSP participant. Only a packet with correct ICC

can be accepted by any FSP participant as soon as the connection

has been established. Initially CRC64 is exploited to make a

checksum that weekly protects the FSP packet against

unintentional modification. The checksum is obfuscated with the

initial session key to get the ICC. After the ULA installed the

long-term session key some Authenticated Encryption with

Additional Data algorithm shall be applied to obtain or check the

ICC.

Session An FSP session is the transport-layer association of two

network nodes. A full FSP session consists of one connection that

was established from scratch and all of its branches. However for

this version of FSP specification the idioms session and

connection are interchangeable if not explicitly specified.

Session Key The session key is a bit string of at least 128 bits

that means to resist against masquerade attack. It is either

initiated during the end-to-end negotiation phase or installed by

the ULA after the FSP connection is established. The session key

installed by the ULA is called the long-term session key. Here

long-term means that the key could be used until the packet

sequence space is exhausted. The packet sequence space is

exhausted if the number of packets that use the same key reaches

or exceeds 2,147,483,647(2^31-1).

SN The Sequence Number. It is the unsigned 32-bit integer number

assigned to every FSP packet except the preliminary packets.

Difference of two sequence number is represented by a 32-bit

signed integer. If the result of SN B subtracting SN A is greater

than zero, we say that B is greater than A and the packet of the

sequence number B is later than the packet of the sequence number

A, although the unsigned integer representation of B may be far

less that A. Consequently, as the result of A subtracting B is

less than zero, we say that A is less than B and the packet of

the sequence number A is earlier than the packet of the sequence

number A.

Transmit Transaction A transmit transaction in FSP is a sequence

of FSP packets that were sent and marked by the ULA as one

continuous stream where all packets in the stream must be

acknowledged before any further packet is allowed to be sent. A

*

¶

*

¶

*

¶

*

¶

*

¶

*

ACK_CONNECT_REQ, PERSIST or MULTIPLY packet always starts a new

transmit transaction. Any packet with EoT flag set, including the

PERSIST packet that is exploited to acknowledge the

ACK_CONNECT_REQ or MULTIPLY packet, terminates the transmit

transaction. .

ULA The Upper Layer Application.

ULTID The Upper Layer Thread Identifier (ULTID). It is a 32-bit

word that was allocated by particular network end node of an FSP

connection and is unique in the local context of the network end

node. Theoretically all of the ULAs of a network end node MAY

establish up to 2^31-1 FSP connections totally. Each connection

MUST have a unique thread identifier (ULTID) assigned in the

local context of the network end node. A session or connection in

FSP does not require a global ID.

3. Key Mechanisms

3.1. Underlying Layer Services Required

FSP requires that the underlying layer provides packet delivery

service. In addition FSP supposes that the underlying layer has

following features:

3.1.1. Handling of High Mobility

Here high mobility refers to scenarios such as high-speed train or

airplane.

FSP solves somewhat coarse-grain or low-speed mobility problem.

Fine-grain or high-speed mobility is left to the underlying physical

network. To make mobility support work effectively it is assumed

that one end-node MUST keep its lower layer address reasonably

stable while the other end-node SHOULD NOT change its lower layer

address too frequently.

Here the meaning of physical network conforms to what was depicted

in [RFC1122].

3.1.2. Network Address Change Notification

Network address change notification is mandatory only in the IPv6

network.

We split the IPv6 address of the IPv6 packet underlying FSP into

three parts. The leftmost 64-bit long word is the network prefix,

which SHOULD be the unique IPv6 prefix assigned to the host

[RFC8273]. The centermost 32-bit word is called the aggregation host

ID, and the rightmost 32-bit word is the ULTID. While the ULTID MUST

¶

* ¶

*

¶

¶

¶

¶

¶

¶

be kept stable even during the life of an FSP session, the network

prefix part MAY change when an endpoint is roaming. The aggregation

host ID may change as well. The network prefix part together with

the aggregation host ID part act as the traditional routing locator

at the network layer.

The aggragation host ID SHOULD NOT be 0, nor hexadecimal value

FDFFFFFFF, nor hexadecimal value FFFFFFFFF so that the final IPv6

address assigned can not be an IPv6 subnet anycast address[RFC2526].

It is supposed that the network layer immediately notifies the FSP

layer if the network prefix or aggregation host ID changes.

An participant of an FSP connection SHALL immediately notify its

peer whenever its underlying IPv6 address is changed with a

KEEP_ALIVE packet. The peer shall send packet to the participant

that has notified the address change with the new address.

It is supposed that the packet to inform the remote end to update

the lower layer address association could reach its destination in a

satisfying success rate.

3.1.3. Network Congestion Control

Network layer congestion control is mandatory only in future IPv6

network.

It is supposed that end-to-end congestion control is provided at

some sub-layer of the network layer. Implementation of FSP MUST

include a congestion manager [RFC3124] if such sub-layer service of

the network layer is not provided.

3.2. Identifying Connection by Local ULTID

Each FSP connection prepares a pair of ULTIDs. An ULTID uniquely

indexes a connection in the local context of an FSP end node. An FSP

end node relies neither source IP address nor destination IP

address, except the ULTID part of the near end's IPv6 address to

identify an FSP connection.

Each ULTID is allocated in the local context of the two FSP

participant respectively. The source ULTID and the destination ULTID

of an FSP packet usually differ in their values. However, the secret

keys indexed in the local contexts of the two end-points must have

the same value.

3.3. Defending Against Connection Hijacking with ICC

An integrity check code (ICC) field associated with the ULTID is

designed in the FSP header to protect authenticity and optionally

¶

¶

¶

¶

¶

¶

¶

¶

¶

privacy of the FSP packet. An FSP packet is assumed to originate

from the same source if the ICC value associated with certain

destination ULTID passes validation, regardless of the source or

destination address in the underlying layer.

On initiating FSP takes use of [CRC64] to make checksum of the FSP

packet to protect it against unintentional modification. The

checksum is taken as the ICC.

After the ULA has installed a shared secret key, value of ICC is

calculated by firstly getting the secret key associated indexed by

the local ULTID, then calculating the tag value with the AES-GCM

[GCM] authenticated encryption with additional data algorithm.

3.4. Synchronizing Key Installation with Transmit Transaction

It is proposed that it is the ULA to do key establishment and/or

end- point user-agent authentication while the FSP layer provides

authenticated, optionally encrypted data transfer service.

A dedicate application program interface (API) is designed for the

ULA to install the secret key established by the ULA participants.

FSP facilitates shared secret key installation by introducing the

concept of transmit transaction.

A transmit transaction of FSP is a sequence of FSP packets that were

sent and requested by ULA as one continuous stream where all packets

in the stream MUST be acknowledged before any further packet is

allowed to be sent.

A flag called 'End of Transaction' (EoT) is designed in the FSP

header. When it is set, it marks that the transmit transaction in

the direction from the source of the FSP packet towards the

destination of the FSP packet is 'committed'.

As the FSP node knows when a transmit transaction at FSP layer is

terminated there is no ambiguity which packet is to be applied with

the new session key when the key is installed by ULA through the

dedicated API.

3.5. 0-RTT Connection Multiplication with OOB Packet

An FSP connection MAY be multiplied to get a branch or branches of

the connection. Multiplication of a connection is protected by

deriving new session key from the original security context of the

connection.

The packet that carries the command to multiply an established FSP

connection MUST be sent from a new allocated local ULTID towards the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

destination ULTID of the original connection. It is an out-of-band

(OOB) packet in the context of the original connection and it MUST

be cryptographically protected by the secret key of the original

connection. The packet MAY carry payload.

The receiver of the packet MUST allocate a new local ULTID, accept

the optional payload in the new context associated with the new

ULTID, derive a new secret key from the secret key of the original

connection, and responds from the new context. The response MAY

carry payload.

The very first response packet MUST be protected by the new secret

key. The sender of the multiply command packet MUST automatically

inaugurate the same secret key, derived from the secret key of the

same original connection. And it MUST treat the response packet as

though a transmit transaction had been committed by the responder,

i.e. authenticity of the response packet is verified with the new

secret key.

Thus the branch connection of a new pair of ULTIDs is established

with zero round-trip overhead. This mechanism may be exploited to

provide expedited data transfer or parallel data transfer service.

4. Packet Structure

4.1. FSP over UDP/IPv4

In this version of FSP, when FSP is implemented in the IPv4 network,

every FSP packet MUST be encapsulated in a UDP [STD6] datagram. The

UDP datagram encapsulated the FSP packet SHALL have the checksum

disabled (i.e. set its value to 0) [RFC8085]. The Source and the

destination ULTIDs are put at the leading position of the UDP

payload. FSP fixed header, optional extension headers and FSP

payload follow the ULTIDs:

¶

¶

¶

¶

¶

4.2. FSP over IPv6

When FSP is implemented over IPv6 [RFC8200], the ULTID part is

embedded in the IPv6 address. FSP fixed header follows the IPv6

headers:

 0 15 16 31

+-+

| Source Port | Destination Port |

+-+

| Length | 0 |

+-+

| Source Upper Layer Thread ID |

+-+

| Destination Upper Layer Thread ID |

+-+

| |

~ FSP Fix Header ~

| |

+-+

~ Optional FSP Extension Headers ~

+-+

~ ~

~ FSP payload (may be empty) ~

~ ~

+-+

¶

¶

Network Prefix The leftmost 64-bit of the IPv6 address which MAY

and usually do have different value at the difference interface

of an IPv6 end- node.

Aggregation Host ID The left 32-bit part of the rightmost 64-bit

long word of the IPv6 address. All of the aggregation host ID

parts of an IPv6 end- node's IPv6 addresses MUST have the same

value for this version of FSP.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~                          IPv6 Header:                         ~

 0                            15 16                           31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| Traffic Class |           Flow Label                  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|         Payload Length        |  Next Header  |   Hop Limit   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                                        Source Network Prefix  +

|                                                               |

+                 Source Address    ----------------------------+

|                                   Source Aggregation Host ID  |

+                                   ----------------------------+

|                                 Source Upper Layer Thread ID  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                                   Destination Network Prefix  +

|                                                               |

+        Destination Address   ---------------------------------+

|                              Destination Aggregation Host ID  |

+                              ---------------------------------+

|                            Destination Upper Layer Thread ID  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~                    Optional IPv6 Headers                      ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

~                          FSP Fix Header                       ~

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                Optional FSP Extension Headers                 ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~                  FSP payload (may be empty)                   ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

*

¶

*

¶



Network prefix and aggregation host ID make the IPv6 prefix part of

the IPv6 address under the context of FSP. It is assumed that there

is a unique IPv6 prefix per host [RFC8273].

RFCs related to IPv6 address configuration such as ND for IPv6 

[RFC4861], SLAAC [RFC4862], 'IPv6 Subnet Model' [RFC5942], 'IPv6

Address Assignment to End Sites' [RFC6177], 'Discovery of the IPv6

Prefix Used for IPv6 Address Synthesis' [RFC7050], DHCP [RFC8415]

and 'IPv6 Node Requirements' [RFC8504] would be reviewed in separate

documents.

4.3. Generic FSP Header

FSP headers include the fixed header and the extension headers. A

general fixed header consists of a 32-bit FSP Header Signature and

20-byte operation-code specific fields. An extension header consists

of a 32-bit Code-Mark-Length Prefix and the operation-code specific

content. The length of the extension header content may be variable,

provided that the tail of the full extension header align on 64-bit

boundary.

Integers in the FSP fix header are transmitted in network byte

order. Integers in the FSP extension headers are of little-endian.

4.4. FSP Header Signature and Code-Mark-Length Prefix

4.4.1. Operation Code

The operation code is an octet that stores the code of the command

which indicates the function of the FSP packet, or specifies the

type of some extension header.

¶

¶

¶

¶

  0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Header Signature                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~              Operation Code Specific Fields                   ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

 0             7 8            15 16                           31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Operation Code|     Major     |              Offset           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 0             7 8            15 16                           31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Operation Code|     Mark      |              Length           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶



Synonym Code Meaning

INIT_CONNECT 1 Initialize Connection

ACK_INIT_CONNECT 2 Acknowledge Initialization of

Connection

CONNECT_REQUEST 3 Formally Request to Connect

ACK_CONNECT_REQ 4 Acknowledge the Connection Request

RESET 5 Reset a connection. Abort the

connection, or refuse to establish the

connection at the very beginning.

KEEP_ALIVE 7 Keep the peer alive. It is an out-of-

band control packet acting as the

heart-beating signal. An out-of-band

control packet does not consume send

sequence space itself. FSP takes use of

the KEEP_ALIVE packet to inform the

peer about the change of the source IP

addresses. Besides, when the MIND flag

is set, the KEEP_ALIVE packet is meant

to tell the peer which packets should

be retransmitted.

PERSIST 8 Make a connection persistent. It is

meant to start a new transmit

transaction after a connection migrated

to CLOSABLE state. It can also

acknowledge ACK_CONNECT_REQ or

MULTIPLY. It MUST carry payload. It

always consumes a slot of the send

sequence space.

PURE_DATA 9 Pure Data. It does not carry any

optional header.

RELEASE 11 Release the connection. RELEASE packet

does not carry payload, but it always

consumes a slot of the send sequence

space.

MULTIPLY 12 Multiply the connection. It is sent in

the context of the original connection

and may carry payload and/or optional

headers as an out-of-band packet.

PEER_SUBNETS 17 Tell the remote end how to address the

sender of the packet in the reverse

direction. It is the code of the Sink

Parameter extension header.

SELECTIVE_NACK 18 Tell the remote end to retransmit the

packets that were negatively

acknowledged. It is the code of the

Selective Negative Acknowledgment



Synonym Code Meaning

extension header.

Table 1

4.4.2. Major

It is an octet that states current FSP major version. For this FSP

version it MUST be 0.

It is not mandatory for different major versions of FSP to be

compatible.

4.4.3. Mark

It is an octet that marks current minor version of the extension

header, under the major FSP version specified in the fixed header,

and/or serves as the flag, depending on the type of the extension

header.

It is mandatory for implementations to be compatible with different

minor versions of FSP extension header under the same major FSP

version.

It is not mandatory for minor versions of FSP extension header under

the different major FSP version to be compatible, even if the minor

versions happen to be the same.

4.4.4. Offset

The offset field is a 16-bit unsigned integer that specifies the

offset of the first octet of the payload, starting from the begin of

the FSP fixed header. If its value equals the size of the fixed

header the packet has no extension.

4.4.5. Length

The length field is a 16-bit unsigned integer that specifies the

length, including the Type-Version-Length Header and the size of the

the operation code specific content of the extension header.

4.5. Preliminary FSP Packets

Preliminary FSP packets are the packets exchanged during the end-to-

end negotiation phase of FSP connection establishment when it is

impossible to calculate ICC normally.

¶

¶

¶

¶

¶

¶

¶

¶



4.5.1. Connect Initialization

Salt It a 32-bit random bit string that may be exploited to make

secret key agreement.

Timestamp It is a 64-bit unsigned integer that represents number

of microseconds elapsed since 00:00, Jan.1, 1970, Coordinated

Universal Time. It may be exploited to synchronize the clocks of

the participants and/or estimate delay during data transmission

in the network.

Init-Check-Code It is a 64-bit random [RFC4086] bit string that

means to uniquely associated with the connection initiated.

Host Name of the Responder The optional payload of the Connect

Initialization packet is the host name of the responder. It MUST

be encoded in UTF-8 [RFC3629] and SHOULD be resolvable in DNS,

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Header Signature                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                              Salt                             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                       Init-Check-Code                         +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

 +                         Timestamp                            +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~           Host Name of the Responder (optional)               ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Operation Code of this type of packet is INIT_CONNECT.

¶

*

¶

*

¶

*

¶

*

¶



4.5.2. Acknowledgment to Connect Initialization

Time Delta It is a 32-bit signed integer which is the difference

between the near-end's time and the timestamp value sent in the

Connection Initialization packet. The units and the epoch of the

near-end's time value and the timestamp value MUST be the same.

However, the precision or resolution of the time delta value is

chosen arbitrarily by the responder.

Cookie It is a 64-bit bit string cryptographically generated by

the responder in a represent-transfer state manner. More

specifically when the same timestamp, time delta, Init-Check-

Code, salt, source and destination ULTIDs are sent to the

responder, the responder MUST be able to generate the identical

cookie value.

Init-Check-Code It MUST be identical to the corresponding field

in the Connect Initialization packet acknowledged.

Sink Parameter It is an extension header specified in 4.7.

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Header Signature                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           Time Delta                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                            Cookie                             +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                       Init-Check-Code                         +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~                         Sink Parameter                        ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Operation Code of this type of packet is ACK_INIT_CONNECT.

¶

*

¶

*

¶

*

¶

- ¶



4.5.3. Connect Request

The value of each field that has the identical name with the one in

the associated Connect Initialization and Acknowledgment to Connect

Initialization packet MUST be assigned the same value as in these

two packets, except header signature in the packet.

Note that the initiator SHALL fill in the time delta field as it is

and SHALL NOT assume endian-ness of the time delta field.

Sink Parameter It is an extension header specified in 4.7.

Host Name of the Initiator The optional payload of the Connect

Request packet is the host name, which is encoded in UTF-8 and

SHOULD be resolvable in DNS, of the initiator. It could be

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Header Signature                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                              Salt                             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                       Init-Check-Code                         +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                         Time Stamp                            +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~                         Sink Parameter                        ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Initial Sequence Number                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           Time Delta                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                            Cookie                             +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~           Host Name of the Initiator (optional)               ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Operation Code of this type of packet is CONNECT_REQUEST.

¶

¶

¶

* ¶

*



exploited by the responder to look up the address of the

initiator that may receive packets in the reverse direction.

4.6. Normal Fixed Header

Operation Code of a normal fixed header may be ACK_CONNECT_REQ,

PURE_DATA, PERSIST, KEEP_ALIVE, RELEASE or MULTIPLY.

Flags It is bit-field of width 8. From left to right:

End of Transaction (EoT): If the EoT flag of a packet is set,

it is the last packet of a transmit transaction. A packet with

the EoT flag set MAY be the start and the single packet of the

transmit transaction as well.

Minimal-Delay (MIND): If the MIND flag of the Connect Request

or Acknowledgment to Connect Request packet is set, the ULA

prefers minimal delay and is willing to tolerate packet loss.

FSP SHALL drop the packet received earliest when there is no

enough receive buffer so that the latest packet received can

be saved and the delay to deliver data to ULA is minimized. If

the MIND flag has been set the EoT flag of any following

packet is simply ignored. The MIND flag of an FSP packet may

be set only if the packet does not belong to a compressed

transmit transaction. Payload of each FSP packet is delivered

to the ULA as an independent message if the MIND flag has been

set.

Compressed (CPR) If the CPR flag of the first packet of a

transmit transaction is set, compression is applied on the

octet stream of the payloads of the continuous packets that

constitute the transmit transaction, or to put it simply, the

payload octet stream of the transaction transaction. Such

transmit transaction is called a compressed transmit

¶

 0                            15 16                           31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Header Signature                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|      Flags    |         Advertised Receive Window Size        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                     Integrity Check Code                      +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Sequence Number                         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|    Expected Sequence Number/Out-of-Band Serial Number         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

* ¶

-

¶

-

¶

-



transaction. When the CPR flag of a packet is set, CPR flag of

each following packet is ignored until reaching termination of

the transmit transaction. If the payload octet stream of the

transmit transaction is compressed the Minimal-Delay flag of

any packet in the transmit transaction MUST be cleared.

ECN-Echo (ECE): The Explicit Congestion Notification Echo flag of

a packet is set if the sender of the packet has received an

underlying IPv6 packet with Congestion Experienced code point set

for its peer as stated in "The Addition of Explicit Congestion

Notification (ECN) to IP" [RFC3168].

Send Rate Reduced (SRR): The SRR flag of each packet SHALL be set

as soon as the sender has received a legitimate packet with ECE

flag set and has informed the congestion manager to reduce the

send rate, until a sent packet with SRR flag set is acknowledged.

The remaining 3 bits are reserved.

Advertised Receive Window Size It is a 20-bit unsigned integer that

stores number of the free blocks in the receive buffer of the sender

of the packet that contains the receive window size field. It is

count from the slot meant to accept the packet with the expected

sequence number. The sender must ensure that the difference between

the latest sequence number sent out and the largest expected

sequence number received does not exceed the value of the latest

advertised receive window size received.

Sequence Number Each in-band FSP packet is assigned a 32-bit

unsigned integer as the sequence number. The sequence number

assigned for in- band FSP packets MUST be in strict order. An out-

of-band packet that has the operation code of KEEP_ALIVE or MULTIPLY

MUST be assigned a sequence number that falls in the receive window.

Expected Sequence Number The 'expected sequence number/out-of-band

serial number' field stores the earliest sequence number of the

packets that were not yet received in the receive window of the

sender for in-band packet. It is an accumulative acknowledgment. Any

packet with the sequence number before the received Expected

Sequence Number is supposed to have been received by the remote end.

Out-of-band Serial Number The 'expected sequence number/out-of-band

serial number' field stores a 32-bit unsigned integer that numbers

the out-of-band FSP packet separately from the sequence space of the

in-band packets. Each time an out-of-band packet is sent the out-of-

band serial number SHALL increase by one. It is assumed that in the

life of the session no two packets have the same sequence number and

the same out-of-band serial number simultaneously.

Integrity Check Code The ICC.

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶



4.7. Sink Parameter

Operation Code in the Header Signature of this extension header is

PEER_SUBNETS.

Listener ID It is the ULTID of the responder that is in LISTENING

state.

Host ID It is the aggregation host id of the sender. It SHALL be

0 if it is in the IPv4 network.

Addressable Network Prefixes These are up to 4 64-bit words that

specify the network prefixes of the lower layer interfaces that

are addressable by the receiver in the reverse direction. In this

version of the FSP 'Addressable Network Prefixes' field is of

fixed length. The last network prefix which is non-zero is the

last resort one. There MUST be at least one non-zero network

prefix. If there are more than one non-zero network prefixes

those other than the last resort are load-balanced preferred. In

an IPv6 network, the addressable network prefix is the leftmost

64 bits of the IPv6 address. The receiver of the Addressable

Network Prefixes SHALL send packet in the reverse direction, i.e.

to the sender of the field with the destination IPv6 address

generated by combining a preferred network prefix with the

aggregation host id and the ULTID part of the source address in

the IPv6 header of the received packet that eventually carries

the Addressable Network Prefixes. Such feature MAY be exploited

to handle links with unidirectional connectivity, but it is NOT

RECOMMENTED. In an IPv4 network for compatibility with the IPv6

addressed ULA the 64-bit word of the addressable network prefix

specified is composed as following Figure:

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Code-Mark-Length Prefix                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                     Listener ID/Host ID                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~               Addressable Network Prefixes                    ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

*

¶

*

¶

*

¶

 0                            15 16                           31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  0x2002 (IPv6 6to4 prefix)    |IPv4 address (leftmost 16 bits)|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|IPv4 address(rightmost 16 bits)|   UDP port number (16 bits)   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶



Sender of the Sink Parameter packet SHOULD be NAT-aware in the

IPv4 network. If it is able to obtain the from the NAT box (as

defined in "Traditional IP Network Address Translator

(Traditional NAT)" [RFC3022]) through Port Control Protocol

(PCP) [RFC6887] SHOULD fill in the IPv4 address and UDP port

number fields with the public IP value that were obtained. If it

does not have such capability, it SHALL fill in the addressable

network prefix with all binary zeroes.

4.8. Selective Negative Acknowledgment

Expected Sequence Number It stores the earliest sequence number

of the packets that were not yet received in the receive window

of the sender. It is an accumulative acknowledgment. Any packet

with the sequence number before the received Expected Sequence

Number is supposed to have been received by the remote end. The

expected sequence number is represented in little endian.

Delay Sample Sequence Number It stores the sequence number of the

packet that the acknowledgement delay was calculated on. The

delay sample sequence number is represented in little endian.

Acknowledgement Delay A 32-bit unsigned integer specifies the

delay in microseconds between sending the packet containing the

SNACK extension header and accepting the last packet that is

accumulatively acknowledged by the SNACK extension header. The

acknowledgement delay is represented in little endian.

¶

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Code-Mark-Length Prefix                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                   Expected Sequence Number                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                Delay Sample Sequence Number                   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                   Acknowledgement Delay                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                            Gap Width                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           Data Length                         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

~                                                               ~

~          Further pairs of  (Gap Width, Data Length)           ~

~                                                               ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The operation code of this type of extension header is SELECTIVE_NACK

¶

*

¶

*

¶

*

¶



Gap Width and Data Length The SNACK header contains the

descriptor of the receive window gaps. The descriptor itself is a

list of entries. The length of the list can be zero which means

that there is no gap in the receive window. If the list is not

empty, each entry contains the width of one gap (Gap Width) in

the receive window and the length of the continuously received

data following the gap (Data Length), respectively. The unit of

aforementioned length of gaps or number of packets is buffer

block which size is agreed upon connection establishment. Gap

width and data length MUST be transmitted in little endian.

4.9. RESET

The 'RESET' packet is a special command packet meant to interrupt

connection setup process or disconnect abruptly. Operation Code of

the packet is RESET.

Structure of a RESET packet in C code snippet with unnamed union

applied:

struct FSP$HeaderSignature { octet opCode; octet major; uint16_t

offset; }; struct FSP_RejectConnect { FSP$HeaderSignature hs; /* bit

field to describe reasons for reset */ uint32_t reasons; /* sequence

numbers */ union { timestamp_t timeStamp; struct { uint32_t initial;

uint32_t expected; } sn; }; /* uniqueness proof */ union { uint64_t

integrityCode; uint64_t cookie; uint64_t initCheckCode; }; };

When the RESET packet is the response to a Connect Initialization

packet both the timeStamp and the initCheckCode fields of the RESET

packet MUST be set to the same values of Time Stamp and Init-Check-

Code in the Connect Initialization packet, respectively.

When the RESET packet is the response to a Connect Request packet

both the timeStamp and the cookie fields of the RESET packet MUST be

set to the same value of Time Stamp and Cookie in the Connect

Request packet, respectively.

When the RESET packet is the response to a packet with a normal

fixed header, the sn.initial, the sn.expected and the integrityCode

of the RESET packet MUST be set as to specification of normal fixed

header field Sequence Number, Expected Sequence Number and Integrity

Check Code, respectively.

5. The Finite State Machine

5.1. NON_EXISTENT

*

¶

¶

¶

¶

¶

¶

¶

   ---[API: Listen]-->LISTENING

   |--[API: Connect]-->CONNECT_BOOTSTRAP-->[Send INIT_CONNECT]

   |--[API: Multiply]-->CLONING-->[Send MULTIPLY]

¶



NON_EXISTENT is a pseudo-state before a connection is created by the

ULA calling API Listen, Connect or Multiply (or after a connection

is reset).

5.2. LISTENING

5.3. CONNECT_BOOTSTRAP

CONNECT_BOOTSTRAP is a state entered by the ULA calling API Connect,

before receiving the acknowledgement of the remote end to the

connection initialization packet.

5.4. CONNECT_AFFIRMING

CONNECT_AFFIRMING is a state entered by the ULA affirming to send

connect request after receiving the acknowledgement to the

connection initialization packet.

¶

   ---[API: Reset]-->NON_EXISTENT

   |<-->[Rcv.INIT_CONNECT]{&& accepted}[Send ACK_INIT_CONNECT]

   |<-->[Rcv.CONNECT_REQUEST]

       |--{&& duplication detected}--[Retransmit ACK_CONNECT_REQ]

       |--{&& no duplication}-->{Notify}

         |-->[API: Accept]

             -->{new context}CHALLENGING-->[Send ACK_CONNECT_REQ]

         |-->[API: Reject]-->[Send RESET]{abort new context, if any}

LISTENING is a state entered by the ULA calling API Listen.

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |-->[Rcv.ACK_INIT_CONNECT]-->CONNECT_AFFIRMING

       -->[Send CONNECT_REQUEST]

   |--{On transient state Timeout}-->NON_EXISTENT-->[Notify]

¶

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[Rcv.ACK_CONNECT_REQ]-->[Notify]

      |-->{Callback return to accept}

         |-->{EoT}

            |-->{ULA-flushing}-->COMMITTING2

                -->[Send PERSIST with EoT]

            |-->{Not ULA-flushing}-->PEER_COMMIT

                -->[Send PERSIST with EoT]

         |-->{Not EoT}

            |-->{ULA-flushing}-->COMMITTING

                -->[Send PERSIST without EoT]

            |-->{Not ULA-flushing}-->ESTABLISHED

                -->[Send PERSIST without EoT]

      |-->{Callback return to reject]-->NON_EXISTENT-->[Send RESET]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On transient state Timeout}-->NON_EXISTENT-->[Notify]

¶

¶



5.5. CHALLENGING

CHALLENGING is a state entered by the ULA accepting the connection

request after a new connection context has been incarnated. The new

connection is incarnated by the FSP context of the near end in the

LISTENING state as a legitimate CONNECT_REQUEST packet is received.

5.6. ACTIVE

ACTIVE, also known as ESTABLISHED, is a state that the FSP

participant has finished end-to-end negotiation but has not

committed current transmit transaction nor fully received the latest

transmit transaction of the remote end.

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |<-->[API: Send{new data}]{just pre-buffer}

   |--[Rcv.PERSIST]

      |-->{EoT}

         |-->{ULA-flushing}-->CLOSABLE-->[Notify]

             -->[Send SNACK]

         |-->{Not ULA-flushing}-->PEER_COMMIT-->[Notify]

             -->[Send SNACK]

      |-->{Not EoT}

         |-->{ULA-flushing}-->COMMITTED-->[Notify]

             -->[Send delay SNACK]

         |-->{Not ULA-flushing}-->ESTABLISHED-->[Notify]

             -->[Send delay SNACK]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On transient state Timeout}-->NON_EXISTENT-->[Notify]

¶

¶

[

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Send{flush}]-->COMMITTING{Urge to commit}

   |<-->[API: Send{more data}][Send PURE_DATA]

   |<-->[Rcv.PERSIST][Send KEEP_ALIVE]

   |--[Rcv.PURE_DATA]

       |--{EoT}-->PEER_COMMIT

          |-->[Send SNACK]-->[Notify]

       |--{Not EoT}-->[Send SNACK]-->[Notify]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶



5.7. COMMITTING

COMMITTING is a state that the FSP participant has committed the

transmit transaction but has not fully received the latest transmit

transaction of the remote end, nor the acknowledgement to the

transmit transaction commitment has been received.

The participant in COMMITTING state SHALL NOT transmit further data

until current transmit transaction commitment is acknowledged.

5.8. COMMITTED

COMMITTED is a state that the FSP participant has committed current

transmit transaction and has received the acknowledgement to the

transmit transaction commitment, but has not fully received the

latest transmit transaction of the remote end.

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[Rcv.SNACK]{Acknowledge-All}-->COMMITTED-->[Notify]

   |--[Rcv.PURE_DATA]

       |--{EoT}-->COMMITTING2-->[Send SNACK]-->[Notify]

       |--{Not EoT}-->[Send SNACK]-->[Notify]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RELEASE]

       |--{All-Acknowledged}-->SHUT_REQUESTED

          |-->[Send SNACK]-->[Notify]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Send{more data}]-->ACTIVE-->[Send PERSIST]

   |--[API: Send{flush}]-->COMMITTING-->{Flush the send queue}

   |<-->[Rcv.PERSIST][Send KEEP_ALIVE]

   |--[Rcv.PURE_DATA]

       |-->{EoT}-->CLOSABLE

           -->[Send SNACK]-->[Notify]

       |-->{Not EoT}-->[Send SNACK]-->[Notify]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RELEASE]-->SHUT_REQUESTED

          -->[Send SNACK]-->[Notify]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶



5.9. PEER_COMMIT

PEER_COMMIT is a state that the FSP participant has not committed

current transmit transaction but has fully received the latest

transmit transaction of the remote end, and the acknowledgement to

the transmit transaction commitment has not been received yet.

5.10. COMMITTING2

COMMITTING2 is a state that the FSP participant has committed

current transmit transaction and has fully received the latest

transmit transaction of the remote end, but the acknowledgement to

the transmit transaction commitment has not been received yet.

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Send{flush}]

       -->{Mark EoT or append payload-less PURE_DATA with EoT set}

       -->COMMITTING2-->{Do Send}

   |--[API: Shutdown]-->PRE_CLOSED-->{Append RELEASE}

       -->{Do Send}

   |<-->[API: Send{more data}][Send PURE_DATA]

   |<-->[Rcv.PURE_DATA]{just prebuffer}

   |--[Rcv.PERSIST]

       |<-->{EoT}-->[Send SNACK]

           --{&& is new transaction}-->[Notify]

       |-->{Not EoT}-->ACTIVE-->[Send SNACK]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Send{flush}]

       -->{Mark EoT or append payload-less PURE_DATA with EoT set}

       -->COMMITTING2-->{Do Send}

   |--[API: Shutdown]-->PRE_CLOSED-->{Append RELEASE}

       -->{Do Send}

   |<-->[API: Send{more data}][Send PURE_DATA]

   |<-->[Rcv.PURE_DATA]{just prebuffer}

   |--[Rcv.PERSIST]

       |<-->{EoT}-->[Send SNACK]

           --{&& is new transaction}-->[Notify]

       |-->{Not EoT}-->COMMITTING-->[Send SNACK]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RELEASE]

       |--{All-Acknowledged}-->SHUT_REQUESTED

          |-->[Send SNACK]-->[Notify]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶



The participant in COMMITTING2 state SHALL NOT transmit further data

until current transmit transaction commitment is acknowledged.

5.11. CLOSABLE

CLOSABLE is a state that the FSP participant has committed current

transmit transaction and has received the acknowledgement to the

transmit transaction commitment, and has fully received the latest

transmit transaction of the remote end.

5.12. SHUT_REQUESTED

SHUT_REQUESTED is a state entered when a legitimate RELEASE packet

was received in COMMITTED or CLOSABLE state. It may be entered as

well if the RELEASE packet was received in COMMITTING or COMMITTING2

state and all packets in flight were accumulatively acknowledged.

A connection context MAY persist in SHUT_REQUESTED state until the

session key runs out of life, or the host system needs to recycle

the resource allocated. A connection in SHUT_REQUESTED state MAY be

resurrected.

5.13. PRE_CLOSED

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Shutdown]-->PRE_CLOSED-->{Append RELEASE}-->{Do Send}

   |<-->[Rcv.PURE_DATA]{just prebuffer}

   |--[Rcv.SNACK]{Acknowledge All}-->CLOSABLE-->[Notify]

   |--[Rcv.PERSIST]

       |--{EoT}--{but a new transaction}

           -->[Send SNACK]-->[Notify]

       |--{Not EOT}-->COMMITTING-->[Send SNACK]

   |--[Rcv.MULTIPLY]{passive multiplication}

   |--[Rcv.RELEASE]-->SHUT_REQUESTED

       -->[Send SNACK]-->[Notify]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On Idle Timeout}-->NON_EXISTENT-->[Notify]

¶

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[API: Shutdown]-->CLOSED-->[Notify]

   |<-->[Rcv.RELEASE]-->[Send SNACK]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

¶

¶

¶

   ---[API: Reset]-->NON_EXISTENT-->[Send RESET]

   |--[Rcv.SNACK]{Acknowledge All}-->CLOSED-->[Notify]

   |--[Rcv.RELEASE]-->[Notify]-->CLOSED

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On transient state Timeout}-->CLOSED-->[Notify]

¶



PRE_CLOSED is a state entered on the ULA calling the API Shutdown in

PEER_COMMIT or CLOSABLE state.

Note that the ULA may call the API Shutdown in COMMITTING2 state as

well, where it SHALL wait the FSP layer to get the accumulative

acknowledgement to all packets in flight before sending the RELEASE

packet.

5.14. CLOSED

|--{On Recycling Needed}-->NON_EXISTENT

CLOSED is a state migrated from PRE_CLOSED state on receiving a

legitimate KEEP_ALIVE packet which acknowledges all packet in flight

from the remote end, or from SHUT_REQUESTED state on the ULA calling

the API Shutdown.

Unlike TCP [STD7], CLOSED state in FSP is not fictional. Instead a

connection context MAY persist in CLOSED state until the session key

runs out of life, or the host system needs to recycle the resource

allocated to the CLOSED session. A connection in CLOSED state MAY be

resurrected.

5.15. CLONING

CLONING is a state entered by ULA calling the API Multiply from any

state that may accepting an out-of-band packet.

¶

¶

¶

¶

¶

   ---[API: Reset]-->NON_EXISTENT

   |<-->[API: Send{new data}]{just prebuffer}

   |<-->[Rcv.PURE_DATA]{just prebuffer}

   |--[Rcv.PERSIST]

       |-->{Not EoT}

           |--{&& Not ULA-flushing}-->ACTIVE

              -->[Send SNACK]-->[Notify]

           |--{&& ULA-flushing}-->COMMITTED

              -->[Send SNACK]-->[Notify]

       |-->{EoT}

           |--{&& Not ULA-flushing}-->PEER_COMMIT

              -->[Send SNACK]-->[Notify]

           |--{&& ULA-flushing}-->CLOSABLE

              -->[Send SNACK]-->[Notify]

   |--[Rcv.RESET]-->NON_EXISTENT-->[Notify]

   |--{On transient state Timeout}-->NON_EXISTENT-->[Notify]

¶

¶



5.16. Passive Multiplication

In the ACTIVE, COMMITTING, COMMITTED, PEER_COMMIT, COMMITTING2 or

CLOSABLE state an FSP end node MAY accept its peer's connection

multiplication request and transit to the unnamed, temporary passive

multiplication state.

5.17. Typical State Transitions

This section is informative.

  {ACTIVE, COMMITTING, COMMITTED, PEER_COMMIT, COMMITTING2, CLOSABLE}

    |-->/MULTIPLY/-->[API{Callback}]-->{new context}

       |-->[{Return Accept}]

          |-->{Send packet(s) starting with PERSIST}

       |-->[{Return Reject}]-->{abort creating new context}

           -->[Send RESET]

¶

¶

¶



5.17.1. Typical Main Connection



  ***                      Bootstrapping                 ***

  CONNECT_BOOTSTRAP  ------ INIT_CONNECT ------->  LISTENING

      |              <---- ACK_CONNECT_INIT -----

  CONNECT_AFFIRMING  ------ CONNECT_REQUEST ---->      |

  *** Connection affirmation, carrying welcome messages ***

                                                       |

                                                   {Accept}

     {and send a single packet welcome message immediately}

                                                       |

      |            <- ACK_CONNECT_REQ c/w EoT -  CHALLENGING

  PEER_COMMITTED

      |

  {Callback, to send ticket immediately}

  {(a fictional identification token of a single packet)}

      |

  COMMITTING2        ----- PERSIST c/w EoT ----->      |

                                                   CLOSABLE

      |              <---- KEEP_ALIVE(SNACK) ----      |

  CLOSABLE

                                                       |

                                    {Send Server's Challenge}

                                                       |

      |           <----- PERSIST w/o EoT -----  PEER_COMMITED

  COMMITTED          ---- KEEP_ALIVE(SNACK) ---->

                               .

                               .

                               .                       |

                                                   {Flush}

                                                       |

      |            <---- PURE_DATA c/w EoT ----  COMMITTING2

  CLOSABLE

                     ---- KEEP_ALIVE(SNACK) ---->      |

                                                   CLOSABLE

      |

  {Send Client's Response}

      |

  PEER_COMMITTED     ----- PERSIST w/o EoT ----->      |

                                                   COMMITTED

      |              <--- KEEP_ALIVE(SNACK) -----      |

                               .

      |              ---- PURE_DATA w/o EoT ---->  COMMITTED

  PEER_COMMITTED     <--- KEEP_ALIVE(SNACK) ----       |

                               .

                               .

      |                        .

  {Flush}



      |

  COMMITTING2        ---- PURE_DATA c/w EoT ---->      |

                                                   CLOSABLE

      |              <---- KEEP_ALIVE(SNACK) ----

  CLOSABLE

** Typical C/S request-response exchange on application layer **

      |

  {Send Request}

      |

  PEER_COMMITTED     ----- PERSIST w/o EoT ----->      |

                                                   COMMITTED

      |              <--- KEEP_ALIVE(SNACK) -----      |

                               .

      |              ---- PURE_DATA w/o EoT ---->  COMMITTED

  PEER_COMMITTED     <--- KEEP_ALIVE(SNACK) -----      |

                               .

                               .

      |                        .

  {Flush}

      |

  COMMITTING2        ---- PURE_DATA c/w EoT ---->      |

                                                   CLOSABLE

      |              <---- KEEP_ALIVE(SNACK) ----

  CLOSALBE

                                                 {Send Response}

                                                       |

      |              <----- PERSIST w/o EoT -----  PEER_COMMITED

  COMMITTED

                     ---- KEEP_ALIVE(SNACK) ---->      |

                               .

      |              <---- PURE_DATA w/o EoT ----  PEER_COMMITED

  COMMITTED          ---- KEEP_ALIVE(SNACK) ---->      |

                               .

                               .

                               .

                                                   {Flush}

                                                       |

      |              <---- PURE_DATA c/w EoT ----  COMMITTING2

  CLOSABLE

                     ---- KEEP_ALIVE(SNACK) ---->      |

                                                   CLOSALBE

                               .

                               .

                               .

   *** Following request-responses, e.g. HTTP pipelining ***

                               .

                               .

                               .



  CLOSABLE                                         CLOSALBE

                               .

                               .

   *** End of connection, in a typical C/S application ***

                                                       |

                                                   {Shutdown}

                                                       |

     |               <---------- RELEASE --------  PRE_CLOSED

  SHUT_REQUESTED

                     ---- KEEP_ALIVE(SNACK) ---->      |

     |                                               CLOSED

  {Shutdown}

     |

   CLOSED

¶



5.17.2. Typical Clone Connection for Get Resource

   Client                                                Server

   *** Suppose the browser fork a new connection to request ***

   *** some resource and the URI is short enough to be      ***

   *** encapsulated in a single packet                      ***

  {MultiplyAndWrite}

      |                                      {In Clonable State}

  CLONING            ---- MULTIPLY c/w EoT ---->       *

                                         {Make Clone Connection}

                          {and return resource data immediately}

                                                       |

      |              <---- PERSIST w/o EoT ------  PEER_COMMITTED

  COMMITTED          ---- KEEP_ALIVE(SNACK) ---->

                     <---- PUER_DATA w/o EoT ----  PEER_COMMITTED

  COMMITTED          ---- KEEP_ALIVE(SNACK) ---->

                               .

                               .

                               .                       |

                                                   {Flush}

                                                       |

      |              <--- PURE_DATA c/w EoT -----  COMMITTING2

  CLOSABLE

                     ---- KEEP_ALIVE(SNACK) ---->      |

                                                   CLOSABLE

                               .

                               .

                  *** End of Connection ***

¶



5.17.3. Typical Clone Connection for Push Message

5.17.4. Simultaneous Shutdown

Initiator of Multiplication              Responder of Multiplication

  *** Suppose the server fork a new connection to push message ***

  (Used to be server side)                  (Used to be client side)

      |

  {MultiplyAndWrite}

      |                                         {In Clonable State}

  CLONING            ---- MULTIPLY w/o EoT ---->       *

                                         {Make Clone Connection}

           *** suppose no immediately available responding data ***

                                                       |

                                                   COMMITTING

      |               <--- PERIST(c/w EoT) ----        |

  PEER_COMMITTED

      |              ---- KEEP_ALIVE(SNACK) ---->  COMMITTED

                               .

      |              ---- PURE_DATA w/o EoT ---->  COMMITTED

  PEER_COMMITTED     <--- KEEP_ALIVE(SNACK) ----       |

                               .

                               .

      |                        .

  {Flush}

      |

  COMMITTING2        ---- PURE_DATA c/w EoT ---->      |

                                                   CLOSABLE

      |              <---- KEEP_ALIVE(SNACK) ----

  CLOSABLE

                               .

                               .

                  *** End of Connection ***

¶

CLOSABLE                                         CLOSABLE

   |                                                 |

{Shutdown}                                       {Shutdown}

   |                                                 |

PRE_CLOSED                                       PRE_CLOSED

   |  \                                          /   |

   |   \                                        /    |

   |    \                                      /     |

   |     \------------- RELEASE --------------/----->+

   +<------------------- RELEASE ------------/       |

   |                                               CLOSED

CLOSED

¶



6. End-to-End Negotiation

End-to-end negotiation of FSP session occurs in the connection

establishment phase. Connection establishment process of FSP

consists of two and a half pairs of packet exchanges for connection

initialization, connection incarnation and the last confirmation.

During the process various optional header or payload MAY be carried

in the FSP preliminary packets to negotiate end-to-end session

parameters.

6.1. Connect Initialization

The initiator sends the INIT_CONNECT packet to the responder:

(INIT_CONNECT, Salt, Timestamp, Init-Check-Code [, Responder's Host

Name])

Connection initialization MAY be syndicated with optional address

resolution at the gateway in the IPv6 network by carrying the

responder's host name in the INIT_CONNECT packet.

If it does carry the responder's host name it MUST take the link-

local interface address [RFC4291] as the source IPv6 address and the

default link-local gateway address, FE80::1, as the destination IPv6

address no matter whether the global unicast IP address of the

default gateway is configured.

If the gateway that relays the INIT_CONNECT packet finds that the

responder is on the same link-local network with the initiator it

SHALL change the source and the destination IP addresses of the

INIT_CONNECT packet to the link-local IP addresses of the initiator

and the responder respectively, and relay the packet onto the same

link-local network.

On receiving the INIT_CONNECT packet that carries the responder's

host name the link-local gateway MUST resolute the responder's

global unicast IPv6 address and map the initiator's global unicast

IPv6 address, and replace the destination and source address of the

INIT_CONNECT packet respectively, unless it finds that the initiator

and the responder are on the same link-local network, where the

gateway SHALL process the packet as stated in the previous

statement.

The gateway SHALL silently ignore the INIT_CONNECT packet if it is

unable to resolve the IP address of the responder.

If the destination address is the default link-local gateway address

while the INIT_CONNECT does not carry the responder's host name

payload, it is supposed that the gateway is the intent destination

of the connection to initialize.

¶

¶

¶

¶

¶

¶

¶

¶



6.2. Response to Connect Initialization

The responder sends acknowledgment to the initiator:

(ACK_INIT_CONNECT, Time-delta, Cookie, Init-Check-Code Reflected,

Responder's Sink Parameter)

If the responder is ready to accept the connection, it SHALL

generate a cookie which is meant to be reflected by the initiator.

The responder MUST send the ACK_INIT_CONNECT packet with the new

allocated local ULTID instead of the original listening ULTID. The

initiator should be able to find out the original listening ULTID by

searching its own connection context.

In the Responder's Sink Parameter the original listener ULTID MUST

be set to the right value.

The destination address of the packet sent back MUST be set to the

source address of the corresponding Connect Initialization packet

whose source and destination address MAY be updated by some

intermediary such as the link-local gateway of the initiator.

The responder SHALL NOT make state transition on receiving

INIT_CONNECT packet.

If the responder refuses to accept the connection, it SHALL silently

discard the INIT_CONNECT packet.

6.3. Connection Incarnation Request

(CONNECT_REQUEST, Salt, Timestamp, Init-Check-Code, Initial SN,

Time- delta Reflected, Cookie Reflected, Initiator's Sink Parameter

[, Initiator's Host Name])

The initiator accepts the Response to Connect Initialization packet

if and only if both the destination ULTID of the response packet

matches the source ULTID of the connect initialization packet and

the Init-Check-Code reflected in the response packet matches the

Init- Check-Code in the connect initialization packet.

If the response packet is accepted the initiator formally requests

to establish the connection by sending the CONECT_REQUEST packet.

In the CONNECT_REQUEST packet the value of the Timestamp, the Init-

Check-Code and the Salt field MUST be the same as in the

INIT_CONNECT packet while the value of the Cookie Reflected field

and the Time- delta Reflected field MUST be the same as in the

ACK_INIT_ CONNECT packet, respectively.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



The initiator MUST send the packet towards the remote ULTID that the

responder has preserved and sent with the ACK_INIT_CONNECT packet.

It MUST fill the original listener ID field in the Initiator's Sink

Parameter with the right value.

The source address of the CONNECT_REQUEST packet MUST be set to the

destination address of the received ACK_INIT_CONNECT packet, while

the network prefix and host-id part of the destination address MUST

be set to the source address of the received ACK_INIT_CONNECT packet

in the IPv6 network.

The initiator SHALL save the cookie value that the responder has

given to make up the weak session key.

The initiator MUST fill the Initial SN field with the sequence

number of the packet that will follow CONNECT_REQUEST. The

CONNECT_REQUEST packet is payload free and does not consume the

sequence space.

The optional fields Initiator's Host Name is put as the payload of

the CONNECT_REQUEST packet. If presented it MAY be exploited by the

responder as the last resort to resolute the most recent IP address

of the initiator in some extraordinary scenarios such as the

initiator has hibernated for a considerably long time.

6.4. Connection Incarnation Response

Case 1: (ACK_CONNECT_REQ, FREWS, Initial SN, Expected SN, ICC[,

Payload])

Case 2: (RESET, Reason of Failure, Timestamp Reflected, Copy of

Cookie Reflected)

The responder responds as in case 1 if the reflected cookie was

validated, resources were successfully allocated and the initial

context of the connection was setup. Otherwise it SHOULD respond as

in case 2.

However, if the cookie is invalid, the responder SHALL silently

discard the CONNECT_REQUEST packet.

The Initial SN in case 1 is the initial sequence number of the

responder. The responder should fill in the field with a random 32-

bit unsigned integer. As the ACK_CONNECT_REQ packet may carry

payload the sequence number of the responder starts from the

ACK_CONNECT_REQ packet.

The Expected SN MUST equal to the Initial SN specified in the

corresponding CONNECT_ REQUEST packet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



6.5. The Last Confirmation

Case 1: (PERSIST, FREWS, Initial SN, Expected SN, ICC, payload)

Case 2: (RESET, Reason of Failure, Initial SN, Expected SN, ICC)

The initiator of the connection MUST eventually confirm to the

responder that the connection is established by sending a PERSIST

packet (case 1).

Of course the initiator MAY quit to establish the connection by

sending a legitimate RESET packet (case 2).

6.6. Retransmission

The initiator SHALL retransmit the INIT_CONNECT packet if the

corresponding ACK_INIT_CONNECT packet is not received in some limit

time (by default 15 seconds).

The initiator SHALL retransmit the CONNECT_CONNECT packet if the

corresponding ACK_CONNECT_REQ packet is not received in some limit

time (by default 15 seconds).

The responder SHALL NOT retransmit ACK_INIT_CONNECT or

ACK_CONNECT_REQ packet.

The initiator SHOULD retransmit the right INIT_CONNECT packet or

CONNECT_CONNECT packet until the legitimate ACK_CONNECT_REQ packet

is eventually received.

It SHALL give up if the time starting from the very first

INIT_CONNECT packet was sent has exceed a longer timed-out value (by

default 60 seconds) before the legitimate ACK_CONNECT_REQ packet is

received.

7. Quad-party Session Key Installation

It is assumed that in the scenarios applying FSP it is the ULA to do

key establishment and/or end-point authentication while the FSP

layer provides authenticated, optionally encrypted data transfer

service. The ULA installs the established shared secret key as the

new session key of the FSP layer. Together they establish a secure

channel between two application end-points.

In a typical scenario the ULA endpoints first setup the FSP

connection where resistance against connection redirection is weakly

enforced by CRC64. After the pair of ULA endpoints have established

a shared secret key, they install the secret key. Authenticity of

the FSP packets sent later is cryptographically protected by the new

secret key and resistance against various attacks is secured.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Although transmit transaction is actually uni-directional the secret

key is shared bi-directionally in this version of FSP.

Protocol for installation of the shared secret key is quad-party in

the sense that both the upper layer application and the FSP layer of

both the participant nodes MUST agree on the moment of certain state

to install the shared secret key.

It is arguably much more flexible for the application layer

protocols to adopt new key establishment algorithm while offloading

routine authentication and optionally encryption of the data to the

underlying layers where it may be much easier to exploit hardware-

acceleration.

7.1. API for Session Key Installation

A dedicate application program interface (API) is designed for the

ULA to install the secret key established by the ULA participants.

The API SHOULD take four parameters:

A 'handle' to state the connection context for installing the

session key

A octet string of initial key materials (IKM)

An integer to state the length of IKM. The unit is octet.

An integer to state the desired length of the effective session

key if AEAD is applied. The unit is bit. For this version of FSP

desired length of the effective session key is either 128 or 256.

The peer MUST have commit a transmit transaction and it SHALL

install the same secret key on receiving the FSP packet with the EoT

flag set.

The ULA SHOULD have installed the new shared secret key, or install

it instantly after accepting the packet with the EoT flag set. If

the new secret key has ever been installed the packet received after

the one with the EoT flag set MUST adopt the new secret key.

7.2. Time to Call API for Session Key Installation

A participant MAY install new session key if and only if the packet

with the latest sequence number it has received has EoT flag marked.

7.3. Time to Take New Session Key into Effect

By committing a transmit transaction a ULA participant clearly tells

the underlying FSP layer that the next packet sent MAY adopt a new

secret key. On receiving a packet with the EoT flag set the ULA is

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

¶



Key Extract phase:

Key Expand phase:

informed that the next packet received MAY adopt a new shared secret

key.

After the ULA of a network node installed a new session key, every

packet to send with sequence number later than the one with the EoT

flag set just before the API to install session key was called MUST

adopt the new session key in the FSP layer of the network node.

Every packet received with the sequence number later than the one

with EoT flag set when the ULA called the API to install session key

MUST be validated with the new session key. If the new secret key

has ever been installed the packet received after the one with the

EoT flag set MUST adopt the new secret key.

7.4. Generating the Initial Session Key

When the ULA install the secret key, it is required to provide the

initial key material which might have unbalanced bit randomness, not

the session key itself. HMAC-based Extract-and-Expand Key Derivation

Function (HKDF) [RFC5869] is applied to generate the initial session

key.

Given raw key material ikm, length of the ikm nB in octets, intended

master key length lenb in bits, || is octet string concatenation,

If AEAD is designated, the initial session key, or the first secret

key for packet authentication and payload encryption is obtained as

specified in [RFC5869]:

Let Km = HMAC-SM3k512(zeros, ikm), where:

zeros is 64 octets of zeroes

ikm is the input initial key material

HMAC-SM3k512 is applied. HMAC-SM3k512 is the HMAC algorithm 

[RFC2104] that exploits SM3 secure hash algorithm [ISO-SM3] with

a slight modification that exploits initial key with length of

512 bits instead of 256 bits.

Km is the result master key.

Let Ks = HMAC-SM3k512(Km, info) , where

Km is the master key generated in previous phase, padded to 512

bits with zeroes at right.

info is concatenation of the arbitrary ASCII string "Establishes

an FSP session", which is 26-octet long, 3 octets of integer 0,

and 1 octet of integer 1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Let Ks' = HMAC-SM3k512(Km, H || info') , where:

HMAC-SM3k512 algorithm is applied.

Ks is the result of 256 bits in length. If the requested key

length is 128-bit or 192-bit, Ks is the final result. If the

requested key length is 256-bit, the second iteration of HKDF

MUST be applied to get the final result of 512 bits in lenth.

For this version of FSP the final result is split into three

parts, the initial session key of requested key length, the 32-

bit salt, and the remain bits that are simply discarded. The salt

is to be applied to compose the initialization vector(IV), which

would be passed to AES-GCM, together with the sequence number and

expected sequence number fields in the normal FSP fixed header:

7.5. Internal Rekeying

Km is the master key generated as in section 7.4, padded to 512

bits with zeros at right.

H is the 16-octet internal hash sub-key of AES-GCM of previous

session key

info' is concatenation of the arbitrary ASCII string "Sustains an

FSP connection", which is 26-octet long and the 4 octets in

network order of the 32-bit unsigned integer that specifies the

batch index of the session key.

HMAC-SM3k512 is applied.

Ks' is the result of 256 bits in length.

For this version of FSP, if the session key length is 128-bit or

192-bit, the leftmost bits in key length of the result Ks' is taken

as the new session key, the following 32 bits is taken as the new

salt that is to be applied to compose the IV as the input to AES-

GCM. If the key length is 256-bit, the result is taken as the new

session key and the salt SHALL NOT be changed.

The batch index of the initial session key is 1, and it is increased

by 1 every time before it is to re-key.

¶

¶

¶

 0                                                            31

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             Salt                              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                        Sequence Number                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|     Expected Sequence Number/Out-of-band Serial Number        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶



Send Km-A, Send Km-B

Commit

Install Key

Wait

7.6. Sample Sequence of Installing Session Key

This section is informative.

ULA of node A and node B send there key

material for key establishment, respectively.

ULA of node A or node B informs the FSP layer to set the End

of Transaction flag of the last packet to send and flush the send

buffer.

ULA of node A or node B informs the FSP layer to

install

new session key, giving key materials for deriving the session

key. A node may call Install Key if and only if its peer has just

committed a transmit transaction.

The ULA MUST wait until it has received some packet with EoT

set from its peer before it may install new session key. There is

no mandatory calling order of Commit and Install Key. However, if

a node Commit before Install Key and it wants to apply new

¶

      Node A                                          Node B

ULA-A        FSP-A                              FSP-B        ULA-B

{Send Km-A}

               ->[seq_a2b_0]                  ->

                                                       {Send Km-B}

               <-                  [seq_b2a_0]<-

                             .

                             .

                             .

{Commit}

               ->[seq_a2b_m c/w EoT]          ->

                                                     {Install Key}

                             .

{Wait}                       .

                             .

                                                          {Commit}

               <-          [seq_b2a_n c/w EoT]<-

{Install Key}

                             .

                             .                      {Send Further}

               <-                [seq_b2a_n+1]<-

                             .

{Send Further}               .

               ->[seq_a2b_m+1]                ->

¶

¶

¶

¶

¶

¶

¶

¶



Send Further

session key for the transmit transaction next to the one it has

just committed, it SHALL NOT send further data until Install Key

has returned successfully. In the above example, for node A

packet with sequence number [seq_a2b_m+1] will be sent by

applying the new session key, for node B packet with sequence

number [seq_b2a_n+1] will be sent by applying the new session

key.

ULA of node A or node B sends further data in the new

transmit transaction, respectively. There is no mandatory order

on which node should start new transmit transaction firstly.

8. Send and Receive

8.1. Packet Integrity Protection

8.1.1. Application of CRC64

Starting from ACK_CONNECT_REQUEST, until the ULAs have installed the

shared secret CRC64 is applied to calculate the value of the ICC

field. The algorithm:

Take pair of the ULDs as the initial value of accumulative

CRC64

Accumulate the value of the Init-Check-Code field

Accumulate the value of the Cookie field successively

Accumulate the combined value of the salt and the timeDelta

field where the former is the leftmost 32 bits and the latter

is the rightmost 32 bits

Accumulate the value of the Time Stamp field

Save the accumulated CRC64 value as the pre-computed CRC64

value

The pair of the ULDs is composed of the near end's ULTID and the

remote end's ULTID, where the former is the leftmost 32 bits and the

latter is the rightmost 32 bits of initial value for the send

direction, and the order is reversed for the receive direction.

When calculate the value ICC of a particular FSP packet, firstly set

ICC to the pre-computed CRC64 value, then calculate the CRC64

checksum of the whole FSP packet, while ULTIDs are NOT included if

the FSP packet is encapsulated in UDP. The result is set as the

final value of the ICC field.

¶

¶

¶

¶

1. 

¶

2. ¶

3. ¶

4. 

¶

5. ¶

6. 

¶

¶

¶



8.1.2. Authenticated Encryption with Additional Data

FSP provides per-packet authenticated encryption service. Only one

authenticated encryption algorithm is allowed for a determined

version of FSP. For this FSP version, the authenticated encryption

algorithm selected is GCM-AES [GCM][AES], it is applied to protect

integrity of the full FSP packets, and privacy of the payload

together with the extension headers, if any. The four inputs to GCM-

AES authenticated encryption are:

K: the key derived by the master key installed by ULA. The length of

the session key is determined by the ULA.

IV: the initial vector, 96-bit string made by concatenating a 32-bit

salt, the 32-bit sequence number of the packet and the 32-bit

expected sequence number field of the packet. The salt is derived by

the master key installed by ULA.

P: the plaintext are the bytes following the fixed header up to the

end of the original payload.

AAD: additional authenticated data, for this version of FSP it

consists of first 128 bits of the fixed header of the FSP packet.

The source ULTID MUST be stored in the leftmost 32-bit of the ICC

field while the destination ULTID MUST be stored in the rightmost

32-bit of the ICC field before the ICC value is calculated.

The length of the authentication tag MUST be 64 bits for FSP version

0 and 1. The authentication tag is stored in the ICC finally.

The inputs to GCM-AES decryption are:

K: the key derived by the master key installed by ULA. The length of

the session key is determined by the ULA.

IV: the initial vector, 96-bit string made by concatenating

consisted of the 32-bit salt, the 32-bit sequence number of the

packet and the 32-bit expected sequence number field of the packet.

C: the cipher-text are the bytes following the fixed header up to

the end of the received payload.

AAD: additional authenticated data, for this version of FSP it

consists of the first 128 bits of the fixed header of the FSP

packet. The sender's ULTID MUST be stored in the leftmost 32-bit of

the ICC field while the receiver's ULTID MUST be stored in the

rightmost 32-bit of the ICC field before the ICC value is

calculated.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



T: The authentication tag, which is fetched from the ICC field

received.

Only when the outputs of GCM-AES decryption tell that the

authentication tag passed verification may the receiver deliver the

decrypted payload to the ULA.

8.1.3. ICC of the Out-of-Band Packet

When calculating the ICC of an out-band packet (KEEP_ALIVE or

MULTIPLY), the ExpectedSN field SHALL be filled with the out-of-

band serial number. The first 32-bit word of the fixed header is

taken as the second salt.

To get or check the ICC of the out-of-band packet the original salt

value that is set on deriving the session key and stored in the

internal security context MUST be XORed with the second salt value

before applying GCM-AES. The original salt value MUST be recovered

instantly after GCM-AES is applied.

8.2. Start a New Transmit Transaction

The responder starts a transmit transaction by send the

ACK_CONNECT_REQ packet which MAY terminate the transmit transaction

at the same time.

Any party MAY start a new transmit transaction by sending a PERSIST

packet:

(PERSIST, FREWS, SN, ExpectedSN, ICC, Payload)

PERSIST packet sent by the initiator firstly acknowledges the

ACK_CONNECT_REQ packet as well.

8.3. Send a Pure Data Packet

(PURE_DATA, FREWS, SN, ExpectedSN, ICC, Payload)

After a new transmit transaction has been started further PURE_DATA

packet MAY be sent until a packet with EoT flag set is sent.

8.4. Commit a Transmit Transaction

8.4.1. Initiate Transmit Transaction Commitment

A participant of an FSP connection MAY notify its peer that a

transmit transaction shall be committed by setting the EoT flag of

the last packet of the transmit transaction, be it PERSIST,

PURE_DATA or MULTIPLY.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



8.4.2. Respond to Transmit Transaction Commitment

(KEEP_ALIVE, FREWS, SN, ExpectedSN, ICC, Sink Parameter, SNACK)

Whenever a legitimate packet falls in the receive window of the

receiver, and the packet fills in the last gap of the sequence of

current transmit transaction on receiving direction, or the packet

with same sequence number has been accepted already, a responding

KEEP_ALIVE packet that accumulatively acknowledges all the packets

sent by the remote end SHALL be sent back immediately, and the FSP

layer MUST immediately notify the ULA that a transmit transaction

has been committed.

The sequence number (SN) of the KEEP_ALIVE packet MUST equal the

latest sequence number of the legitimate packets that have been

sent.

The out-of-band serial number SHALL increase by one whenever a new

KEEP_ALIVE packet is sent.

Here the KEEP_ALIVE packet SHALL contain a SNACK extension header,

although number of gap descriptors in the SNACK header MUST be 0.

8.4.3. Finalize Transmit Transaction Commitment

After receiving the KEEP_ALIVE packet that accumulatively

acknowledges all the packets sent the sender of the EoT flag

migrates to the COMMITTED or CLOSABLE state from the COMMITTING or

COMMITTING2 state, respectively.

8.4.4. Time-out for Committing Transmit Transaction

The ULA SHALL be timed-out if there is no packet was acknowledged in

some hard-coded time-out. For this version of FSP the time-out is

set to 30 seconds.

8.5. Retransmission

8.5.1. Calculation of RTT

We borrows specifications for calculating RTT (and RTO) considerably

from Computing TCP's Retransmission Timer [RFC6298] to calculate

Retransmission Time Out (RTO).

The sender maintains two state variables, SRTT (smoothed round-trip

time) and RTTVAR (round-trip time variation). In addition, we assume

a clock granularity of G seconds.

Initial round trip time (RTT) for the Connection Initiator: Equals

to the mean of the time elapsed when ACK_ INIT_CONNECT was received

¶

¶

¶

¶

¶

¶

¶

¶

¶



since INIT_CONNECT was sent, and the time elapsed till

ACK_CONNECT_REQ was received since CONNECT_REQUEST was sent.

Initial RTT for the Connection Responder: Equals to the time elapsed

when the CONNECT_REQUEST packet was received since the

ACK_INIT_CONNECT packet had been received.

Initial RTT for the Initiator of Connection Multiplication: Equals

to the most recent RTT of the multiplied connection.

Initial RTT for the Responder of Connection Multiplication: Equals

to the most recent RTT of the multiplied connection.

When the Initial RTT measurement R is made, the host MUST set

When a subsequent RTT measurement R' is made, a host MUST set

The value of SRTT used in the update to RTTVAR is its value before

updating SRTT itself using the second assignment. That is, updating

RTTVAR and SRTT MUST be computed in the above order.

The above SHOULD be computed using alpha=1/8 and beta=1/4.

R' SHOULD be measured whenever a packet with the SNACK extension

header is received.

Suppose the packet with the latest SN that is accumulatively

acknowledged is P-latest, R' equals the time when the SNACK header

is received, minus the time when P-latest was sent, minus the delay

that the acknowledgment was made.

The delay that the acknowledgment was made is stored in the

"Acknowledgement Delay" field of the SNACK header. It equals the

time difference between the time when the acknowledgement was sent

and the time when P-latest was received.

Note that the no packet with SN later than any gap described in the

SNACK header is considered as the packet with the latest SN that is

accumulatively acknowledged.

8.5.2. Generation and transmission of SNACK

Whenever the receiver receives a packet it SHALL shift the time to

send next heartbeat signal earlier to the time of RTT since current

¶

¶

¶

¶

* ¶

   SRTT <- R

   RTTVAR <- R/2

¶

* ¶

   RTTVAR <- (1 - beta) * RTTVAR + beta * |SRTT - R'|

   SRTT <- (1 - alpha) * SRTT + alpha * R'

¶

¶

¶

¶

¶

¶

¶



time, if the time to send next heartbeat signal used to be later. If

the time is already earlier than the time of RTT since current time,

it needs not be shifted.

On the time to send the heartbeat signal the FSP node generates the

SNACK header, then generate and send a new KEEP_ALIVE packet to

carry the SNACK header.

8.5.3. Negative acknowledgment of Packets Sent

KEEP_ALIVE packets in FSP carry the SNACK extension headers. We call

them SNACK packets. A SNACK packet P1 is said to be later than P0,

if and only if SN of P1 is later than SN of P0, or SN of P1 equals

SN of P0 while the out-of-band sequence number of P1 is later than

that of P0.

By convention when we specify the range, the left square bracket

meant to be inclusive, while the right parenthesis meant to be

exclusive, the packets with SN in the ranges:

[expectedSN, expectedSN + 1st Gap Width),

[expectedSN + 1st Gap Width + 1st Data Length, expectedSN + 1st Gap

Width + 1st DataLength + 2nd Gap Width), ...

[expectedSN + 1st Gap Width + 1st Data Length... + (n-1)th Gap Width

+ (n-1)th Data Length, expectedSN + 1st Gap Width + 1st

DataLength... + n-th Gap Width)

together with the packets with SN later than (expectedSN + 1st Gap

Width + 1st DataLength + ... + n-th Gap Width), these packets are

assumed to be negatively acknowledged.

8.5.4. Retransmission Interval

Until RTT measurement has been made for a packet sent between the

sender and receiver, the sender SHOULD set RTO <- 1 second.

After computing new SRTT, a host MUST updated RTO <- SRTT + max (G,

K*RTTVAR) where K = 4.

Clock granularity SHOULD be finer than 100msec, that is, it SHOULD

be that G <= 0.1 second.

Whenever RTO is computed, if it is less than 1 second, then the RTO

SHOULD be rounded up to 1 second.

An implementation MUST manage the retransmission timer(s) in such a

way that A packet is never retransmitted less than one RTO after the

previous transmission of that packet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Every time an in-band packet is sent (including a retransmission),

if the timer is not running, start it running so that it will expire

after RTO seconds (for the current value of RTO).

When all outstanding data has been acknowledged, turn off the

retransmission timer.

When the retransmission timer expires, retransmit the packets that

have not been acknowledged by the receiver, but limit by the rate

throttling mechanism.

Rate of retransmission MUST be throttled in a way that No more that

M/2 packets may be retransmitted in a clock interval, suppose in

each clock interval M packets were sent averagely.

Packet retransmission SHALL be subjected to congestion control as

well.

However, at least one packet MAY be retransmitted in one clock

interval, provide that the retransmission timer expires for the

first packet that has not been acknowledged yet.

8.6. Flow Control

The participants of an FSP connection negotiate the initial receive

window size with the FREWS field in the ACK_CONNECT_REQ packet, and

the first PERSIST packet that acknowledges the ACK_CONNECT_REQ

packet, respectively. The receive window size SHALL NOT be less than

4 and SHALL be less than 2^24.

An FSP participant advertises current receive window size in the

FREWS field.

An FSP participant SHALL NOT send a packet whose sequence number is

later than the value of the ExpectedSN field plus the advertised

receive window size, where both value come from the very packet

received with the latest sequence number.

8.7. Congestion Control

FSP supposes that end-to-end congestion control is provided by some

shim layer, such as the congestion manager [RFC3124] between the

"traditional" IP layer and the FSP transport layer. The shim layer

is considered as a sub-layer of the network layer. Implementation of

FSP MUST provide such shim layer if the network layer of the end

node does not provide end-to-end congestion management service.

FSP layer SHALL provide following information to the congestion

manager as soon as the first packet on the fly was acknowledged by

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



any mean, or a legitimate packet falling in the receive window with

the ECE flag set is received:

The local interface number that the packet carrying the ECE

signal is accepted.

The remote network prefix that the congestion information is

meant to associate. Note that the aggregated host ID part is NOT

included in the prefix.

The traffic class. For FSP it is bisected: MIND flag set or not.

Number of outstanding octets, including all of those in the

payload AND the FSP headers.

The effective round trip time calculated in the most recent

period. Note that retransmitted packets MUST be excluded on

calculating the effective RTT.

Whether an ECN-Echo signal was received. The ECE flag of a

legitimate packet falling in the receive window is the ECN-Echo

signal.

Whether a sent packet with SRR flag set is acknowledged.

The congestion manager SHOULD reduce the send rate if the FSP sender

informed it that an ECN-Echo signal was received.

The sender SHALL NOT inform the congestion manager to reduce the

send rate again even if further packet with ECE flag set is

received, until at least one sent packet with SRR flag set is

acknowledged.

A packet with ECE flag set received after the packet with SRR flag

set is acknowledged SHOULD make the congestion manager reduce the

send rate again.

Retransmitted packet SHALL be subjected to send rate control at the

underlying congestion management service sub-layer as well.

Quota or other means to enforce fairness among various FSP

connections SHOULD be provided directly to the ULA by the congestion

management service.

Requirement of an FSP congestion manager would be detailed in a

separate document.

8.8. On-the-Wire Compression

FSP exploits the lossless compression algorithm as per [LZ4].

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶



If the CPR flag of the first packet of a transmit transaction is

set, compression is applied on the payload octet stream of the

transaction transaction.

When applying compression FSP divides source stream into multiple

blocks. For this version of FSP length of each block is 128KiB

(131072 octets), except the final block whose length may be less

than or equal to 128KiB. The final block is the one that terminate

the transmit transaction, i.e. which contains the last FSP packet of

the transmit transaction. The last FSP packet of the transmit

transaction has the EoT flag set. The "LZ4_compress_fast_continue"

method SHALL be applied on each block. That is, data from previous

compressed blocks are taken use for better compression ratio.

When transferring the result data of compressing each block, the

result data is prefixed with its length. The length is expressed by

a 4-octets little-endian integer.

On-the-wire compression of each transmit transactions is

independent. It is the upper layer application that SHALL make

agreement on which transmit transaction utilizes on-the-wire

compression.

8.9. Milk Like Payload and Minimal Delay Service

An ordinary data flow is wine-like in the sense that the older data

are more valuable. If it has to, data packet sent latest are dropped

first. In the contrary, milk-like payload is that the newer data are

more precious and outdated data packet can be discarded.

When ULA is willing to accept incomplete message the peer of the

underling FSP node SHALL set the MIND flag of the first PERSIST

packet that starts the first transmit transaction, and set the MIND

flag of every following PURE_DATA packet, while set the Traffic

Class of the underlying IPv6 packet to some registered value.

In the transmission path, any relaying middle box, be it router or

switch, should reserve a reasonably short queue for the packet flow

of such flow to minimize delay.

When the receive buffer overflows the receiver discards the

undelivered packet received first to free buffer space for the

latest packet received. However it keeps order on delivering the

packets to he ULA. ULA may choose to discard packets received

earlier than some threshold.

The receiver SHOULD NOT make any acknowledgement to the packet

received with the MIND flag set.

¶

¶

¶

¶

¶

¶

¶

¶

¶



Minimal delay service is asymmetric in the sense that one

transmission direction the data flow may be milk-like while in the

reverse direction the data flow may be wine-like.

A minimal delay service data flow is terminated by ULA via some out-

of-band control mechanism.

9. Graceful Shutdown

One participant of an FSP connection MAY initiate graceful shutdown

of the connection if and only if its peer has committed the most

recent transmit transaction.

By initiating graceful shutdown the participant tells its peer that

current transmit transaction is to be committed as well.

9.1. Initiation of Graceful Shutdown

(RELEASE, FREWS, SN, ExpectedSN, ICC)

An FSP end node MAY initiate graceful shutdown if it is in the

PEER_COMMIT, COMMITTING2 or CLOSABLE state. It SHALL NOT initiate

graceful shutdown if its peer has not committed current transmit

transaction.

Graceful shutdown is signaled to the remote end by sending a RELEASE

command packet. The FSP end node SHALL migrate to the PRE_CLOSED

state just before sending the RELEASE packet.

9.2. Acknowledgment of Graceful Shutdown

The RELEASE packet may be accepted in the COMMITTING, COMMITTED,

COMMITTING2, CLOSABLE or PRE_CLOSED state.

If the legitimate RELEASE packet is received in the COMMITTING or

COMMITTING2 state, the FSP end node SHALL buffer the RELEASE packet,

wait each packet of the last transmit transaction of its peer has

been received, deliver all the buffered payload and then migrate to

the SHUT_REQUESTED state.

If the legitimate RELEASE packet is received in the COMMITTED or

CLOSABLE state, the FSP end node SHALL migrate to the SHUT_REQUESTED

state immediately.

In either of the two cases the receiver of the RELEASE packet SHALL

acknowledge the sender of the RELEASE packet with a legitimate out-

of-band KEEP_ALIVE packet.

Note that out-of-order RELEASE packet MAY be discarded in the

COMMITTED or CLOSABLE state.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



If the RELEASE packet is received in the PRE_CLOSED state, it is to

finalize the graceful shutdown procedure.

9.3. Finalization of Graceful Shutdown

If either the legitimate RELEASE packet or the legitimate KEEP_ALIVE

packet is received in the PRE_CLOSED state the grace shutdown

request is supposed to be acknowledged and the shutdown procedure

SHALL be finalized by that the FSP end node migrates to the CLOSED

state immediately.

In SHUT_REQUESTED state the FSP node SHALL migrate to CLOSED state

immediately on the Shutdown API called by the ULA.

9.4. Retransmission of RELEASE Packet

The FSP end node in the PRE_CLOSED state SHALL retransmit the

RELEASE packet until it migrates to CLOSED state or it is timed out.

As RELEASE is the in-band packet retransmission of the RELEASE

packet is subjected to the normal retransmission rule.

10. Mobility and Multi-home Support

10.1. Heartbeat Signals

FSP requires that the participants periodically send the heartbeat

signals.

The participant in the ACTIVE, COMMITTING, COMMITTED, PEER_COMMIT,

COMMITING2 or CLOSABLE state MUST send the KEEP_ ALIVE packet as the

heart-beat signal periodically to retain the connection in case that

underlying IP address has changed.

(KEEP_ALIVE, FREWS, SN, ExpectedSN, ICC, Sink Parameter, SNACK)

Heartbeat signal packet is an out-of-band control packet. It does

not carry payload. The sequence number of the packet SHALL be set to

the latest sequence number of all of the packets that have been

sent.

Only the FSP node in the ACTIVE, COMMITTING, COMMITTED, PEER_COMMIT,

COMMITING2 or CLOSABLE state MAY process the heartbeat signal.

In this version of FSP the heartbeat period is arbitrarily set to

600 seconds.

The sequence number (SN) of the heartbeat signal packet MUST equal

the latest sequence number of the legitimate packets that have been

sent.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



The out-of-band serial number SHALL increase by one whenever a new

hearbeat signal packet is sent.

10.2. Active Address Change Signaling

During communication process the FSP participant whose underlying IP

address is changed SHOULD inform its peer such change by transmit a

heartbeat signal packet so that the peer can retransmit the packets

that were negatively acknowledged, if any.

Such informing hearbeat signal packet SHALL be sent in the ACTIVE,

COMMITTING, COMMITTED, PEER_COMMIT, COMMITING2 or CLOSABLE state.

Informing heartbeat signal packet SHOULD be sent more frequently

than a normal heartbeat signaling packet.

For this version of FSP informing heartbeat signal packet SHALL be

retransmitted every 4 RTT interval until the heuristic

acknowledgement is received.

10.3. Heuristic Remote Address Change Adaptation

A participant of the FSP connection SHALL set the source address of

the packet to be transmitted (or retransmitted) to the new IPv6

address as soon as the near-end IPv6 address has changed. However,

the ULTID field MUST remain the same.

When a new packet with a later sequence number is received and the

source IP address of the packet is found to be different with the

preserved IP address of the remote end, the receiver SHOULD

automatically update the preserved IP address of the remote end to

the source IP address of the new packet, unless there is a Sink

Parameter header in the packet.

If the sequence number of the packet received is not the latest in

the receive window the preserved IP address of the remote end SHALL

NOT be updated even if the source address of the received packet has

changed.

10.4. Heuristic Address Change Acknowledgement

The address change signaling heartbeat signal packet is supposed to

be acknowledged if a packet targeted at the new IP address that the

heartbeat signal packet has informed is received.

10.5. NAT-traversal and Multihoming

When FSP is implemented over UDP in the IPv4 network, each endpoint

of the FSP connection is bound one and only one IPv4 address as soon

as the connection is established. Each endpoint SHALL choose the

¶

¶

¶

¶

¶

¶

¶

¶

¶



source IPv4 address of the last packet received as the destination

IPv4 address of the packet that it is to send later. By this mean

FSP over UDP is NAT-friendly.

When FSP is implemented over IPv6, as soon as the connection is

established the IPv6 address may be changed dynamically, and one

more alternate IP address may be added or removed dynamically for

individual endpoint as well, provided that ULTIDs and host-IDs all

IPv6 addresses of the endpoint keep the same value at any given

moment.

The sender may choose as the source IP address by selecting any

network prefix that it has most-recently sent to its peer in the

allowed address list field of the Sink Parameter header, joining

with the host ID in the Sink Parameter header and the stable ULTID

of the sender, and choose as the destination IP address by selecting

any network prefix in the allowed address list field of the Sink

Parameter header most-recently received from its peer, joining with

the peer's host ID and the peer's ULTID. Thus multiple multi-homed

paths MAY co-exist between the two FSP endpoints.

10.6. Explicit Multi-home Informing

If an FSP end node is configured with multiply global unicast IPv6

address, it MAY advertise multiple underlying addresses to the

remote end by put them in the addressable network prefix list of the

Sink Parameter extension header. The Sink Parameter extension header

may be carried in the CONNECT_REQUEST, ACK_CONNECT_REQ, PERSIST,

MULTIPLY or KEEP_ALIVE packet.

Any participant of the communication SHALL NOT make discrimination

of the source or destination IP address of any packet provided that

both the source ULTID and the destination ULTID keep unchanged and

the ICC field passes verification.

11. Connection Multiplication

Connection multiplication is the process of incarnating a new

connection context by re-using security context of an established

connection.

11.1. Request to Multiply Connection

(MULTIPLY, FREWS, SN, Salt, ICC [, Sink Parameter] [, payload])

The initiator's initial sequence number of the new connection is the

sequence number of the packet that piggybacks the connection

multiplication header. The ExpectedSN field of the normal packet

store a Salt value instead.

¶

¶

¶

¶

¶

¶

¶

¶



The FREWS field MUST be processed in the new connection context

while the ICC MUST be calculated with the session key of the

original connection.

The new connection inherits the remaining key life. ULA SHOULD

negotiate new session key and/or install new session key as soon as

possible.

The optional payload of the MULTIPLY packet MUST be processed in the

new connection context.

The MULTIPLY packet is an out-of-band command packet in the original

connection context.

11.2. Response to Connection Multiplication Request

Case 1: (PERSIST, FREWS, SN, ExpectedSN, ICC, Payload)

Case 2: (RESET, Reason of Failure, SN, ExpectedSN, ICC)

In all of these cases the ULTID of the remote-end MUST be the value

of the initiator's ULTID in the connection multiplication header.

It is REQUIRED that only a connection in the ESTABLISHED,

COMMITTING, COMMITTED, PEER_COMMIT, COMMITTING2 or CLOSABLE state

may accept a connection multiplication request.

In case 1 the responder admits the multiplication request AND commit

the transmit transaction, the new connection enters into the

PEER_COMMIT or CLOSABLE state immediately, on request of ULA.

In case 2 the responder admits the multiplication request and the

new connection enters into the ESTABLISHED, PEER_COMMIT, COMMITTING

or CLOSABLE state immediately, depending whether the ULA of the

multiplication initiator has requested to commit the transmit

transaction immediately and whether the ULA of the multiplication

responder has requested to commit the transmit transaction in the

reverse direction immediately.

In case 3 the responder rejects the multiplication request. To

defend against spoofing attack ICC MUST be valid. The value of the

SN field MUST equal the value of the 'Expected SN' field of the

requesting MULTIPLY packet while the value of ExpectedSN field MUST

equal the value of the 'Sequence No' field.

The new connection MUST derive new session key from the session key

of the original connection where the out-of-band requesting MULTIPLY

packet is received immediately.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



11.3. Duplicate Detection of Connection Multiplication Request

Every time the responder of connection multiplication receives a

MULTIPLY packet it MUST check the suggested responder's ULTID and

the initiator's ULTID.

The responder MUST reject the multiplication request if the

suggested responder's ULTID equals the near-end ULTID of some

connection and the remote-end ULTID of that connection does not

equal the initiator's ULTID.

The responder MUST recognize the MULTIPLY packet as a duplicate

connection request if some connection matches the request and SHOULD

response by retransmitting the head packet of the send queue of the

matching connection. A connection matches the MULTIPLY request if

and only if the suggested responder's ULTID in the MULTIPLY packet

equals the near-end ULTID of the connection and the initiator's

ULTID equals the remote-end ULTID of the connection.

11.4. Retransmission

The initiating side SHALL retransmit the MULTIPLY packet if the

corresponding PERSIST packet is not received in some limit time (by

default 15 seconds).

11.5. Key Derivation for Branch Connection

Km is the master key, padded to 512 bits with zeros at right,

[d] is one octet of integer Depth. For this version of FSP it is

the fixed number 1 for the first iteration,

Label is the fixed ASCII string "Multiply an FSP connection"

which is 26-octet long for this version of FSP,

Context is concatenation of two 32-bit words idB and idR idB is

the ULTID allocated for the branch connection in the context of

the multiplication initiator. idB is byte-order neutral. idR is

the receiver side ULTID of the original connection that is to

accept the connection multiplication request. idI or idR is byte-

order neutral.

L is a 32-bit network byte-order integer specifying the length in

bits of the derived key K-out

The result K_out is of 256 bits in length. If the requested key

length is 128-bit or 192-bit, leftmost bits of the key requested

¶

¶

¶

¶

Let K_out = HMAC-SM3k512(Km, [d] || Label || 0x00 || Context || L),

where:

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*



length of K_out is taken as the session key of the new branch

connection, the following 32 bits is taken as the salt to be

applied to compose the IV for AES-GCM.

If the requested key length is 256-bit, K_out is taken as the

session key of the new branch connection while the salt to be

applied to compose the IV for AES-GCM in the original connection

is simply inheritted.

12. Timeouts and Abrupt Close

12.1. Timeouts in End-to-End Negotiation

Initially the initiator is in the CONNECT_BOOTSTRAP state. It

migrates to the CONNECT_ AFFIRMING state after it received the

legitimate ACK_INIT_CONNECT packet. Then it migrates to the

PEER_COMMIT or CLOSABLE state after it received the legitimate

ACK_CONNECT _REQ packet, depending on the hint of ULA.

The responder incarnates a new connection context which is initially

in the CHALLENGING state after accepting a legitimate Connect

Request packet. Then it migrates to the COMMITTING or CLOSABLE

state, depending on the packet received from its peer.

If the initiator or the responder is unable to migrate to a new

state in some limit time (by default 60 seconds, except in LISTENING

state) it aborts the connection by recycling the connection context.

12.2. Timeouts in Multiply

Initially the initiating side of Connection Multiplication is in the

CLONING state. It migrates to the ACTIVE, COMMITTED, PEER_COMMIT or

CLOSABLE state after it received the legitimate PERSIST packet.

Which state to migrated depends on the EoT flag of the initiating

MULTIPLY packet and the responding PERSIST packet.

If the initiating side is unable to migrate to a new state in some

limit time (by default 60 seconds) it aborts multiplication by

recycling the new connection context.

12.3. Timeout of Transmit Transaction Commitment

The FSP node MUST abort the connection if the time of no packet

having arrived has exceed certain limit in the COMMITTING or

COMMITTING2 state.

In this FSP version, timeout of transmit transaction commitment is

set to 5 minutes.

¶

*

¶

¶

¶

¶

¶

¶

¶

¶



12.4. Timeout of Graceful Shutdown

It simply migrates to the NON_EXISTENT pseudo-state if timeout in

the PRE_CLOSED state.

In this FSP version, timeout of Graceful Shutdown is set to 1

minute.

12.5. Idle Timeout

If one participant has not received any packet nor has it sent any

packet in some limit time, it MUST be abruptly closed.

In this FSP version the time limit, or the idle timeout, is set to 4

hours.

12.6. Session Key Timeout

For this FSP version if a secret key is applied for more than 2^30

times the FSP node MUST abruptly closed instantly.

12.7. Abrupt Close

An FSP node abruptly shutdown a session by sending a RESET packet

and release all of the resource occupied by the the session

immediately.

(RESET, Reason of Failure, SN, ExpectedSN, ICC)

13. Issues for Further Study

13.1. Resolution of ULTID in DNS

There are two patterns of IP address resolution in FSP: the DNS-

compatible pattern and the proxy pattern. The former pattern relies

on some name service to resolve the IP address of the responder for

the initiator before they exchange end-to-end negotiation packets.

In the DNS-compatible pattern, the responder side of the FSP

participants registered its address identifier, such as 'domain

name' in some name service such as DNS [RFC1034][RFC1035], according

to some pre-agreement at first. The initiator resolves the current

IP address of the responder by consulting the name service, such as

looking after the A or AAAA record [RFC3596] of the domain name in

DNS.

If UDP over IPv4 is exploited as the under layer data packet

delivery service the port number of the responder is firstly

resolved just alike normal network application such as HTTP. Then it

¶

¶

¶

¶

¶

¶

¶

¶

¶



is extended to 32-bit ULTID, and ULTIDs of FSP can be considered as

the superset of TCP port numbers.

If the string representation of IPv4/IPv6 address is applied

directly as the peer's address identifier instead of the domain name

there is no need for some real address resolution. But from the API

caller's point of view it is a DNS-compatible mode address

resolution.

13.2. Proxy Pattern for Syndicated Name Resolution

The proxy pattern of IP address resolution in FSP is to embed the

address resolution information in the connection initialization

packets and is designed to work in FSP over IPv6 mode only.

In IPv6 network the rightmost 32 bits of the IPv6 address directly

maps to the ULTID so FSP does not need additional multiplexing

mechanism such as port number. And it needs not consult SRV record

or look for some entry in some 'services' file.

If the INIT_CONNECT packet carries the responder's host name it MUST

take the link-local interface address as the source IPv6 address and

the default link-local gateway address, FE80::1, as the destination

IPv6 address no matter whether the global unicast IP address of the

default gateway is configured. In such scenario the link-local

gateway MUST be able to resolute the responder's host name to its

global unicast IPv6 address, and the gateway MUST be able to map the

initiator's link local address to its global unicast IPv6 address.

If the gateway that relays the INIT_CONNECT packet finds that the

responder is on the same link-local network with the initiator it

SHALL change the source and the destination IP addresses of the

INIT_CONNECT packet to the link-local IP addresses of the initiator

and the responder respectively, and relay the packet onto the same

link-local network.

On receiving the INIT_CONNECT packet that carries the responder's

host name the link-local gateway MUST resolute the responder's

global unicast IPv6 address and map the initiator's global unicast

IPv6 address, and replace the destination and source address of the

INIT_CONNECT packet respectively, unless it finds that the initiator

and the responder are on the same link-local network, where the

gateway SHALL process the packet as stated in the previous

statement.

13.3. Asymmetric Transmission

If there is one participant whose receive interface is not the same

as the send interface the participant is called an asymmetric-

transmission node.

¶

¶

¶

¶

¶

¶

¶

¶



Asymmetric transmission itself is asymmetric in the sense that one

participant may be asymmetric-transmission node while its peer is a

normal node that the send interface is the same receive interface.

An end node is asymmetric-transmission if it received an

ACK_CONNECT_REQ packet or PERSIST packet whose source IP address

that the network interface accepting the packets reported is not in

the allowed IP address list in the Sink Parameter header of the

packet.

For an asymmetric-transmission remote end, the near end cannot rely

on automatic IP address change detection. Instead IP address change

notification mechanism shall be utilized.

However for this version of FSP asymmetric transmission support is

optional.

14. Security Considerations

14.1. Deny of Service Attack

FSP is designed to mitigate effect of DoS attack by exploiting

Cookie.

However, resistance against distributed DoS attack relies on

external mechanism.

14.2. Replay Attack

In-band sequence number and out-of-band sequence number are

exploited to resist against replay attack.

14.3. Passive Attacks

AEAD MAY be exploited by the ULA to protect it against passive

attacks such as eavesdropping, gaining advantage by analyzing the

data sent.

MAC only service MAY also be utilized. Together with application

layer stream-mode encryption it protects the ULA against passive

attacks as well.

14.4. Masquerade Attack

Both AEAD and MAC only service may be exploited to protect the

endpoints against masquerade attack.

If proxy pattern for syndicated name resolution is exploited for FSP

over IPv6, secure neighbor discovery [RFC3971] SHOULD be applied

instead of common neighbor discovery whenever it is feasible.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



[AES]

[CRC64]

[GCM]

[LZ4]

[OSI_RM]

[R01]

[RFC1122]

14.5. Active Man-In-The-Middle Attack

The ULA SHALL take account to protect itself against MITM attack

when making client authentication and key establishment.

14.6. Privacy Concerns

It is beneficial for privacy protection that the ULTID of each

endpoints of an FSP connection is generated randomly [RFC7721].

15. IANA Considerations

It should be requested that the port number registered for UDP

packets encapsulating FSP in the IPv4 network. The port number 18003

is exploited in the concept prototype implementation. The number is

the decimal presentation of ASCII codes of the character 'F' ('x46')

and 'S' ('x53') concatenated in network byte order.

It should be requested that the 'Next Header'/protocol number is

assigned for FSP over IPv6. Decimal number 144 is exploited in the

concept prototype implementation.

16. References

16.1. Normative References

NIST, "Advanced Encryption Standard (AES)", November

2001. 

ECMA, "Data Interchange on 12.7 mm 48-Track Magnetic Tape

Cartridges - DLT1 Format Standard, Annex B", December

1992. 

NIST, "Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC", November

2007. 

"LZ4: Extremely Fast Compression algorithm", <https://

lz4.github.io/lz4/>. 

ISO and IEC, "Information technology-Open Systems

Interconnection - Basic Reference Model: The Basic

Model", November 1994. 

Rogaway, P., "Authenticated encryption with Associated

Data", 2002. 

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

¶

¶

¶

¶

https://lz4.github.io/lz4/
https://lz4.github.io/lz4/


[RFC2104]

[RFC2119]

[RFC2526]

[RFC3124]

[RFC3168]

[RFC3629]

[RFC4291]

[RFC5869]

[RFC6887]

[RFC8085]

[RFC8200]

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>. 

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast

Addresses", RFC 2526, DOI 10.17487/RFC2526, March 1999, 

<https://www.rfc-editor.org/info/rfc2526>. 

Balakrishnan, H. and S. Seshan, "The Congestion Manager",

RFC 3124, DOI 10.17487/RFC3124, June 2001, <https://

www.rfc-editor.org/info/rfc3124>. 

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>. 

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>. 

Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, DOI 10.17487/RFC4291, February

2006, <https://www.rfc-editor.org/info/rfc4291>. 

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>. 

Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R.,

and P. Selkirk, "Port Control Protocol (PCP)", RFC 6887, 

DOI 10.17487/RFC6887, April 2013, <https://www.rfc-

editor.org/info/rfc6887>. 

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085, 

March 2017, <https://www.rfc-editor.org/info/rfc8085>. 

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2526
https://www.rfc-editor.org/info/rfc3124
https://www.rfc-editor.org/info/rfc3124
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc8085


[RFC8273]

[STD5]

[STD6]

[STD7]

[Gao2002]

[ISO-SM3]

[RFC1034]

[RFC1035]

[RFC3022]

[RFC3596]

[RFC3971]

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>. 

Brzozowski, J. and G. Van de Velde, "Unique IPv6 Prefix

per Host", RFC 8273, DOI 10.17487/RFC8273, December 2017,

<https://www.rfc-editor.org/info/rfc8273>. 

Postel, J., "Internet Protocol", STD 5, RFC 791, 

September 1981, <https://www.rfc-editor.org/rfc/rfc791>. 

Postel, J., "User Datagram Protocol", STD 6, RFC 768, 

August 1980, <https://www.rfc-editor.org/rfc/rfc768>. 

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, September 1981, <https://www.rfc-editor.org/rfc/

rfc793>. 

16.2. Informative References

Gao, J., "Fuzzy-layering and its suggestion", IETF Mail

Archive, September 2002, <https://mailarchive.ietf.org/

arch/msg/ietf/u-6i-6f-Etuvh80-SUuRbSCDTwg>. 

Standardization, I. O. F., "IT Security techniques --

Hash-functions -- Part 3: Dedicated hash-functions", ISO/

IEC 10118-3:2018, October 2018, <https://www.iso.org/

standard/67116.html>. 

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, 

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, 

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Srisuresh, P. and K. Egevang, "Traditional IP Network

Address Translator (Traditional NAT)", RFC 3022, DOI

10.17487/RFC3022, January 2001, <https://www.rfc-

editor.org/info/rfc3022>. 

Thomson, S., Huitema, C., Ksinant, V., and M. Souissi, 

"DNS Extensions to Support IP Version 6", STD 88, RFC

3596, DOI 10.17487/RFC3596, October 2003, <https://

www.rfc-editor.org/info/rfc3596>. 

Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander, 

"SEcure Neighbor Discovery (SEND)", RFC 3971, DOI

10.17487/RFC3971, March 2005, <https://www.rfc-

editor.org/info/rfc3971>. 

https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8273
https://www.rfc-editor.org/rfc/rfc791
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
https://mailarchive.ietf.org/arch/msg/ietf/u-6i-6f-Etuvh80-SUuRbSCDTwg
https://mailarchive.ietf.org/arch/msg/ietf/u-6i-6f-Etuvh80-SUuRbSCDTwg
https://www.iso.org/standard/67116.html
https://www.iso.org/standard/67116.html
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc3596
https://www.rfc-editor.org/info/rfc3596
https://www.rfc-editor.org/info/rfc3971
https://www.rfc-editor.org/info/rfc3971


[RFC4086]

[RFC4555]

[RFC4861]

[RFC4862]

[RFC5942]

[RFC6177]

[RFC6298]

[RFC7050]

[RFC7721]

[RFC8415]

Eastlake 3rd, D., Schiller, J., and S. Crocker, 

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>. 

Eronen, P., "IKEv2 Mobility and Multihoming Protocol

(MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006, 

<https://www.rfc-editor.org/info/rfc4555>. 

Narten, T., Nordmark, E., Simpson, W., and H. Soliman, 

"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, 

DOI 10.17487/RFC4861, September 2007, <https://www.rfc-

editor.org/info/rfc4861>. 

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless

Address Autoconfiguration", RFC 4862, DOI 10.17487/

RFC4862, September 2007, <https://www.rfc-editor.org/

info/rfc4862>. 

Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet

Model: The Relationship between Links and Subnet

Prefixes", RFC 5942, DOI 10.17487/RFC5942, July 2010, 

<https://www.rfc-editor.org/info/rfc5942>. 

Narten, T., Huston, G., and L. Roberts, "IPv6 Address

Assignment to End Sites", BCP 157, RFC 6177, DOI

10.17487/RFC6177, March 2011, <https://www.rfc-

editor.org/info/rfc6177>. 

Paxson, V., Allman, M., Chu, J., and M. Sargent, 

"Computing TCP's Retransmission Timer", RFC 6298, DOI

10.17487/RFC6298, June 2011, <https://www.rfc-editor.org/

info/rfc6298>. 

Savolainen, T., Korhonen, J., and D. Wing, "Discovery of

the IPv6 Prefix Used for IPv6 Address Synthesis", RFC

7050, DOI 10.17487/RFC7050, November 2013, <https://

www.rfc-editor.org/info/rfc7050>. 

Cooper, A., Gont, F., and D. Thaler, "Security and

Privacy Considerations for IPv6 Address Generation

Mechanisms", RFC 7721, DOI 10.17487/RFC7721, March 2016, 

<https://www.rfc-editor.org/info/rfc7721>. 

Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A., 

Richardson, M., Jiang, S., Lemon, T., and T. Winters, 

"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", 

https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4555
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc5942
https://www.rfc-editor.org/info/rfc6177
https://www.rfc-editor.org/info/rfc6177
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc7050
https://www.rfc-editor.org/info/rfc7050
https://www.rfc-editor.org/info/rfc7721


[RFC8504]

RFC 8415, DOI 10.17487/RFC8415, November 2018, <https://

www.rfc-editor.org/info/rfc8415>. 

Chown, T., Loughney, J., and T. Winters, "IPv6 Node

Requirements", BCP 220, RFC 8504, DOI 10.17487/RFC8504, 

January 2019, <https://www.rfc-editor.org/info/rfc8504>. 

Appendix A. Acknowledgements

Author's Address

Jun-an Gao

Beijing Capital Highway Development Group Co.,Ltd.

Shoufa Plaza-A, Liuliqiao South, Fengtai

Beijing

People's Republic of China

Email: jagao@outlook.com

https://www.rfc-editor.org/info/rfc8415
https://www.rfc-editor.org/info/rfc8415
https://www.rfc-editor.org/info/rfc8504
mailto:jagao@outlook.com

	Flexible Session Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Features
	1.1.1. Transport Layer Mobility Support
	1.1.2. Flexibility to exploit Authenticated Encryption
	1.1.3. Transmit Transaction
	1.1.4. Light-weight session management
	1.1.5. On-the-wire Compression

	1.2. Requirements Language
	1.3. Conventions

	2. Abbreviations and Idioms
	3. Key Mechanisms
	3.1. Underlying Layer Services Required
	3.1.1. Handling of High Mobility
	3.1.2. Network Address Change Notification
	3.1.3. Network Congestion Control

	3.2. Identifying Connection by Local ULTID
	3.3. Defending Against Connection Hijacking with ICC
	3.4. Synchronizing Key Installation with Transmit Transaction
	3.5. 0-RTT Connection Multiplication with OOB Packet

	4. Packet Structure
	4.1. FSP over UDP/IPv4
	4.2. FSP over IPv6
	4.3. Generic FSP Header
	4.4. FSP Header Signature and Code-Mark-Length Prefix
	4.4.1. Operation Code
	4.4.2. Major
	4.4.3. Mark
	4.4.4. Offset
	4.4.5. Length

	4.5. Preliminary FSP Packets
	4.5.1. Connect Initialization
	4.5.2. Acknowledgment to Connect Initialization
	4.5.3. Connect Request

	4.6. Normal Fixed Header
	4.7. Sink Parameter
	4.8. Selective Negative Acknowledgment
	4.9. RESET

	5. The Finite State Machine
	5.1. NON_EXISTENT
	5.2. LISTENING
	5.3. CONNECT_BOOTSTRAP
	5.4. CONNECT_AFFIRMING
	5.5. CHALLENGING
	5.6. ACTIVE
	5.7. COMMITTING
	5.8. COMMITTED
	5.9. PEER_COMMIT
	5.10. COMMITTING2
	5.11. CLOSABLE
	5.12. SHUT_REQUESTED
	5.13. PRE_CLOSED
	5.14. CLOSED
	5.15. CLONING
	5.16. Passive Multiplication
	5.17. Typical State Transitions
	5.17.1. Typical Main Connection
	5.17.2. Typical Clone Connection for Get Resource
	5.17.3. Typical Clone Connection for Push Message
	5.17.4. Simultaneous Shutdown


	6. End-to-End Negotiation
	6.1. Connect Initialization
	6.2. Response to Connect Initialization
	6.3. Connection Incarnation Request
	6.4. Connection Incarnation Response
	6.5. The Last Confirmation
	6.6. Retransmission

	7. Quad-party Session Key Installation
	7.1. API for Session Key Installation
	7.2. Time to Call API for Session Key Installation
	7.3. Time to Take New Session Key into Effect
	7.4. Generating the Initial Session Key
	7.5. Internal Rekeying
	7.6. Sample Sequence of Installing Session Key

	8. Send and Receive
	8.1. Packet Integrity Protection
	8.1.1. Application of CRC64
	8.1.2. Authenticated Encryption with Additional Data
	8.1.3. ICC of the Out-of-Band Packet

	8.2. Start a New Transmit Transaction
	8.3. Send a Pure Data Packet
	8.4. Commit a Transmit Transaction
	8.4.1. Initiate Transmit Transaction Commitment
	8.4.2. Respond to Transmit Transaction Commitment
	8.4.3. Finalize Transmit Transaction Commitment
	8.4.4. Time-out for Committing Transmit Transaction

	8.5. Retransmission
	8.5.1. Calculation of RTT
	8.5.2. Generation and transmission of SNACK
	8.5.3. Negative acknowledgment of Packets Sent
	8.5.4. Retransmission Interval

	8.6. Flow Control
	8.7. Congestion Control
	8.8. On-the-Wire Compression
	8.9. Milk Like Payload and Minimal Delay Service

	9. Graceful Shutdown
	9.1. Initiation of Graceful Shutdown
	9.2. Acknowledgment of Graceful Shutdown
	9.3. Finalization of Graceful Shutdown
	9.4. Retransmission of RELEASE Packet

	10. Mobility and Multi-home Support
	10.1. Heartbeat Signals
	10.2. Active Address Change Signaling
	10.3. Heuristic Remote Address Change Adaptation
	10.4. Heuristic Address Change Acknowledgement
	10.5. NAT-traversal and Multihoming
	10.6. Explicit Multi-home Informing

	11. Connection Multiplication
	11.1. Request to Multiply Connection
	11.2. Response to Connection Multiplication Request
	11.3. Duplicate Detection of Connection Multiplication Request
	11.4. Retransmission
	11.5. Key Derivation for Branch Connection

	12. Timeouts and Abrupt Close
	12.1. Timeouts in End-to-End Negotiation
	12.2. Timeouts in Multiply
	12.3. Timeout of Transmit Transaction Commitment
	12.4. Timeout of Graceful Shutdown
	12.5. Idle Timeout
	12.6. Session Key Timeout
	12.7. Abrupt Close

	13. Issues for Further Study
	13.1. Resolution of ULTID in DNS
	13.2. Proxy Pattern for Syndicated Name Resolution
	13.3. Asymmetric Transmission

	14. Security Considerations
	14.1. Deny of Service Attack
	14.2. Replay Attack
	14.3. Passive Attacks
	14.4. Masquerade Attack
	14.5. Active Man-In-The-Middle Attack
	14.6. Privacy Concerns

	15. IANA Considerations
	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. Acknowledgements
	Author's Address


